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1. Introduction is composed of particles that interact with Standard Model parti-

. ) cles through weakly interacting processes. According to such theo-

A quarter of the total mass-energy of universe 1s thought to be ries, weakly interacting massive particles (WIMPs) were thermally

dark matter, as has been evidenced by various observations over produced in the early universe with an abundance roughly repro-

the last few decades [1,2]. It has been theorized that dark matter ducing the relic abundance of Qcpy = 0.25 assuming a weak, self-
interaction cross section [3-5].
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no experiment has been successful in finding a positive signal
that can be interpreted as resulting from WIMPs, with the no-
table exception of the DAMA/LIBRA experiment that measures an
annual modulation signal from their residual count rate in the
energy range of 2 to 6 keV recorded in Nal(Tl) crystal detectors
[10]. The implication of the DAMA/LIBRA result that this annual
modulation is driven by a changing flux of dark matter particles
through the Earth due to the Earth’s revolution around the Sun has
caused a controversy [11-13]| and an independent verification is
essential.

Recently, the DAMA/LIBRA collaboration updated their results
with more statistics and an energy threshold that is lowered from
2 to 1 keV [14]. The new results show that the annual modula-
tion signal persists in the extended energy range (1 to 2 keV). Ex-
periments to test the DAMA/LIBRA results are actively being car-
ried out by several groups|15-17] using the same low-background
Nal(Tl) target material and reaching the same energy threshold of
1 keV electron equivalent energy. In addition to facilitating the di-
rect comparison with the claimed modulation signal, because the
expected event rate of the WIMP-induced nuclear recoil scattering
off a target nucleus follows an exponentially decreasing signature
as a function of the measured energy, the lowering of the threshold
significantly improves the WIMP detection sensitivity, and provides
coverage of smaller cross sections and masses. Here, we present
an event selection procedure that enables COSINE-100 to achieve a
1 keV threshold.

2. The COSINE-100 experiment

The COSINE-100 experiment consists of eight low-background
Nal(TI) crystal detectors surrounded by layers of shielding. The
crystals are cylindrical and individually encapsulated in copper and
coupled to 3-in. Hamamatsu R12669SEL PMTs on each flat end sur-
face of the cylinder. The total mass of the eight crystals is 106 kg,
of which the average light yield of six crystals is about 15 pho-
toelectrons/keV, excluding two crystals which show low light out-
put due to crystal-to-quartz coupling issues [18]. These crystals are
submerged in 2200 liters of liquid scintillator (LS) that tags LS-
crystal coincident interactions. Events that are tagged as coincident
interactions can be excluded from the signal search region because
of the negligible probability of WIMPs scattering twice within the
detector volume due to their minuscule cross sections' Addition-
ally, the tagged events provide a control sample of events that can
be used to test or fit background models independently from the
WIMP analysis, which only uses single-hit events. Outside of the
LS, 3-cm thick copper and 20-cm thick lead shields provide atten-
uation of environmental radiation. The entire array is surrounded
by 37 scintillating plastic panels providing a 47 coverage of the de-
tectors for identifying and vetoing cosmic-ray muons. Details about
the experimental setup can be found elsewhere [19-22].

PMTs are known to generate noise pulses caused by dark cur-
rent, occasional flashes, and radioactivity in their adjacent dyn-
ode circuitry [23]. Since at low energies the rate of these noise
pulses is overwhelmingly higher than that of the desired scintil-
lation pulses, one must reject the PMT-induced noise before per-
forming a WIMP search. Fortunately, these noise pulses have decay
forms that are distinct from those for particle-generated scintilla-
tion pulses in the crystal. We describe an event selection method
that achieves a noise contamination level of less than 1% of the
selected scintillation signal rate in the 1 to 1.5 keV energy bin by
rejecting almost all PMT-noise induced events.

1 The probability of random coincidence with the LS event is 0.006%, so there is
no need to consider the inefficiency of the WIMP signal.
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3. Pulse shape discrimination for lowering threshold
3.1. Two parameters based on pulse shape

Particle-induced pulses are produced from scintillation light
with the 250 ns characteristic decay time of Nal(Tl) crystals [24].
This decay time is longer than that for PMT noise pulses, which are
typically 50 ns or less. We call this type of the PMT noise a “type-I
PMT noise” or a thin pulse. Hence, to separate most type-I PMT-
noise events from scintillation events, the amplitude-weighted
mean time? of the PMT pulse is calculated. For each event, the
mean times of the two PMT pulses recorded in a crystal are com-
bined into one parameter defined as pm=In(<t>1 + <t >3),
where < t >; is the amplitude-weighted mean time of the ith PMT
[25].

The mean-time parameter pp, provides an effective method for
separating scintillation events from the type-I PMT-noise events
above 2 keV (see Fig. 1). However, it is apparent in the figure that
at energies below 2 keV, a distinct type of a new noise population
occurs with mean times that extend well into the scintillation sig-
nal region. Thus, at these energies, the mean-time parameter alone
does not discriminate a significant fraction of the noise which calls
for additional selection criteria.

The new parameter that characterizes the PMT-pulse shape is
defined as

In (Qtailj/Qhead,i)
Taiti — Theadi

where Qpeiq = Zfi<fc g; and Qg = Zti>tc g; are amplitude sums
of the first and second half® in time of the i" PMT, respec-
tively, and Thead = (3¢, <r Gi * ti)/Qnead AN Trait = (Xp,-¢, Gi - 1)/ Quail
are amplitude-weighted mean times in the first and second half,
respectively. As shown in Fig. 2, g; and ¢; in those definitions are
charge and time of the it" photoelectron signal, and t; = (t; + t;)/2
is an average time of first and last photoelectron. The parameter
Agq denotes a decay constant of two points (Thead, j» Qnead,j) @and
(Ttail, j» Quair,j) and quantifies the shape characteristic by focusing
on the leading and trailing edge of a pulse. Again, the PMT-based
A4 values are merged into a crystal parameter p,, called the pulse-
shape parameter, as p; = In (Zi )\d.,-). Fig. 3 shows event distribu-
tions by the mean-time parameter against the pulse-shape param-
eter for two different energy regions separately.

Agj=— (1)

3.2. PMT noise events in the 1-2 keV region

While categorizing events using the two discrimination param-
eters above, we have found that a new population of noise events
starts to appear at energies below 2 keV. The leading-edge shape
of the waveform from this new noise is the same as the previously
identified PMT noise pulses, namely thin pulses, but the trailing
part of the waveform is different and is more elevated from the
baseline compared to the other pulses. We call this new noise a
“type-Il PMT noise” or a heavy-tail pulse. The exact origins of these
PMT noises have not been fully understood at the moment.

By comparing the two plots in Fig. 3, one can see that the cat-
egorized populations have little dependence in energy. In other
words, the scintillation events and thin pulse PMT events stay in
the same regions of the parameter space. On the other hand, the
type-II noise events appear only at the right bottom corner in the
1-2 keV region.

2 <t>=

Z"’;‘ —T;, where t; and g; are time and amplitude (analog-to-digital
counts) for i" bin of a pulse, respectively. T; is the time of the first photoelectron
for a PMT pulse.

3 The first and second half are divided with an event time span between the trig-
ger time and the time of the last single photoelectron pulse within a 8 us window.
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Fig. 1. Mean-time parameter distribution as a function of energy (59.5 days). The upper horizontal band denotes scintillation-like (scintillation) events and the lower band
shows the noise-like (PMT noise) events. Below 2 keV in the high mean-time region, there are lots of noise events that cannot be separated from scintillation-like events

using the mean-time parameter only.

A Photoelectron signal

tc = t1 " tn)/2
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Fig. 2. An illustration of a PMT pulse that has several single photoelectron signals
to explain the construction of the parameter defined as Eq. 1.

Both type-I and type-Il noises contain the characteristic
sharply-peaked structure at the leading edge time while the heavy-
tail pulse includes a much slower tail compared to that of the
type-1 noise pulse as shown in Fig. 4. This type of events was
not easily identified in the mean-time parameter because their el-
evated tails skewed the amplitude-weighted mean time towards
higher values mimicking the scintillation events. On the other
hand, the pulse-shape parameter uses the leading and trailing part
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of the waveform shape separately making this new type of noise
visible in the parameter space. Although these parameters are still
mediocre in terms of their separation power, we recognize that the
shape of the waveforms can be further exploited. Therefore, to in-
crease the scintillation signal purity, we developed a better selec-
tion parameter which utilizes the full waveform information.

3.3. Likelihood parameter

Here, we construct a likelihood parameter that characterizes the
PMT pulses using a template matching method. The definition of
Ag4 in Eq. 1 requires that the PMT pulse is divided into first (head)
and second (tail) halves. Thus, each of the crystal’s two PMT pulses
has to contain two or more single-photoelectron hits, and this be-
comes an efficiency issue especially for the low-energy events be-
low 2 keV where the number of measured photoelectrons is rela-
tively low. In addition, the information contained in the waveform
is partially exploited by the mean-time and pulse-shape parame-
ters and so a single metric that computes likelihoods using a full
waveform matching with a signal template and a noise template is
preferable.

In order to obtain Compton-scattered low-energy events as a
pure scintillation signal sample, data were taken for 27.9 days us-
ing a %0Co calibration source. Here, a noise-free sample of e/y-
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Fig. 3. Pulse-shape vs. mean-time parameter distributions for two different energy regions from the physics search data (59.5 days). The left (right) panel shows the
distribution with the range of 1-2 (2-10) keV. The new type of noise events does not appear above the 2 keV region as shown in the right plot and is the main source of
noise events that are not separated from scintillation events at energies below 2 keV by only the mean-time parameter.
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Fig. 4. Scintillation (blue) and noise event (black) shape templates. The templates are normalized probability density functions. The red waveform is the accumulated

waveform of new type noise events extracted from PMT-noise events
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Fig. 5. (Top) Pulse-shape and mean-time parameter distributions for the 5°Co-calibration data (left) and the physics-run data (right). Black lines in the top figures show the
criteria to select events for reference waveforms of scintillation (left) and noise (right) event shape templates. The red and blue lines were chosen to validate the effect that
variation of criteria might have on the reference waveforms. In the left figure, the black, red and blue lines are p, > —2, pm > —1.8 and p, > —1.6, respectively, while the
same color lines in the right figure are (pm > —2 or pg < —5.5), (pm > —1.6 or p; < —=5) and (pm > —2.4 or p; < —6). The bottom figures show the shapes of the selected

events according to each criterion. The color used is the same as the top figures.

induced scintillation signals can be extracted from multiple-hit
events, defined as coincident-hit events with more than two crys-
tals. We select events with a mean-time parameter cut (p;, > —2)
only as shown in the top-left plot in Fig. 5 and make scintillation-
event reference waveforms from 5000 of those events. In order to
construct the corresponding noise reference waveforms, all types
of PMT-noise events are selected via criteria based on both param-
eters (pm < —2 or pg < —5.5), from the events in the physics-run
data as shown in the top-right plot of the Fig. 5.

To begin with a parameter construction, a logarithmic likeli-
hood of a waveform summed over the two PMT pulses associated
with each event is evaluated for the signal and noise reference
waveforms using

1nc:Z[Ti—vv,~+Wi1n¥], 2)
; i

where T; and W; are the summed heights of the it" time bin in the
waveform for the template and event, respectively. As shown in

the bottom plots of Fig. 5, the shapes of template waveforms are
sufficiently stable? to significant variations of the selection criteria
and therefore, the log-likelihood also has little dependence on the
specific choice of cuts.

We then have two logarithmic likelihood values for a crystal
that are related to each of the two reference waveforms: scintil-
lation and the PMT-noise events. Next, we define a score as

_ InL, —InLs
T Ing,+Ingg’

where In £s and In £, denote logarithmic likelihoods obtained with
scintillation-event and PMT-noise-event references, respectively. If

D (3)

4 When the peak height is normalized to 1 as shown in bottom plots of Fig. 5 and
compared through the sum of differences between the waveforms, the difference
between the waveforms of scintillation events is less than 2% of the difference be-
tween the waveforms of scintillation and noise events. In the case of noise tem-
plates, the difference is about 1.2% of the difference between waveforms of scintil-
lation and noise events.
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Fig. 7. Likelihood parameter (p;) as a function of the energy for multiple-hit events in the 8°Co-calibration data. The events above the red line are used to train the BDT.

an event has a small value of InZs (InZy,), it is more likely to be
a scintillation (noise) event. Therefore, a large p, for an event im-
plies that the event is more closely matched to the scintillation
rather than the noise template. As shown in Fig. 6, the likelihood
parameter has a separation power that supersedes both the mean-
time and pulse-shape parameters. In particular, as shown in the
right plot of Fig. 6, it has a stronger separation power for the type-
I PMT noises than that of the pulse-shape parameter. The upper
and lower bands in Fig. 7 denote the scintillation and the PMT-
noise events, respectively, and demonstrate that this likelihood-
based score parameter has separation capability in the 1 to 2 keV
energy region.

4. Machine learning technique for 1 keV threshold

For more efficient noise separation, we adopt a machine learn-
ing algorithm based on the parameters developed above. A Boosted
Decision Tree (BDT) method that accounts for the correlations be-
tween individual parameters is efficient in combining several weak
discriminating parameters into a single powerful discriminator. We
trained a BDT to further reject the low energy PMT-noise events.
The decision tree undergoes multiple iterations of trial selections
based on the input variables associated with features of the scin-
tillation events and PMT-noise events. As the iteration proceeds,
based on the efficiency and purity of scintillation events in the
previous event sample, the selections are improved and the BDT is

trained on subsequent events with this importance applied. Even-
tually, a single discriminating parameter is created by combining
the various selections according to their corresponding importance
as a BDT score [26,27]. It should be noted that the BDT in this pa-
per is updated relative to the BDT described in previous COSINE-
100 publications [9,28] by the inclusion of additional discrimina-
tion parameters. The input BDT parameters used in the previous
analysis are summarized in Ref. [29] upon which we have updated
two parameters by changing the MT (Eq. (3.6) in the reference)
to mean-time parameter, p, and by adding the likelihood-based
score parameter, p;.

4.1. Event selection for BDT training

A challenging aspect of a BDT training is to obtain pure event
samples that are used to model the scintillation and PMT-noise
events. The Compton scattering events of y-rays from a 60Co
source (the events above the red line in Fig. 7) are used as pure
scintillation events in the BDT training. We estimate the scintil-
lation event purity to be more than 99% at the energy region
between 1.0 and 1.5 keV by extrapolating the noise distribution
(red Exponential fit) into the signal region (blue Gaussian line) as
shown in Fig. 8. For this energy region, we obtain a signal ef-
ficiency of about 80% by evaluating the ratio of the number of
events passed the cut to the total number of events using the cali-
bration data. The first 59.5 days of the physics-run data, which are
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dominantly PMT noise-like events, are used as the noise sample
for training the BDT, with 50% of the initial data randomly sam-
pled. The sample for the noise corresponds 5% of the full analysis
data and therefore little bias is expected. We find no time variation
for our BDT selection as shown in the left plot of Fig. 9. The BDT
score as a function of energy of the physics-run data shown in the
right plot of Fig. 9 exhibits a clear separation between scintillation
and PMT-noise events for energies greater than 1 keV. The events
above the red line are selected as scintillation-like events.

4.2. Re-weighting the calibration variables for validation of the BDT

Even with the good event separation, it is mandatory to validate
the BDT and to quantify the selection efficiency. This would ensure
that the events in the training calibration data behave the same
way as those in the physics-run data. In order to validate the BDT
training process, the input variables of the scintillation events in
the 60Co-calibration data used for training the BDT are compared
with those of the events selected from the independent physics-
run data. As shown in Fig. 10, the energy spectrum of the 89Co-
calibration data has a different shape from that for the physics-
run data because the Compton scattered gammas are continuous
in energy. Therefore, we apply Monte-Carlo calculated weights to

the energy spectrum to match the background spectrum before
making the comparison. The energy spectrum for the full simu-
lation of the background radioisotopes is used to determine the
spectrum weights. Fig. 10 shows the weighted spectrum from the
60Co-calibration data.

Fig. 11 shows the validation of the six input variables used
to construct the BDT. The black line is the raw data while the
blue line is the scintillation-like events selected by a BDT crite-
rion from the physics-run data. The weights are applied to all se-
lection variable distributions of the 6°Co-calibration data to make
them suitable for modeling the scintillation sample. After the BDT
selection, there is good agreement in the variables between the
weighted 69Co data and the selected scintillation data as shown
in Fig. 11. The consistency between the two independent sam-
ples provides an indirect validation of the procedure. In addition
to the meantime and likelihood parameters, the other variables
are defined as the ratio of the integrated charge between 500 ns
and 600ns to the integrated charge for the first 600 ns (Slow
Charge), the ratio of the integrated charge between 0 ns and 50ns
to the integrated charge for the first 600 ns (Fast Charge), the bal-
ance of the deposited charge from each of the two PMTs (Charge
Asymmetry), and, the average charge of clustered pulses (Aver-
age Cluster Charge). The selection efficiency for the energy bin
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Fig. 12. The projected sensitivity of the COSINE-100 experiment with a 10000 kg-day exposure, as derived from the constant rate observed above several thresholds. The
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modulation signal.

between 1 and 1.5 keV is determined from the cut-applied 6°Co
sample divided by the original sample. The average efficiency of
the COSINE-100 crystals is about 80% and the efficiencies are dis-
tributed in the 70-88% range.

4.3. Sensitivity improvement with 1 keV threshold

In order to study the sensitivity of the annual modulation
search with the 1 keV threshold, Monte Carlo experiments are
used to calculate projected limits for the COSINE-100 detector in
the case of no observed annual modulation signal. We assume
a two years running time with a 3-counts/kg/day/keV flat back-
ground (which excludes the two low-light-yield high-background
crystals). The simulated data are fitted to a sinusoidal function
with a fixed period and phase of one year. The fit is used to de-
termine the simulated modulation amplitude observed by COSINE-
100 at nuclear recoil energies ranging from 1 to 20 keV. We find
that the DAMA/LIBRA modulation signal region with the lowered
1 keV threshold can be directly challenged by COSINE-100 data, as
shown in Ref[30].

Separately, the cross section parameter space for few-GeV/c?
WIMP masses is relatively unexplored [31-35] and there is grow-
ing interest in the low-mass WIMP search in the sub-GeV mass
region. Therefore, the low energy event selection can provide im-
provement in the constant rate search using crystal detectors. In
order to study WIMP-nucleon cross-section sensitivity as a func-
tion of the low mass WIMPs, we assume a 3-counts/kg/day/keV
flat background that has 5% overall systematic uncertainty. And
the uncertainty from the efficiency estimation is also consid-
ered. A thousand pseudo-data sets based on the null hypothe-
sis are used for the sensitivity estimation, where the assumed
exposure is 10000 day-kg. We also assume the isospin conserv-
ing spin-independent interaction and the halo model and con-
ditions for generation of WIMP signal are the same as Ref[36].
Fig. 12 shows COSINE-100 comparisons for different thresholds.
The 1 keV threshold analysis shows a factor of ten improvement in
sensitivity compared to the 2 keV threshold. To evaluate the stabil-
ity and systematic impact of the selection indirectly, we show an
additional sensitivity curve in Fig. 12 where we applied a tighter
selection criterion presented in Fig. 9 as a dashed line. We find

that the cut and the variation of the sensitivity are at most a fac-
tor two in some places. Additionally, we show a projected sensitiv-
ity for the low mass WIMPs with an assumed 0.5 keV threshold.
Another factor of ten improvement for a 10 GeV/c2 mass WIMP is
expected compared with the 1 keV threshold analysis. To achieve
this threshold, the development of additional procedures for the
rejection of the remaining PMT-noise events is on-going.

5. Summary & outlook

A new PMT-related noise rejection algorithm based on a likeli-
hood estimator and BDT training procedure is developed for the
COSINE-100 dark matter experiment, which has been collecting
data for more than three years at the Yangyang underground lab-
oratory. The likelihood parameters calculated using categorized
noise templates and the particle scintillation template helped to
reject noise events down to energies of 1 keV and possibly lower.
The current challenge for accessing events below 1 keV is largely
due to the low number of photoelectrons produced and existence
of sources of PMT-noise events. Further developments in software
and hardware are necessary.

With the improved energy thresholds, and more than 3.5 years
of running, COSINE-100 data can be directly compared to the
DAMA/LIBRA annual modulation signal. Additionally, using con-
stant rate analysis by averaging the WIMP search data for a
given exposure, a spin-independent interaction sensitivity study
of COSINE-100 shows that a significant improvement for the low
mass WIMP search can be achieved. This study enables us to per-
form important searches in light of effective field theory opera-
tors and velocity dependent dark matter distributions where there
are parameter spaces consistent with the DAMA/LIBRA modulation
signals. By lowering the threshold below 1 keV, the role of back-
ground in the DAMA/LIBRA data can be further understood. For ex-
ample, the rate of 0.85 keV Na-22 X-rays background line and of
phosphorescence would tell us how much cosmogenic contamina-
tion DAMA/LIBRA might contain. More refined analyses with larger
exposure are forthcoming.

Furthermore, the method to reject noise events in the Nal(Tl)
crystal detector can be utilized in low-threshold Nal(Tl) experi-
ments for coherent neutrino-nucleus scattering [37]. The crystals
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become interesting in terms of neutrino-nucleon coherent elastic
scattering if the threshold can be lowered to 0.5 keV with suffi-
cient noise rejection. The same crystals can be used in the neu-
trino property measurement with high flux neutrinos, e.g. from a
nuclear reactor or supernova.
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