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1. Introduction. 

Since most material, structures and devices wear out with time, the class of increas­

ing hazard rate (IHR) distributions is very important in reliability theory. Under IHR 

assumption, one get bounds on system' s component lifetimes. As the system lifetime 

does not preserve the IHR property of its components, even if the component' s lifetimes 

are independent, in general, these bounds does not extend to system lifetime. In partic­

ular, Barlow and Proschao (1981) developed bounds on system reliability of associated 
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IHR components, a form of positive dependence. In this paper we rnlaxed that condition 

considering conditional increasing hazard rate distribution. 

A!l a coherent structure function is a pseudo-Boolean function, tCJ consider the case of 

dependent components in its generality, we use the boolean algebra approach a.sin Marichal 

and Mathonet (2011a), {2011b), {2012) and (2013)and the concept of multivariate gradient 

failure rate defined by Kotz and Johnson (1975). 

In this paper, in Section 2 we resume useful mathematical details for the following 

Section. In Section 3 we give the main results and examples. 

2. Mathematical details. 

The approach using pseudo boolean functions, as in Marichal and Mathonet {201 Ia), 

(2011b), (2013) gives an important contribution to the development nnd extension of clas­

sical reliability results in the context of dependent component lifetimes without simultane­

ous failures. To follow we introduce the necessary details found in Marichal and Mathonet 

(2011a), (2013): 

Through the usual identification of the elements of {O, l}n with the subsets of [n] = 

{1 , ... ,n}, a pseudo-Boolean function f: {O, l}n _, !R can be equivalently described by a 

set function Vf : 2n - !R. We simply write v1(A) = /(lA), where 1,i. denotes then-tuple 

whose i-th coordenate is 1, if i E A, and 0, otherwise. To avoid cumbersome notation, we 

henceforth use the same symbol to denote both, a given pseudo-Boolean function and its 

underlying set function, thus writing / : {O, 1 }n _, !R as / : 2n _, !R interchangeably. 

If T1, ••• T,. denote the component lifetimes with P(T; = T;) = 0, 1 :$ i, j $ n, we 

2 



define the associated relative quality function q: 2" -+ (0, ll as 

q(A) = P( max T; < minT;) 
iE{nJ\A JEA 

with the convention that q(0} = q((nl) = 1. q(A) is the probability that the lifetime of 

every component in A is greater than the lifetime of every component in (nl\A, that is, 

q(A) is a measure of the overall quality of the components in A whe,n compared with the 

components in (nj\A. 

Since that the random variables T1, •• . Tn have no ties, the func1tion q can be written 

BS 

q(A) = L P(T.,(1) < ... < T.,(n)) 
O'Ep";{O'(n-JAl+l), ... ,c,(n))=A 

where p" denote the class of permutations on (nj. 

Following, under the assumption of no ties between component lifetimes, Marichal 

and Mathonet (2013) define, for every j E (nl, the function q; : 2" -+ (0, 1) as 

q;(A) = P( max T; < T; < min T;). 
iEJnJ\Au{;) iEA 

Similarly, as q(A), we can write 

q;(A) = L P(To(I) < ... < Ta(n))-

O'Ep",{O'(n-lAl+l), ... ,o(n)}=A,O'(n-JAl)=i 

q;(A) is the probability that the components that are better than component j are 

precisely those in A. Follows that 

L q;(A) = 1, j E [n]. 
A~{nJ\{j) 
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We also observe that 

and 

q(A) = L q,(A), A 'F (n] 
jfA 

q(A) = L q,(A\{j}), A ,t, 0. 
jEA 

Moreover, q,(0) = q( {j}) is the probability that component j is the best component, 

while q;((n]\ {j}) = q((nl\{j}) is the probability that component j is the worse component. 

Now, let T = (T1 , ••• , Tn) be a positive random vector with an absolutely continuous 

jointly distribution F, representing the component lifetimes or a coherent systems. Denotes 

its survival function by 

and let R(t) = - In F(t) the corresponding multivariate hazard function. For i E (nl define 

r;(t) = dRd(t), in {t: F(t) > 0}. 
l; 

The vector (r1(t), ... , rn(t)) is called the hazard gradient of T ( see Johnson and Kotz 

(1975) and Marshall (1975)). Note that r;(t) can be interpreted as the conditional hazard 

rate of~ evaluated at t;, given that T, > t; for all j # i; i.e. 

where f;(.IT, > t,,i 'Fi) and F;(,IT; > t; ,i # i) are the conditional density and survival 

functions of T;, given that T; > t; for all j 'F i. 
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Definition 2.1 The random vector T, or its distribution, is called multivariate increasing 

(decreasing) hazard rate, denoted !HR (OHR), if for all values of t = (ti. ... , t,.), the 

components hazard rate r;(t) are increasing (decreasing) function in t; , 1 ~ i ~ n. 

If r;(t) is an increasing (decreasing) function oft;, 1 ~ i ~ n, at t = (t1, •.• , t,.) we say 

that T, or its distribution, is multivariate IHR (OHR) at t = (t1, •••. ,tn). 

We consider a subset A, A ~ (n), the jointly marginal survival function P(T; > t;, i E 

A) and the lifetime T,i = min;e,i T;. The conditional hazard restricted to A will be denoted 

by r;(t!A). If t; = t, Vi E A, we denote the conditional hazard r:ites r;(tlA) = r;(tlA) 

and the conditional hazard functions by R;(tlA) = J; r;(slA)ds. 

Follows that, when dt L O we have 

P(T,i E (t , t + dt]IT,i > t) = P(U;e,i {T; E (t, t + dt)}IT,1 > t) = 

P(n{T; E (t, t + dt)}IT,i > t) = 

LP(T, E (t,t+dt)ITJ > t,j E A\{i}) = I::r;(tlA). 
iEA iEA 

where the third equality follows from the assumption P(T; = T;) = 0, Vi, j E (n). 

Therefore the hazard rate of T ,i is 

r,i(t) = Lr;(tlA) 
IEA 

and its conditional hazard function can be set as 

R,i(t) = 1t r ,i(s)ds = 11 

L r;(slA)ds = L 11 

r;(slA)ds = L R;(tlA), 
O O iE A iEA O iEA 

with 
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Remark 2.2 A) In earlier literature the additivity property of the component hazards r;(t) 

and the independence of the lifetimes T; were often thought to be equivalent. The source 

of this confusion appears to be the exponential formula: assuming absolute continuity and 

independence, it is certainly true that 

P(TA > t) = 1r;eAP(T; > t) = 1r,eAe- l: r , (,)d, = e- L,.,. l: r,(,)d, ,: e- l: rA(•ld• . 

However, as above, additivity of hazards holds always and does not imply independence. 

B) Note that, if r,(t!A) is an increasing (decreasing) function oft, for all i, then T,,. 

is IHR (OHR), but this is not ensured simply by the condition that Tis multivariate IHR 

(OHR). If r,(t), 1 $ i $ n, is an increasing (decreasing) function of each t 1 , ... , t.,, (not 

only oft;), this does ensure that T,,. is IHR (OHR). 

At this point we consider the extended hazard function R;(t I\ T;IA), with t I\ T; = 

min{t, T;} where R;(tlA) = l~ r,(slA)ds, indicating that the hazard stopped at the failure 

time T;. 

As in Arjas and Yashin (1988), under the absolutely continuous hypothesis the hazard 

functions R;(tlA) can be written as R;(t I\ TdA) = - In F;(t I\ T.IA). Also, see Norros 

(1986), the total hazards R;(T;IA), I $ i $ n are independent and identically standard 

exponential distributed random variables. Resuming, as in Aven, T. and Jensen, U. (1999), 

l(T,Sll - R;(t I\ T,IA) is a zero mean 0 1-mnrtingalc with respect to the subu-algebra 

~, = u{T; > s, 0 $ s $ t , 1 $ i $ n}, R;(t I\ T;IA) is a 0 1-predictable process, and 

P(T; $ t) = E(- ln F;(t I\ T;IA)]. 

2. Bounds on system reliability. 
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An important result of independent interest in system reliabililty at time t is given by: 

Theorem 3.1 If T1, .. , Tn are absolutely continuous component lifetimes of a coherent 

system with lifetime T, the system reliability at time t is 

P(T > t) = t L (,p(A U {j}) - ,p(A)) [" q;(Al:c)dF;(:clA), 
j=l tl<;[n]\(j} 1 

where q;(Al:c) = P(max..e[nl\t1u{;J T; < T; < miniEA Ti IT; = :c). 

Proof 

As {T = T;}, 1 :5 j S n is a partition of the probability space, from the total 

probability law we have 

n 

P(T > t) = L L P(T = T;IC)P(T > tl(T = T; }, C)P(C). 
oEp" j=l 

where C = {Ta(l) < ... < Ta(n)}-

However the expression P(T = T;IC) = P(T = T,ITa(l) < ... < Ta(n)) takes its 

values in {O, l} and it is exactly 1 if, and only if, {u(l), ... ,u(i - l)} is not a cut set and 

{u(l), ... , u(i)} is a cut set, with i = u-1(j), and 

P(T = T;IC) = ,p(u(i), u(i + 1), ... , u(n)) - ,p(u(i + 1), ... , u(n)). 

Therefore P(T > t) = 
n 

L L (,t,(a(i), ... ,u(n)) - ,p(a(i + 1), ... ,a(n))IP(T > tl{T =, T;},C)P(C) = 
j=l aEp" 

n f.°" L L (,t,(u(i), •.. , a(n)) - ,t,(a(i + 1), ... , u(n))IP(C)dF;(:clC). 
j=l t aEp"' 
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Grouping the terms for which {u(u-1(i)+l), ... u(n)} is a fixed set A, with cardinality 

n - i + 1, we have P(T > t) = 

t [0 

L (,p(AU{j})-,p(A)( L P(,Ta(I) < •·· < Ta(i) = X < •·· < Ta(n))dF;(x(A) 
j•l I A~[n)\{j} aEp" 

where the summation is over all a E pn: {cr(n - IAI + l), ... ,u(n)} = A,cr(n - IAI) = 

j , Tj = x. Therefore 

P(T > t) = t L (,p(A U {j}) - ,p(A)( 100 

q;(Alx)dF;(xlA), 
j=l A~[n)\{j) I 

The main theorem follows: 

Theorem 3.2 If Ti, .. , Tn are absolutely continuous component lifetimes of a coherent 

system with lifetime T . Then 

Proof 

P(T > t) ~ t L (,p(A u {j}) - ,p(A))(~)'" '+1f';(tlA). 
j=l A~[nf\{j) 

From Theorem 3.1 we have P(T > t) = 

n 

L L (,p(A U {j}) - ,p(A))E(l(r,>i} exp{ - L Rk(T;IA) + R;(k max . TklA)}(. 
j=l A~(nj\{j} kEA E(n)\AU{J} 

However, in the set {minkeA Tk > T;} we have Rk(TklA) ?: Rk(T;IA), k E A and 

in the set {max;e(n)\Au{;} < T;}, R;(T;IA) ?: R;(maxke[n)\Au{;} TklA) . Also, it is well 

known that Rk(TklA), l :::; k :::; n are independent and identically distributed standard 
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exponential random variables. As R;(tlA) = - In F;(tlA) is increasing we can use the 

equivalence {T; > t} +-+ {R;(T;IA) > - In F;(tlA)}. 

Therefore P(T > t) = 
n 

L L . (,f>(Au{j})-,f>(A))E[l(TJ>•lexp{-:ERk(T;IA)+R;( max . T.l!A)})~ 
;-1 A!;(nl\{j} kEA kE(n(\AU{j} 

n 

L L (,f>(A U {j}) - 4>(A)),rkeAE[exp{-Rk(TklA)}IE[exp{-R;(T;IA)}l(T1 >1JI = 
j=I A!;fn(\(j) 

t L (,f>(A u {j}) - ,f>(A))(½>'Al+lf'I(tlA). 
j=I A!;fn(\(j) 

Now we can produce lower bounds for system reliability derived from lower bounds of 

its conditional jointly marginal distributions. 

Firstly, under the assumption that Tis IHR, its conditional jointly marginal T;,i EA 

are IHR. From Arjas (1981), its happen that, 

R;(tlA) = l r;(slA)ds, 

and R;(tlA) = -lnF;(t/\T;IA) = -lnP(T; > t/\T;ITk > tk,k EA) is, almost surely, an 

increasing and convex function. 

• Also, it is well known that R;(T;IA), l ~ j ~ n, are independent and identically 

distributed standard exponential random variables. 

Theorem 3.3 If T1, •• , Tn are absolutely continuous component lifetimes of a coherent 

system with lifetime T with multivariate increasing hazard rate. Then 
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ifs< m and m = min{E(T;ITt > tt, k EA], A~ (n]\{j}, 1 $ j $ n. 

Proof 

A!; - In F;(tlA) is convex, -In ~•<•IA) is increasing on t. Ifs < m, we have 

-In F;(slA) < -lnF;(E(T;ITt > tk, k E Al) < 
8 - E[T;ITk > tk,k EA] -

E[- ln F_;(T;ITk > tk, k EA)] 1 

E[T;ITk > tk, k E Aj = E[T;ITk > tk, k E Aj I 

where we apply Jensen's inequality. Therefore 

for all j. Then theorem 3.3 follows from theorem 3.2. 

Theorem 3.4 If T1, •• , Tn are absolutely continuous component lifetimes or a coherent 

system with lifetime T with multivariate increasing hazard rate. H P(T; $ t + {p1 IA) = 

P;, A~ (nj\{j}, 0 <P; < 1, 1 $j $ n, then 

P(T > t + s) 2: t L (4>(A u {j}) - ql(A))(~)IAl+1[1 _ sp;j2. 
j=I A~(nl\(j} {pJ 

ifs< m and m= min{{p1 ,l $j $ n}. 

Proof 

As - In F;(tlA) is convex, -In ~,<•IA) is increasing on t and if O < s $ {p
1 

-lnF;(t+sAT;IA) -lnF; (t+{p; AT,IA) 
--"-'-----'-'---'- < ----~--, a.s. 

s - {pJ 

which implies that 



F;(t+slA} = E[-lnF;(t+sAT;IA)I < 
s s -

E(-lnF;(t+{p1 AT;IA)I F;(t+{p,IA) P; 

{p, = {p, = {p, 

Therefore F;(t + s1A)2 ~ (1- ~12 , and the result follows from the,orem 3.2. 
"' 

Example 3.5 

Consider a family of multivariate Morgenstern-Gumbel-Farlie sun,ival distribution 

given by 

with lol < 1. Let H(t) = H(t1, ... , tn) be 

n 

H(t) = - In P(T1 > t1, ... , Tn > tn) = L - In P(T; > t;) - ln(l + a,r:=1P(T; $ t;)]. 
i=l 

Therefore 

dH(t) = r;(t;)[l _ 01rk=l,k,i;P(Tk $ tk)P(T; > t;) ], 
dt; 1 + 01rr~, P(Tk s tk) 

where r;(t) = P{~~2,) is the univariate failure rate of the lifetime T, o.nd. J,(t) = dP(~:<•l 

is it probability density function. 

We note that, if o is positive, c1:,\•l has the same sign of r;(t), and therefore, if o is 

positive and T,, l $ i $ n are univariate IHR (DHR), T = (T1 , ••• ,T,.) is multivariate IHR 

(DHR) and therefore conditioned IHR (DHR), 

Also, for this sun,ival distribution, 
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If IAI < n -1 we have P(T; > tlTk > t, k E [n]\{j}) = P(T; > t). 

In the particular case where T; is an exponential lifetime with parameter>.;, 1 !, i ::; n, 

we have 

If IAI < n - 1, P(T; > tlTk > t,k E A\{j}) = exp(->.;t]. 

In this case, from Theorem 3.2, we have the system reliability lower bound 

n 1 
P(T > t) ~ L L (</>(Au {j}) - ,p(A))( 2 )IAI+• exp[-2>.;t]+ 

i=I A!;;[n)\{j}.JAl<n-1 

I)</>([n]) - </>([n]\(j} ))( ~JR[2exp(->.;t] + Ek=l (-ll exp(-(>.;El!,i,!,n>.i, )t]j2. 
j=l 

To get lower bounds using Theorem 3.3 we have 

HIAI < n-1, E[T;ITk > t,k E A\{j}] = t;· 
Therefore, follows from Theorem 3.3 that, ifs< m, where m = min{E[T;ITk > tk, k E 

AJ, A~ [n]\(j}, 1 !, j !> n 

~(</>([n]) - </>([n]\U} ))(~)n exp( fJ + Ek=I (-;)~s.\Jl:is,:s,.\,.J-
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Also, for the particular exponential case of the multivariate Morgenstern-Gumbel­

Farlie survival distribution, the P; percentile in the case where IAI < ,i - 1 is (p
1 

and 

(l _ sp;) = ln(l - p;) + (t + sp;)>.; . 
(p1 ln(l - P;) + t>.; 

If IA!= n - 1, (p1 = ,p-'(t + (pJ) - t where P(T; s; t + (p,l(nl\{j}) = 

(1 - sp;) - (1 - sp; ) 
(pJ - ,p-1(t + (pj) - t . 

From Theorem 3.4 we have the lower bounds P(T > t + s) ~ 

t(ef>([n]) - ef>([n]\ {j} ))(~)"[(l - ,p-•(t =~PJ) - t )12. 

For a k-out-of-n:F system, ¢(A) = 1 if, and only if, IAI ~ n - k + 1 and consequently, 

for every j E [n], (¢(AU {j}) - ef>(A)) = 1 if, and only if, IAI = n - k. I£ A: "f' n, for each 

j E [n], there exists (~=D sets A such that (¢(AU {j}) - ef>(A)) = 1. Therefore, from 

Theorem 3.2 we have 
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and from Theorem 3.4 

2. Conclusion. In this paper we produce lower bonds for systems reliability introducing 

a gradient hazard function to the boolean reliability theory as in Marichal and Mathonet 

(2011a), (2011b), (2013). This approach allows us to consider statistical dependence be­

tween the components lifetimes without simultaneous failure. We f;eneralize lower bounds 

existing in the classical theory. 
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