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The recent observational evidence for cosmic filament spin on megaparsec scales Wang et al. (2021) 
[41] demands an explanation in the physics of dark matter. Conventional collisionless cold particle dark 
matter is conjectured to generate cosmic filament spin through tidal torquing, but this explanation 
requires extrapolating from the quasi-linear regime to the non-linear regime. Meanwhile no alternative 
explanation exists in the context of ultra-light (e.g., axion) dark matter, and indeed these models would 
naively predict zero spin for cosmic filaments. In this Letter we study cosmic filament spin in theories 
of ultra-light dark matter, such as ultra-light axions, and bosonic and fermionic condensates, such as 
superfluids and superconductors. These models are distinguished from conventional particle dark matter 
models by the possibility of dark matter vortices. We take a model agnostic approach, and demonstrate 
that a collection of dark vortices can explain the data reported in Wang et al. Modeling a collection of 
vortices with a simple two-parameter analytic model, corresponding to an averaging of the velocity field, 
we find an excellent fit to the data. We perform a Markov Chain Monte Carlo analysis and find constraints 
on the number of vortices, the dark matter mass, and the radius of the inner core region where the 
vortices are distributed, in order for ultra-light dark matter to explain spinning cosmic filaments.

© 2022 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Recent observational evidence [41] suggests that some cosmic 
filaments are spinning. By comparing the redshift and blueshift of 
galaxies in thousands of filaments, Wang et al. (2021) [41] deter-
mined that galaxies have velocities perpendicular to the filament 
axis, consistent with vorticle motions. Meanwhile, it is difficult 
to theoretically explain the acquisition of angular momentum on 
megaparsec scales. Vorticity is not easily seeded by density per-
turbations of a perfect fluid [14], and any primordial vorticity is 
expected to be redshifted away [26]. One could try to extend ar-
guments like the tidal-torquing theory introduced in the context 
of galaxy formation [32,42,7], but these describe the (quasi) linear 
regime, and not the non-linear regime needed to describe the fila-
ments of the cosmic web. Recent numerical findings from N-body 
simulations [43] (with additional hints from [24,15,37]) suggest 
that standard collisionless cold particle dark matter can produce 
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spinning cosmic filaments, but it has not been demonstrated that 
this can produce enough spin to explain observations [41], and a 
detailed analytic understanding is still lacking.

Less effort has been made to understand large-scale rotation in 
ultra-light dark matter (ULDM) scenarios, such as ultra-light ax-
ion or fuzzy dark matter [19,21], and condensates, both bosonic 
[10,17] and fermionic [4,5,2]. In these models (see [16] for a re-
view), dark matter can have de Broglie wavelengths exceeding 
the typical inter-particle separation, and is best described by a 
fluid obeying Euler-like dynamics [10,16,20]. Given their small 
mass they might reconcile some incompatibilities between the 
standard cold dark matter and the small scale behavior of dark 
matter like the core-cusp problem, missing satellites, and galac-
tic rotation curves [12,13,9,31]. Another distinguishing feature of 
ultra-light dark matter is its ability to form vortices. This poten-
tial to dynamically acquire vorticity, particularly in the non-linear 
regime, makes it a compelling candidate to explain Mpc-scale rota-
tions. In particular, for the cosmic filament spin, simulations from 
[28,29,28,20,27,23] show the presence of interference patterns in 
the filaments which could in turn support vortices confined to 
filament-like cylindrical regions.
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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Fig. 1. Dark Matter Vortices for Cosmic Filament Spin: Comparison of Gaussian dis-
tribution vortices (blue), a bimodal Gaussian (red), and the data provided by Wang 
et al. [41]. We plot marginalized 1σ deviations from the parameter means of an 
MCMC analysis of the data.

In this letter we propose dark matter vortices as an explanation 
for the spin of cosmic filaments. We take a theory agnostic ap-
proach to the vortex formation and the underlying particle physics 
model, and instead focus on the observable signature of vortices. 
We demonstrate that parallel dark vortices enclosed in a cylindri-
cal volume aligned with the axis of a filament are able to generate 
rotations at the Mpc scale, and that they can reproduce the be-
havior seen in [41]. Concretely, we find that the data is well fit 
by a simple Gaussian distribution of vortices about the axis of the 
filament. We additionally find that a feature present in the data, 
namely a relative dip in rotation speeds on only one side of the 
filament, may be explained by a subdominant population of vor-
tices. These results are illustrated in Fig. 1.

The structure of this Letter is as follows: in Sec. 2 we review 
the theory of ultra-light dark matter and dark vortex solutions. In 
Sec. 3 we demonstrate that a distribution of vortices in the in-
ner region of a cosmic filament can generate a net spin, analogous 
to that reported by [41]. In Sec. 4 we perform a Markov Chain 
Monte Carlo analysis of an ensemble of dark vortices fit to the 
data reported in [41]. We conclude in 5 with a discussion of the 
assumptions made in this work, and directions for future research. 
We provide additional details in Apps. A and B.

2. Dark matter vortices

There are a variety of ultra-light dark matter models in the 
range of 10−24 eV � m � 1 eV [16]. For such low masses, the 
de Broglie wavelength is in the parsec to kiloparsec range, well-
exceeding the inter-particle separation, so these dark matter can-
didates behave as a classical waves on galactic scales. We can 
describe these models by a scalar field ψ which obeys the Gross-
Pitaevskii (GP) equation coupled to the Poisson equation [16]:

ih̄ψ̇ = − h̄2

2m
∇2ψ + m�ψ − g

m2
|ψ |2 ψ (1)

∇2� = 4πGρ, (2)

where � is the gravitational potential, g is the self-interaction cou-
pling, and with the identification that ρ = m|ψ |2. The field can be 
decomposed as

ψ(r, t) =
√

ρ(r, t)

m
ei�(r,t). (3)

The gradient of the phase of the field � encodes the fluid velocity,

u = h̄ ∇�. (4)

m

2

These variables correspond to the hydrodynamics ones at long dis-
tances. Combining these, the Schrödinger-Poisson equations can be 
re-written as hydrodynamical equations, the Madelung equations,

∂tρ + ∇ · (ρu) = 0 (5)

∂tu + (u · ∇)u = −∇� − ∇ P int

ρ
+ h̄2

2m2
∇

(
∇2√ρ√

ρ

)
. (6)

The last term in the second Euler-like equation is only present in 
this class of models and it is called “quantum pressure”. In the 
presence of interaction we also have a polytropic type pressure 
P int = (g/2m2) ρ2. In the absence of interaction, these equations 
describe the fuzzy dark matter model (FDM) (also called wave 
dark matter), and when interactions are present we have the self-
interacting fuzzy dark matter model (SIFDM) [16].

As in classical hydrodynamics, one may define a vorticity, as

ω ≡ ∇ × u, (7)

and the circulation as,

	 ≡
∮
∂ A

u · dl =
∫
A

(∇ × u) · n da, (8)

where A is a chosen surface in the fluid and n is the unit normal. 
Given that the fluid velocity, Eq. (4), is the gradient of a scalar, one 
immediately infers that ∇ ×u = 0, and hence the vorticity vanishes 
in ultra-light dark matter scenarios. However, there is a loophole to 
this: the phase � is undefined when the density ρ vanishes. This 
allows the vorticity to be finite in highly localized regions, referred 
to as vortices.

The field must remain single-valued in the neighborhood of one 
of these vortices, but it may pick up an extra phase factor so long 
as it is an integer multiple of 2π . This gives the quantization con-
dition:

	 = h̄

m

� = 2πnh̄

m
, (9)

where n is the winding number, so that each vortex carries an in-
teger unit of circulation. The net circulation is then a function of 
the total winding number contained in the chosen contour. In this 
way, large circulations can either be achieved with a single vortex 
or many vortices with small winding number.

Dark Matter vortices can form through a transfer of angular 
momentum to the dark matter halo when a condensate is formed 
in its interior, see e.g. [35,36,8], or dynamically in regions where 
the density vanishes, e.g., due to wave interference [20]. The first 
type only happens when we have a superfluid and are expected 
in the regions where there is a condensate. The second type of 
vortices is expected to form in all models of ultra-light dark mat-
ter (see [16] for a description and classification of these models), 
since interference patterns are expected in all of these models that 
have this wave like behavior on small scales.

It is unclear whether vortices can be generated via the transfer 
of angular momentum within a filament, given the requirement of 
condensation. But, from simulations [28,29,28,20,27], we can see 
that the interference patterns appear in the filaments. One can 
thus expect that vortices can be formed along these filaments. Al-
though there is considerable theory uncertainty as to the size and 
abundance of vortices that should be expected, all ultra-light dark 
matter models are expected to present these interference patterns. 
Therefore, in what follows, we remain agnostic to the underlying 
theory, as well as the formation mechanism, and instead simply 
consider the observables of vortices. We return to theory expecta-
tion for the number of vortices in the Discussion section.



S. Alexander, C. Capanelli, E. G. M. Ferreira et al. Physics Letters B 833 (2022) 137298

Fig. 2. Left Panel: Fluid rotation curve induced by a collection of vortices. The analytical average is compared to the 1σ error band that comes from randomly distributing 
point vortices. Here, NV = 3000, m = 10−22 eV, and R = 0.5 Mpc. Right Panel: Flowlines of the velocity field induced by 3000 vortices looking along the filament spine. Red 
dots indicate vortex lines. Note that the dots are not to scale; as we demonstrate in the App. B, in our analysis the vortex-vortex separation is always greater than the vortex 
radius.
3. Dark matter vortices for cosmic filament spin

A single vortex carries a unit of angular momentum determined 
by the winding number. Correspondingly, a collection of dark vor-
tices can generate a net rotation on cosmological (megaparsec) 
scales.

Consider parallel vortex filaments enclosed in a cylindrical vol-
ume that are aligned with the axis of the cosmic filament. We 
take their cores to have vanishing thickness compared to the ra-
dius of the entire filament. In a completely straight vortex there is 
no self-induction, and thus the system is equivalent to the prob-
lem of point vortices in two dimensions [30]. It follows that the 
vorticity, oriented along the axis of the filament, can be decom-
posed as,

ω =
NV∑
i=1

	i

2π
δ(2)(x − xi), (10)

where the sum is over each of NV vortices, where each vortex 
has circulation 	i . We take each vortex to have a single quantum 
of circulation, letting n = 1 in Eq. (9). The corresponding velocity 
field is

u =
NV∑
i=1

	i

2π

(−(y − yi), (x − xi))

|x − xi|2 , (11)

where we see that each vortex generates a velocity field with a 1/r
fall-off. However, the combined effect of all the vortices is more 
interesting.

We note that, as with the total number of vortices, there is con-
siderable theoretical uncertainty on the distribution of dark matter 
vortices within the halo or filaments. Detailed predictions will re-
quire full numerical studies of structure formation in these mod-
els which are underway by many separate groups, but are very 
challenging. For simplicity, in this work we assume a Gaussian 
distribution of vortices in the plane normal to the filament axis, 
centered at the filament axis. We discuss alternative choices of dis-
tributions in App. A. We will denote as NV the number of vortices 
in a cross-section of the filament; in the simple case of line vor-
tices that span the entirety of the filament, NV is simply the total 
number of vortices.

We now return to the velocity field. From the right panel of 
Fig. 2, one may appreciate that the net velocity field from many 
vortices is nearly tangential. One may also notice that, although 
individual vortices carry a 1/r velocity field, their combination 
recovers a linear growth within a core region. This resembles be-
havior seen in viscous vortex solutions (cf. [34,25,22]) despite the 
condensate itself being inviscid.
3

For the purposes of comparing to data, the velocity field of a 
collection of vortices can be approximated via the analytical aver-
age,

uθ = 	

2πr

(
1 − e

− r2

R2

)
, (12)

with R acting as the effective radius of a composite vortex, and 
	 = ∑

i 	i the total circulation. This describes a ‘typical’ realization 
of vortices with positions drawn from the Gaussian distribution. In 
Fig. 2 we show this analytic average along with the variance from 
many explicit realizations, from which one may appreciate that the 
average accurately captures the rotation speed, up to a small error.

4. Constraints from data

We perform a Markov Chain Monte Carlo analysis of a collec-
tion of vortices fit to the data presented in [41], namely measure-
ments of galactic rotation speed distributed across a distance ±2
Mpc to the filament spine. We model the collection of dark matter 
vortices via the simple model Eq. (12), which describes a symmet-
ric distribution of NV vortices in a central region R , or, equiva-
lently, one composite vortex of radius R that spans the length of 
the filament. This model has only two free parameters: R and the 
ratio NV /m, where NV is the number of vortices and m is the 
dark matter particle mass. We assume uniform priors R = [0, 1]
Mpc and NV /m = [3.5 × 1019, 7 × 1086] eV−1. We use the Python 
package emcee [18] to perform the analysis, and we test conver-
gence of the chains by computing the autocorrelation time τ of 
each chain and ensuring that the length of the chains Nsamples is 
bigger than 103 τ , as suggested by the emcee documentation.

The model fit for a Gaussian distribution of vortices is shown 
in blue in Fig. 1, with posterior distributions given in App. A. We 
find marginalized parameter constraints,

R = 0.51+0.02
−0.02 Mpc (13)

NV

m
= 2.9+0.2

−0.2 × 1025 eV−1, (14)

while the best-fit (maximum likelihood) parameters are given by,

RML = 0.507 Mpc (15)(
NV

m

)
ML

= 2.92 × 1025 eV−1. (16)

This fit results in a χ2 = 113.3, which equates to a reduced χ2 of 
χ2/ν = 1.45, suggesting a good fit to the data. We also compute 
the AIC score (BIC), and find AIC (BIC) = 117.4(122.1). The contour 
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plot showing the constraints in these parameters can be seen in 
App. C.

From Fig. 1, blue curve, one may appreciate that the 1σ un-
certainty on the marginalized theory curve is significantly smaller 
than the error on the data points given in [41]. This is driven by 
the small error bars in the central region of the filament, which is 
the only region where the error bars fall below 10%. For the simple 
Gaussian distribution of vortices, the central data points effectively 
fix the distribution and number of vortices, which then fixes the
predictions in the tail regions.

This simple model is symmetric by construction, however the 
data is slightly asymmetric, exhibiting a dip in rotation speed 
around −1.5 Mpc (see Fig. 1). This asymmetry is clearly seen in 
the residual of the fit of our simple symmetric model, showing 
that a symmetric distribution cannot capture this asymmetry in 
the data. This asymmetry can be attributed to a deviation of the 
distribution of vortices from a single Gaussian centered along the 
filament axis. To demonstrate this, we generalize our model to in-
clude a second Gaussian core of vortices (see App. A for details). 
From Fig. 1, orange curve, one may appreciate that the bimodal 
distribution provides an excellent fit to the data, and indeed we 
find χ2 = 76.28 (χ2/ν = 1.02) and AIC(BIC) = 86.28(98.19), indi-
cating a substantial improvement on the fit.

As a qualitative check on these results, we can compare the 
best-fit parameters with order of magnitude estimates using 
Eq. (8). If the velocity field of halos around the filament really 
is tangential, then the total circulation is 	 = 2π v peak R . To get the 
ratio Nv/m, we then count how many vortices can be supported 
by this total circulation. Rearranging Eq. (9) we get

NV

m
= 	

2π h̄
= v peak R

h̄
, (17)

which, for v peak ∼ 70 km s−1 and R ∼ Mpc, gives NV /m ∼ 1025

eV−1, in agreement with the maximum likelihood parameters.

5. Discussion

The model presented here demonstrates that dark matter vor-
tices can account for the spin of cosmic filaments [41]. These 
vortices can be arranged very simply while still recovering the 
observed rotation curves. This provides an alternative, or at least 
complimentary, explanation to tidal torquing of cold particle dark 
matter as the origin of cosmic filament spin. The vortices discussed 
may be created either by destructive interference occurring during 
gravitational collapse, or as angular momentum is transferred from 
infalling normal-phase dark matter to a condensate (superfluid) 
phase dark matter. For our purposes they we do not distinguish.

From the results obtained in Section 4, namely given the value 
of the NV /m obtained, we can see that an ultra-light dark matter 
candidate with a wide range of masses can explain the data. For 
example, a mass of order 10−22 eV and with roughly 3000 vortices 
spanning the filament can explain the data. This is well within the 
regime where the average approximation Eq. (12) is valid, provid-
ing an a posteriori justification for this simplifying assumption.

The configuration found here in the fits of the rotation of the 
filament is expected to be produced in both of the vortex forma-
tion mechanisms possible for these ULDM models. For the first 
mechanism, where vortices are formed in the regions of destruc-
tive interference, it is expected that around 3 vortices per de 
Broglie are formed given that the spacing between fringes of the 
order of λdB as shown in [20], while in [23], in the particular case 
of filaments, these interference patterns have a spacing of approxi-
mately half of the de Broglie wavelength. Therefore, we can assume 
O(1) vortices per de Broglie area. Given this, considering a FDM 
particle with mass m = 10−22 eV that has a Broglie wavelength 
4

order of kpc, we could have from O(103) − O(105) vortices, de-
pending on their spacing and distribution. Therefore, having 3000 
vortices in this Mpc filament as shown to be necessary for our fit 
to explain the net rotation of the filament in [41] is easily achiev-
able and expected in this model. We emphasize that we are only 
considering the number of vortex lines to intersect a cross-section 
of the cosmic filament. The length and specific geometry of the 
individual vortices are relevant only in a full treatment of the en-
tire filament. For the second mechanism of formation of vortices, 
i.e., in a superfluid through the transfer of angular momentum, 
vortices are formed when the angular velocity is bigger than the 
critical angular velocity, which depends on the mass and coupling 
of the particles in the superfluid. We are still lacking simulations 
that provide realistic estimation of the formation of the vortices in 
these systems. Some rough estimations were made in the literature 
for the case of the dark matter halo. In the case of a weakly cou-
pled superfluid described in Eq. (1), Silverman and Mallet (2002) 
[39] predict 340 vortices in the M31 halo for a dark matter particle 
mass m = 10−23 eV. In the case of the dark matter superfluid [10]
where the particle has a mass of the order of m = 1 eV, N = 1023

vortices are expected. Given those estimates, the values found in 
our fit are realistic.

We have also assumed in this analysis that the vortices can 
be treated as non-interacting, analogous to the dilute instanton 
gas approximation used in quantum field theory [38,11]. In re-
alistic condensed matter systems, and their dark matter analogs, 
there can be vortex-vortex collisions and reconnections, as well 
as small interaction between vortices [6]. However, similar to the 
averaging assumption, the number of vortices needed to explain 
the data is well within the regime where these effects can be 
neglected. We can estimate this as follows: In order for the vor-
tices to be well-separated, within a cross-section of cylinder we 
require that the area contained within vortices, NV πr2

V , is much 
less than the area of the filament in which the vortices are pre-
dominantly distributed, π R2. For rV = O(kpc) (for m = 10−22 eV) 
and R = O(Mpc) this provides a bound NV � 106, well above the 
number required (≈ 3000 for m = 10−22 eV) to explain the data. 
In the case of a condensate, the vortex size is determined by the 
healing length of the superfluid, which is in turn determined by 
the self-interaction strength. In this case we again find that dark 
matter vortices can explain the data while remaining well sepa-
rated (see App. B for details).

A third assumption simplifying assumption in this work, see 
Eq. (12) and the blue curve in Fig. 1, is that the distribution of vor-
tices is symmetric. In a real physical situation one expects some 
degree of asymmetry, e.g., it is easily conceivable that vortices 
would form kinks or arrange themselves in a more complicated 
manner. Indeed a small amount of asymmetry is exhibited by the 
data (though it remains possible this asymmetry is due to system-
atic errors). Taking the data at face value, we generalize our simple 
model to accommodate an asymmetry by modifying in the distri-
bution of vortices to a bimodal Gaussian distribution, see App. A. 
From Fig. 1, red curve, one may appreciate that this distribution 
provides an excellent fit to the data. We additionally note that the 
vortices are expected to form following the distribution and shape 
of the filament, and therefore, if the filament formed itself formed 
an asymmetric shape or an asymmetric distribution, the vortices 
can be expected to follow this. This provides another justification 
to vary the vortex distribution, as done in App. A.

These assumptions aside, in this work we have focused solely 
on the observational signature of vortices, and not on their forma-
tion mechanism. In doing so we remain agnostic as to the model 
realization. As we have discussed, vortices can be formed both by 
destructive interference or by angular momentum of condensate 
dark matter. It is not the goal of this work to identify which of 
these mechanisms is most likely responsible for the formation of 
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Fig. 3. Results and parameters constraints in the fit of a uniform distribution of vortices to the data in [41].
these vortices, but to show that, given a mechanism to generate 
vortices, said vortices can generate angular momentum on Mpc 
scales. This is a very generic feature and independent of the for-
mation mechanism.

Finally, we note that cosmic filament spin may be comple-
mentary to the strong gravitational lensing signal of dark matter 
vortices [3,20], and of dark matter substructures generally (see, 
e.g., [1]). While filament spin is sensitive to the net vorticity 
of the vortices, the lensing signal is sensitive only to the total 
mass contained therein. A further interesting and open question 
is whether these varying observational probes can distinguish be-
tween fermionic superfluids [4,5,2] and bosonic superfluids [10,17]. 
We leave these interesting questions to future work.
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Appendix A. Varying the vortex distribution

Here we consider two additional distributions of vortices, a uni-
form distribution and bimodal distribution.

First, place vortices uniformly in the circle. If we imagine ex-
panding a contour centered at the origin, then the number of 
enclosed vortices grows with the area as r2. Outside the core ra-
dius, the number of vortices remains constant. Then using Eq. (8)
one can solve for the velocity [34]:

uθ = 	

2π

{
r

R2 r ≤ R
1 r > R

(A.1)

r

5

Table 1
Comparison of different goodness of fit mea-
sures between unimodal and bimodal vortex 
distributions.

Uniform Unimodal Bimodal

χ2 203.4 113.4 76.28
AIC 207.9 117.4 86.28
BIC 212.6 122.1 98.19

Table 2
The mean (best fit) ±1σ constraints on 
a bimodal Gaussian distribution of vor-
tices fit to the spinning cosmic filament 
data of Wang et al. [41].

Parameter Constraint

RL (Mpc) 0.22(0.16)+0.09
−0.07

R R (Mpc) 0.50(0.50) ± 0.02
δ (Mpc) 1.61(1.56)+0.10

−0.06
f −0.13(−0.11)+0.03

−0.04
NV /m (eV−1) 2.7(2.8)+0.2

−0.2 × 1025

Performing the same analysis as done in Section 4, we find 
marginalized parameter constrains R = 0.51+0.02

−0.01 Mpc and NV /m =
2.3+0.1

−0.1 × 1025 eV−1. The resulting fit is shown in Fig. 3.
It may be desirable to break the axial symmetry of the distri-

bution. A simple way to do this is to introduce a second Gaussian 
peak. This extra vortex core has parameters (R L, δ, f ) corre-
sponding to its effective radius, offset from the other core, and 
comparative circulation, respectively. The label “L” signifies only 
the convention that the second core is offset left of the original 
core in the chosen coordinates. The bimodal model is then simply 
a superposition of the unimodal vortex distribution described by 
Eq. (12):

uθ

(
r + δ, R L, f NV

m

) + uθ

(
r, R R , NV

m

)
(A.2)

Comparison of different goodness of fit measures between uni-
modal and bimodal vortex distributions is shown in Table 1. The
best-fit parameters are listed in Table 2. A comparison of this 
model to the unimodal Gaussian fit can be seen in Fig. 1.

Appendix B. The dilute vortex gas approximation

In order to think of vortices as a dilute gas, we require that 
the vortices be well separated inside the filament. As a simple 
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Fig. 4. Parameter constraints in the fit of a Gaussian distribution of dark matter vortices to the cosmic filament spin data in [41].
condition to enforce this, we require that in a cross-section of 
the filament, the region where the vortices are predominantly dis-
tributed, π R2, is much larger than the area contained within the 
vortices themselves, NV πr2

V , where rV is the vortex core radius. 
This amounts to the condition that NV � (R/rV )2.

The core radius of a singly quantized vortex is of order the heal-
ing length ξ [33]. In order to obtain an estimate, we specialize in 
the case of a superfluid here. The healing length in this case is 
given by,

ξ = h̄√
2ρ̄g

(B.1)

where ρ̄ is the ambient dark matter density of the filament and 
g is the self-interaction strength of the condensate. From this we 
can derive a lower bound on the coupling g such that the heal-
ing length is much less than the typical vortex-vortex separation, 
thereby justifying the use of the dilute vortex gas approximation.

As a simple benchmark, we consider the lower bound on g in 
order for vortices to form in a typical halo. Following the results 
of [35] we estimate that g 
 gH ∼ 10−64 eV cm3 � 10−58 Mpc2

for vortices to form. Meanwhile, the recent analysis in [40] reports 
that the density contrast inside of a cosmic filament is δ = 19+27

−12, 
corresponding to a density of ρ̄ � 1021 eV4 � 1084 Mpc−4. From 
this we find,

rV � ξ �
√

gH

g
10−13 Mpc, (B.2)

where gH ≡ 10−64 eV cm3 is the threshold coupling for these su-
perfluid vortices to form in a typical halo. Given R ∼Mpc, the 
dilute vortex gas assumption provides a combined bound on the 
coupling g and the number of vortices NV as
gH

g
NV � 1026 (B.3)

For g at the threshold coupling for vortex formation, g = gH , the 
dilute gas approximation requires NV < 1026. For larger (yet still 
extremely weak) couplings the number of vortices can be much 
larger. Comparing to the number of vortices required to explain 
the data (e.g., NV ∼ 3000 for m = 10−22 eV), we conclude that our 
analysis is well within the dilute gas approximation.

Appendix C. Posterior distributions

The posterior distributions of the fit of a Gaussian distribution 
of dark matter vortices to cosmic filament spin data are given in 
6

Fig. 4, while in Fig. 5 we show the corresponding distributions in 
the case of a bimodal Gaussian distribution.
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