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The recent observational evidence for cosmic filament spin on megaparsec scales Wang et al. (2021)
[41] demands an explanation in the physics of dark matter. Conventional collisionless cold particle dark
matter is conjectured to generate cosmic filament spin through tidal torquing, but this explanation
requires extrapolating from the quasi-linear regime to the non-linear regime. Meanwhile no alternative
explanation exists in the context of ultra-light (e.g., axion) dark matter, and indeed these models would
naively predict zero spin for cosmic filaments. In this Letter we study cosmic filament spin in theories
of ultra-light dark matter, such as ultra-light axions, and bosonic and fermionic condensates, such as
superfluids and superconductors. These models are distinguished from conventional particle dark matter
models by the possibility of dark matter vortices. We take a model agnostic approach, and demonstrate
that a collection of dark vortices can explain the data reported in Wang et al. Modeling a collection of
vortices with a simple two-parameter analytic model, corresponding to an averaging of the velocity field,
we find an excellent fit to the data. We perform a Markov Chain Monte Carlo analysis and find constraints
on the number of vortices, the dark matter mass, and the radius of the inner core region where the
vortices are distributed, in order for ultra-light dark matter to explain spinning cosmic filaments.
© 2022 Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Recent observational evidence [41] suggests that some cosmic
filaments are spinning. By comparing the redshift and blueshift of
galaxies in thousands of filaments, Wang et al. (2021) [41] deter-
mined that galaxies have velocities perpendicular to the filament
axis, consistent with vorticle motions. Meanwhile, it is difficult
to theoretically explain the acquisition of angular momentum on
megaparsec scales. Vorticity is not easily seeded by density per-
turbations of a perfect fluid [14], and any primordial vorticity is
expected to be redshifted away [26]. One could try to extend ar-
guments like the tidal-torquing theory introduced in the context
of galaxy formation [32,42,7], but these describe the (quasi) linear
regime, and not the non-linear regime needed to describe the fila-
ments of the cosmic web. Recent numerical findings from N-body
simulations [43] (with additional hints from [24,15,37]) suggest
that standard collisionless cold particle dark matter can produce
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spinning cosmic filaments, but it has not been demonstrated that
this can produce enough spin to explain observations [41], and a
detailed analytic understanding is still lacking.

Less effort has been made to understand large-scale rotation in
ultra-light dark matter (ULDM) scenarios, such as ultra-light ax-
ion or fuzzy dark matter [19,21], and condensates, both bosonic
[10,17] and fermionic [4,5,2]. In these models (see [16] for a re-
view), dark matter can have de Broglie wavelengths exceeding
the typical inter-particle separation, and is best described by a
fluid obeying Euler-like dynamics [10,16,20]. Given their small
mass they might reconcile some incompatibilities between the
standard cold dark matter and the small scale behavior of dark
matter like the core-cusp problem, missing satellites, and galac-
tic rotation curves [12,13,9,31]. Another distinguishing feature of
ultra-light dark matter is its ability to form vortices. This poten-
tial to dynamically acquire vorticity, particularly in the non-linear
regime, makes it a compelling candidate to explain Mpc-scale rota-
tions. In particular, for the cosmic filament spin, simulations from
[28,29,28,20,27,23] show the presence of interference patterns in
the filaments which could in turn support vortices confined to
filament-like cylindrical regions.
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Fig. 1. Dark Matter Vortices for Cosmic Filament Spin: Comparison of Gaussian dis-
tribution vortices (blue), a bimodal Gaussian (red), and the data provided by Wang
et al. [41]. We plot marginalized 1o deviations from the parameter means of an
MCMC analysis of the data.

In this letter we propose dark matter vortices as an explanation
for the spin of cosmic filaments. We take a theory agnostic ap-
proach to the vortex formation and the underlying particle physics
model, and instead focus on the observable signature of vortices.
We demonstrate that parallel dark vortices enclosed in a cylindri-
cal volume aligned with the axis of a filament are able to generate
rotations at the Mpc scale, and that they can reproduce the be-
havior seen in [41]. Concretely, we find that the data is well fit
by a simple Gaussian distribution of vortices about the axis of the
filament. We additionally find that a feature present in the data,
namely a relative dip in rotation speeds on only one side of the
filament, may be explained by a subdominant population of vor-
tices. These results are illustrated in Fig. 1.

The structure of this Letter is as follows: in Sec. 2 we review
the theory of ultra-light dark matter and dark vortex solutions. In
Sec. 3 we demonstrate that a distribution of vortices in the in-
ner region of a cosmic filament can generate a net spin, analogous
to that reported by [41]. In Sec. 4 we perform a Markov Chain
Monte Carlo analysis of an ensemble of dark vortices fit to the
data reported in [41]. We conclude in 5 with a discussion of the
assumptions made in this work, and directions for future research.
We provide additional details in Apps. A and B.

2. Dark matter vortices

There are a variety of ultra-light dark matter models in the
range of 10724 eV <m <1 eV [16]. For such low masses, the
de Broglie wavelength is in the parsec to kiloparsec range, well-
exceeding the inter-particle separation, so these dark matter can-
didates behave as a classical waves on galactic scales. We can
describe these models by a scalar field i+ which obeys the Gross-
Pitaevskii (GP) equation coupled to the Poisson equation [16]:

iy n g
iy = ———V2y +moy — = |y >y (M
2m m
V20 =4nGp, (2)
where @ is the gravitational potential, g is the self-interaction cou-

pling, and with the identification that p =m|y|%. The field can be
decomposed as

p(r,t) REIEN)
e .

y(rt) = (3)

The gradient of the phase of the field ® encodes the fluid velocity,

u="ve. (4)
m
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These variables correspond to the hydrodynamics ones at long dis-
tances. Combining these, the Schrodinger-Poisson equations can be
re-written as hydrodynamical equations, the Madelung equations,

dp+V-(pu)=0 (5)

VP; G V2
du+@u-Viu=-vVod - —m . vy VP . (6)
p  2m? NG

The last term in the second Euler-like equation is only present in
this class of models and it is called “quantum pressure”. In the
presence of interaction we also have a polytropic type pressure
Pine = (g/2m?) p2. In the absence of interaction, these equations
describe the fuzzy dark matter model (FDM) (also called wave
dark matter), and when interactions are present we have the self-
interacting fuzzy dark matter model (SIFDM) [16].
As in classical hydrodynamics, one may define a vorticity, as

w=V xu, (7)

and the circulation as,

FE?gu-dl=/(qu)~nda, (8)
9A A

where A is a chosen surface in the fluid and n is the unit normal.
Given that the fluid velocity, Eq. (4), is the gradient of a scalar, one
immediately infers that V x u =0, and hence the vorticity vanishes
in ultra-light dark matter scenarios. However, there is a loophole to
this: the phase © is undefined when the density p vanishes. This
allows the vorticity to be finite in highly localized regions, referred
to as vortices.

The field must remain single-valued in the neighborhood of one
of these vortices, but it may pick up an extra phase factor so long
as it is an integer multiple of 27r. This gives the quantization con-
dition:

h 2mnh

=—AO= , 9)
m m

where n is the winding number, so that each vortex carries an in-
teger unit of circulation. The net circulation is then a function of
the total winding number contained in the chosen contour. In this
way, large circulations can either be achieved with a single vortex
or many vortices with small winding number.

Dark Matter vortices can form through a transfer of angular
momentum to the dark matter halo when a condensate is formed
in its interior, see e.g. [35,36,8], or dynamically in regions where
the density vanishes, e.g., due to wave interference [20]. The first
type only happens when we have a superfluid and are expected
in the regions where there is a condensate. The second type of
vortices is expected to form in all models of ultra-light dark mat-
ter (see [16] for a description and classification of these models),
since interference patterns are expected in all of these models that
have this wave like behavior on small scales.

It is unclear whether vortices can be generated via the transfer
of angular momentum within a filament, given the requirement of
condensation. But, from simulations [28,29,28,20,27], we can see
that the interference patterns appear in the filaments. One can
thus expect that vortices can be formed along these filaments. Al-
though there is considerable theory uncertainty as to the size and
abundance of vortices that should be expected, all ultra-light dark
matter models are expected to present these interference patterns.
Therefore, in what follows, we remain agnostic to the underlying
theory, as well as the formation mechanism, and instead simply
consider the observables of vortices. We return to theory expecta-
tion for the number of vortices in the Discussion section.
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Fig. 2. Left Panel: Fluid rotation curve induced by a collection of vortices. The analytical average is compared to the 1o error band that comes from randomly distributing
point vortices. Here, Ny = 3000, m = 10722 eV, and R = 0.5 Mpc. Right Panel: Flowlines of the velocity field induced by 3000 vortices looking along the filament spine. Red
dots indicate vortex lines. Note that the dots are not to scale; as we demonstrate in the App. B, in our analysis the vortex-vortex separation is always greater than the vortex

radius.
3. Dark matter vortices for cosmic filament spin

A single vortex carries a unit of angular momentum determined
by the winding number. Correspondingly, a collection of dark vor-
tices can generate a net rotation on cosmological (megaparsec)
scales.

Consider parallel vortex filaments enclosed in a cylindrical vol-
ume that are aligned with the axis of the cosmic filament. We
take their cores to have vanishing thickness compared to the ra-
dius of the entire filament. In a completely straight vortex there is
no self-induction, and thus the system is equivalent to the prob-
lem of point vortices in two dimensions [30]. It follows that the
vorticity, oriented along the axis of the filament, can be decom-
posed as,

s~ I 5@ 10
w—z;h, (X — i), (10)
where the sum is over each of Ny vortices, where each vortex
has circulation I';. We take each vortex to have a single quantum

of circulation, letting n =1 in Eq. (9). The corresponding velocity
field is

AT (= =y (= x)

27 X — x;|2

, (11)

i=1
where we see that each vortex generates a velocity field with a 1/r
fall-off. However, the combined effect of all the vortices is more
interesting.

We note that, as with the total number of vortices, there is con-
siderable theoretical uncertainty on the distribution of dark matter
vortices within the halo or filaments. Detailed predictions will re-
quire full numerical studies of structure formation in these mod-
els which are underway by many separate groups, but are very
challenging. For simplicity, in this work we assume a Gaussian
distribution of vortices in the plane normal to the filament axis,
centered at the filament axis. We discuss alternative choices of dis-
tributions in App. A. We will denote as Ny the number of vortices
in a cross-section of the filament; in the simple case of line vor-
tices that span the entirety of the filament, Ny is simply the total
number of vortices.

We now return to the velocity field. From the right panel of
Fig. 2, one may appreciate that the net velocity field from many
vortices is nearly tangential. One may also notice that, although
individual vortices carry a 1/r velocity field, their combination
recovers a linear growth within a core region. This resembles be-
havior seen in viscous vortex solutions (cf. [34,25,22]) despite the
condensate itself being inviscid.

For the purposes of comparing to data, the velocity field of a
collection of vortices can be approximated via the analytical aver-
age,

r r2
Up = — (1 —efkiz),
2nr

with R acting as the effective radius of a composite vortex, and
I' =3, T; the total circulation. This describes a ‘typical’ realization
of vortices with positions drawn from the Gaussian distribution. In
Fig. 2 we show this analytic average along with the variance from
many explicit realizations, from which one may appreciate that the
average accurately captures the rotation speed, up to a small error.

(12)

4. Constraints from data

We perform a Markov Chain Monte Carlo analysis of a collec-
tion of vortices fit to the data presented in [41], namely measure-
ments of galactic rotation speed distributed across a distance +2
Mpc to the filament spine. We model the collection of dark matter
vortices via the simple model Eq. (12), which describes a symmet-
ric distribution of Ny vortices in a central region R, or, equiva-
lently, one composite vortex of radius R that spans the length of
the filament. This model has only two free parameters: R and the
ratio Ny /m, where Ny is the number of vortices and m is the
dark matter particle mass. We assume uniform priors R = [0, 1]
Mpc and Ny /m =[3.5 x 10'2,7 x 108] eV~!. We use the Python
package emcee [18] to perform the analysis, and we test conver-
gence of the chains by computing the autocorrelation time 7 of
each chain and ensuring that the length of the chains Ngymples is
bigger than 103 7, as suggested by the emcee documentation.

The model fit for a Gaussian distribution of vortices is shown
in blue in Fig. 1, with posterior distributions given in App. A. We
find marginalized parameter constraints,

R =0.517592 Mpc (13)
Ny _
— =2.9702 x10% eV, (14)

while the best-fit (maximum likelihood) parameters are given by,
Ry = 0.507 Mpc

N
(—") =292 x10%° eV,
ML

(15)

(16)
m
This fit results in a x2 = 113.3, which equates to a reduced x2 of

Xx2/v =1.45, suggesting a good fit to the data. We also compute
the AIC score (BIC), and find AIC (BIC) = 117.4(122.1). The contour
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plot showing the constraints in these parameters can be seen in
App. C.

From Fig. 1, blue curve, one may appreciate that the 1o un-
certainty on the marginalized theory curve is significantly smaller
than the error on the data points given in [41]. This is driven by
the small error bars in the central region of the filament, which is
the only region where the error bars fall below 10%. For the simple
Gaussian distribution of vortices, the central data points effectively
fix the distribution and number of vortices, which then fixes the
predictions in the tail regions.

This simple model is symmetric by construction, however the
data is slightly asymmetric, exhibiting a dip in rotation speed
around —1.5 Mpc (see Fig. 1). This asymmetry is clearly seen in
the residual of the fit of our simple symmetric model, showing
that a symmetric distribution cannot capture this asymmetry in
the data. This asymmetry can be attributed to a deviation of the
distribution of vortices from a single Gaussian centered along the
filament axis. To demonstrate this, we generalize our model to in-
clude a second Gaussian core of vortices (see App. A for details).
From Fig. 1, orange curve, one may appreciate that the bimodal
distribution provides an excellent fit to the data, and indeed we
find x2 =76.28 (x2/v =1.02) and AIC(BIC) = 86.28(98.19), indi-
cating a substantial improvement on the fit.

As a qualitative check on these results, we can compare the
best-fit parameters with order of magnitude estimates using
Eq. (8). If the velocity field of halos around the filament really
is tangential, then the total circulation is I' = 277 v peqk R. To get the
ratio N,/m, we then count how many vortices can be supported
by this total circulation. Rearranging Eq. (9) we get

& ' Vpea R
m  2mh R
which, for vpeq ~ 70 kms™' and R ~ Mpc, gives Ny/m ~ 102
eV~!, in agreement with the maximum likelihood parameters.

(17)

5. Discussion

The model presented here demonstrates that dark matter vor-
tices can account for the spin of cosmic filaments [41]. These
vortices can be arranged very simply while still recovering the
observed rotation curves. This provides an alternative, or at least
complimentary, explanation to tidal torquing of cold particle dark
matter as the origin of cosmic filament spin. The vortices discussed
may be created either by destructive interference occurring during
gravitational collapse, or as angular momentum is transferred from
infalling normal-phase dark matter to a condensate (superfluid)
phase dark matter. For our purposes they we do not distinguish.

From the results obtained in Section 4, namely given the value
of the Ny /m obtained, we can see that an ultra-light dark matter
candidate with a wide range of masses can explain the data. For
example, a mass of order 10722 eV and with roughly 3000 vortices
spanning the filament can explain the data. This is well within the
regime where the average approximation Eq. (12) is valid, provid-
ing an a posteriori justification for this simplifying assumption.

The configuration found here in the fits of the rotation of the
filament is expected to be produced in both of the vortex forma-
tion mechanisms possible for these ULDM models. For the first
mechanism, where vortices are formed in the regions of destruc-
tive interference, it is expected that around 3 vortices per de
Broglie are formed given that the spacing between fringes of the
order of Agqg as shown in [20], while in [23], in the particular case
of filaments, these interference patterns have a spacing of approxi-
mately half of the de Broglie wavelength. Therefore, we can assume
O(1) vortices per de Broglie area. Given this, considering a FDM
particle with mass m = 10722 eV that has a Broglie wavelength
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order of kpc, we could have from ©(10%) — ©(10%) vortices, de-
pending on their spacing and distribution. Therefore, having 3000
vortices in this Mpc filament as shown to be necessary for our fit
to explain the net rotation of the filament in [41] is easily achiev-
able and expected in this model. We emphasize that we are only
considering the number of vortex lines to intersect a cross-section
of the cosmic filament. The length and specific geometry of the
individual vortices are relevant only in a full treatment of the en-
tire filament. For the second mechanism of formation of vortices,
i.e,, in a superfluid through the transfer of angular momentum,
vortices are formed when the angular velocity is bigger than the
critical angular velocity, which depends on the mass and coupling
of the particles in the superfluid. We are still lacking simulations
that provide realistic estimation of the formation of the vortices in
these systems. Some rough estimations were made in the literature
for the case of the dark matter halo. In the case of a weakly cou-
pled superfluid described in Eq. (1), Silverman and Mallet (2002)
[39] predict 340 vortices in the M31 halo for a dark matter particle
mass m = 10723 eV. In the case of the dark matter superfluid [10]
where the particle has a mass of the order of m=1 eV, N = 1023
vortices are expected. Given those estimates, the values found in
our fit are realistic.

We have also assumed in this analysis that the vortices can
be treated as non-interacting, analogous to the dilute instanton
gas approximation used in quantum field theory [38,11]. In re-
alistic condensed matter systems, and their dark matter analogs,
there can be vortex-vortex collisions and reconnections, as well
as small interaction between vortices [6]. However, similar to the
averaging assumption, the number of vortices needed to explain
the data is well within the regime where these effects can be
neglected. We can estimate this as follows: In order for the vor-
tices to be well-separated, within a cross-section of cylinder we
require that the area contained within vortices, anrﬁ, is much
less than the area of the filament in which the vortices are pre-
dominantly distributed, 7 R2. For ry = O(kpc) (for m = 10722 eV)
and R = O(Mpc) this provides a bound Ny « 108, well above the
number required (& 3000 for m = 10~2% eV) to explain the data.
In the case of a condensate, the vortex size is determined by the
healing length of the superfluid, which is in turn determined by
the self-interaction strength. In this case we again find that dark
matter vortices can explain the data while remaining well sepa-
rated (see App. B for details).

A third assumption simplifying assumption in this work, see
Eq. (12) and the blue curve in Fig. 1, is that the distribution of vor-
tices is symmetric. In a real physical situation one expects some
degree of asymmetry, e.g., it is easily conceivable that vortices
would form kinks or arrange themselves in a more complicated
manner. Indeed a small amount of asymmetry is exhibited by the
data (though it remains possible this asymmetry is due to system-
atic errors). Taking the data at face value, we generalize our simple
model to accommodate an asymmetry by modifying in the distri-
bution of vortices to a bimodal Gaussian distribution, see App. A.
From Fig. 1, red curve, one may appreciate that this distribution
provides an excellent fit to the data. We additionally note that the
vortices are expected to form following the distribution and shape
of the filament, and therefore, if the filament formed itself formed
an asymmetric shape or an asymmetric distribution, the vortices
can be expected to follow this. This provides another justification
to vary the vortex distribution, as done in App. A.

These assumptions aside, in this work we have focused solely
on the observational signature of vortices, and not on their forma-
tion mechanism. In doing so we remain agnostic as to the model
realization. As we have discussed, vortices can be formed both by
destructive interference or by angular momentum of condensate
dark matter. It is not the goal of this work to identify which of
these mechanisms is most likely responsible for the formation of
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Fig. 3. Results and parameters constraints in the fit of a uniform distribution of vortices to the data in [41].

these vortices, but to show that, given a mechanism to generate
vortices, said vortices can generate angular momentum on Mpc
scales. This is a very generic feature and independent of the for-
mation mechanism.

Finally, we note that cosmic filament spin may be comple-
mentary to the strong gravitational lensing signal of dark matter
vortices [3,20], and of dark matter substructures generally (see,
e.g., [1]). While filament spin is sensitive to the net vorticity
of the vortices, the lensing signal is sensitive only to the total
mass contained therein. A further interesting and open question
is whether these varying observational probes can distinguish be-
tween fermionic superfluids [4,5,2] and bosonic superfluids [10,17].
We leave these interesting questions to future work.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The authors thank the authors of [41] for providing their data.
The authors thank Vyoma Muralidhara and Sherry Suyu for fruit-
ful discussions regarding the MCMC analysis. The authors thank
Arthur Kosowsky for helpful and insightful comments. The Kavli
IPMU is supported by World Premier International Research Center
Initiative (WPI), MEXT, Japan. EM is supported in part by a Dis-
covery Grant from the National Science and Engineering Research
Council of Canada.

Appendix A. Varying the vortex distribution

Here we consider two additional distributions of vortices, a uni-
form distribution and bimodal distribution.

First, place vortices uniformly in the circle. If we imagine ex-
panding a contour centered at the origin, then the number of
enclosed vortices grows with the area as r2. Outside the core ra-
dius, the number of vortices remains constant. Then using Eq. (8)
one can solve for the velocity [34]:

_Ile
2w

R
g = (A1)

r>R

S

Table 1

Comparison of different goodness of fit mea-
sures between unimodal and bimodal vortex
distributions.

Uniform  Unimodal  Bimodal
x% 2034 113.4 76.28
AIC 2079 1174 86.28
BIC 212.6 1221 98.19
Table 2

The mean (best fit) =10 constraints on
a bimodal Gaussian distribution of vor-
tices fit to the spinning cosmic filament
data of Wang et al. [41].

Parameter Constraint

Ry (Mpc) 0.22(0.16) 759
Rg (Mpc) 0.50(0.50) = 0.02
§ (Mpc) 1.61(1.56)522

f -0.13(-0.11)" 5%
Ny/m(ev™')  2.72.8)752 x 10

Performing the same analysis as done in Section 4, we find

marginalized parameter constrains R = 0.51f818f Mpc and Ny /m =

2.3701 x 10%° eV~ The resulting fit is shown in Fig. 3.

It may be desirable to break the axial symmetry of the distri-
bution. A simple way to do this is to introduce a second Gaussian
peak. This extra vortex core has parameters (Rp, &, f) corre-
sponding to its effective radius, offset from the other core, and
comparative circulation, respectively. The label “L” signifies only
the convention that the second core is offset left of the original
core in the chosen coordinates. The bimodal model is then simply
a superposition of the unimodal vortex distribution described by
Eq. (12):

ug(r+8, Re, fEL) +up(r, R, (A2)
Comparison of different goodness of fit measures between uni-
modal and bimodal vortex distributions is shown in Table 1. The
best-fit parameters are listed in Table 2. A comparison of this
model to the unimodal Gaussian fit can be seen in Fig. 1.

)

Appendix B. The dilute vortex gas approximation

In order to think of vortices as a dilute gas, we require that
the vortices be well separated inside the filament. As a simple
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Fig. 4. Parameter constraints in the fit of a Gaussian distribution of dark matter vortices to the cosmic filament spin data in [41].

condition to enforce this, we require that in a cross-section of
the filament, the region where the vortices are predominantly dis-
tributed, 7 R2, is much larger than the area contained within the
vortices themselves, anr‘z,, where ry is the vortex core radius.
This amounts to the condition that Ny < (R/ry)2.

The core radius of a singly quantized vortex is of order the heal-
ing length & [33]. In order to obtain an estimate, we specialize in
the case of a superfluid here. The healing length in this case is
given by,
&= L_

V208
where p is the ambient dark matter density of the filament and
g is the self-interaction strength of the condensate. From this we
can derive a lower bound on the coupling g such that the heal-
ing length is much less than the typical vortex-vortex separation,
thereby justifying the use of the dilute vortex gas approximation.

As a simple benchmark, we consider the lower bound on g in
order for vortices to form in a typical halo. Following the results
of [35] we estimate that g > gy ~ 107% eVem?® ~ 10728 Mpc?
for vortices to form. Meanwhile, the recent analysis in [40] reports
that the density contrast inside of a cosmic filament is § = 19ff;,
corresponding to a density of p ~ 102! eV* ~ 108¢ Mpc—. From
this we find,

ry ~ €~ %51043Mpg

(B1)

(B.2)

where gy =107% eVem? is the threshold coupling for these su-
perfluid vortices to form in a typical halo. Given R ~Mpc, the
dilute vortex gas assumption provides a combined bound on the
coupling g and the number of vortices Ny as

%?Nv«dom

(B.3)
For g at the threshold coupling for vortex formation, g = gy, the
dilute gas approximation requires Ny < 1025, For larger (yet still
extremely weak) couplings the number of vortices can be much
larger. Comparing to the number of vortices required to explain
the data (e.g., Ny ~ 3000 for m = 1022 eV), we conclude that our
analysis is well within the dilute gas approximation.

Appendix C. Posterior distributions

The posterior distributions of the fit of a Gaussian distribution
of dark matter vortices to cosmic filament spin data are given in

Fig. 4, while in Fig. 5 we show the corresponding distributions in
the case of a bimodal Gaussian distribution.
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