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Abstract
Truncated elliptical distributions occur naturally in theoretical and applied statistics
and are essential for the study of other classes of multivariate distributions. Two mem-
bers of this class are the multivariate truncated normal and multivariate truncated t
distributions. We derive statistical properties of the truncated elliptical distributions.
Applications of our results establish new properties of the multivariate truncated slash
and multivariate truncated power exponential distributions.

Keywords Elliptical distribution · Log-concavity · Multivariate power exponential
distribution · Multivariate slash distribution · Truncated distribution

Mathematics Subject Classification 60E05 · 62E15 · 65C05

1 Introduction

The class of elliptical distributions (see Fang et al. [5]) is of central relevance in applied
and theoretical statistics, in particular in multivariate regression analysis. This class
comprises a wide variety of distributions for modeling multivariate data, including
those with heavier-than-normal or slighter-than-normal tail behavior. Some ellipti-
cal distributions are multivariate normal, t , power exponential, slash, scale mixture
of normal distributions, among others. A generalization of this class is constructed
by truncation: it is derived as the conditional distribution of a random vector, with
dimension p say, having an elliptical distribution given that it belongs to a subset of
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R
p. Some works dealing with truncated elliptical distributions are found in Morán-

Vásquez and Ferrari [16], Kim [15] andArellano-Valle et al. [2]. The class of truncated
elliptical distributions has as special members the multivariate truncated normal and
multivariate truncated t distributions. Some studies regarding to these two distributions
can be found in Kan and Robotti [14], Arismendi [1], Ho et al. [11], Nadarajah [17],
Horrace [12,13], Geweke [7], Tallis [18–20] and Birnbaum and Meyer [3]. However,
other distributions, such as the multivariate truncated slash and multivariate truncated
power exponential distributions, have not been studied.

We derive several properties of the truncated elliptical distributions, thus gen-
eralizing some results previously shown for the multivariate truncated normal
and multivariate truncated t distributions only. Some of our results consider arbi-
trary truncation subsets of Rp; others are valid only for p-dimensional rectangles.
We present a characterization of the truncated elliptical distributions and give
some distributional properties obtained through transformations, as well as proper-
ties involving the moment generating function (MGF), log-concavity of the joint
probability density function (PDF), the MTP2 property, marginal and conditional
distributions, and independence. Additionally, we describe a procedure to evalu-
ate probabilities over rectangles for the multivariate slash distribution, which is
useful to compute the PDF of the multivariate truncated slash distribution. Appli-
cations of the results derived in this paper allow us to derive new properties
of the multivariate truncated slash and multivariate truncated power exponential
distributions.

2 The Class of the Truncated Elliptical Distributions

The notation follows that of Morán-Vásquez and Ferrari [16]. Vectors are represented
with lowercase Greek letters in bold, and their components with lowercase Greek
letters in normal font. For example, if ξ ∈ R

p, then ξ = (ξ1, . . . , ξp)
′. Also, ξ−k ∈

R
p−1, k = 1, . . . , p, is the sub-vector of ξ without its kth component. In the case

of random vectors, we use similar notation, but with capital Roman letters. Matrices
are denoted by capital Greek letters in boldface and their components in lowercase
normal font Greek letters. For instance, if Δ(p × q) is a matrix whose elements are
real numbers, then Δ = (δ jk)p×q . If Δ is a symmetric matrix, Δ > 0 means that
Δ is positive definite. The sub-vector Δ−k,k ∈ R

p−1 is obtained by deleting the kth
component of the kth column of Δ(p × p) > 0; Δk,−k = Δ′−k,k ; and Δ−k,−k > 0 is
the sub-matrix obtained by deleting the kth row and the kth column of Δ(p× p) > 0.
We denote the rectangles in Rp with the letter R, which we consider as the Cartesian
product of intervals I1, . . . , Ip in R, where every Ik can be a finite or infinite interval,
that is, R = I1 × . . . × Ip.

The spherical and elliptical distributions play an important role in statistics and its
applications; see Fang et al. [5] and Gupta et al. [10]. In what follows, whenever a
random vector is said to have a spherical or elliptical distribution, it is assumed that
its PDF exists.
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Definition 2.1 The random vector S ∈ R
p has a spherical (standard elliptical) distri-

bution if its PDF is

fS(s) = cpg(s′s), s ∈ R
p. (2.1)

The function g is called density generating function (DGF) and satisfies g(u) ≥ 0, for
all u ≥ 0, and

∫ ∞
0 r p−1g(r2) dr < ∞. The normalizing constant cp is

cp = Γ (p/2)

2π p/2

⎛

⎝
∞∫

0

r p−1g(r2) dr

⎞

⎠

−1

.

We write S ∼ Sp(g).

A generalization of the spherical distributions is constructed from the transforma-
tion W = μ + Σ1/2S, where S ∼ Sp(g), μ ∈ R

p and Σ(p × p) > 0. The Jacobian
of this transformation is J (s → w) = det(Σ)−1/2 and, hence, the PDF of W is

fW (w) = cp det(Σ)−1/2g((w − μ)′Σ−1(w − μ)), w ∈ R
p. (2.2)

The random vector W ∈ R
p is said to have an elliptical distribution with loca-

tion vector μ ∈ R
p, dispersion matrix Σ(p × p) > 0, and DGF g, and we write

W ∼ E�p(μ,Σ; g). Evidently, if μ = 0 and Σ = I p, then the PDF (2.2) reduces to
PDF (2.1). Any distribution within the elliptical class of distributions is determined
by the DGF g. If g(u) ∝ exp(−u/2), u ≥ 0, we say that W has a multivariate normal
distribution with parameters μ ∈ R

p and Σ(p × p) > 0, we write W ∼ Np(μ,Σ).

If g(u) ∝ ∫ 1
0 tq+p−1 exp(−ut2/2) dt , q > 0, u ≥ 0, then W has a multivariate

slash distribution with parameters μ ∈ R
p, Σ(p × p) > 0 and q > 0, we write

W ∼ SLp(μ,Σ, q). If g(u) ∝ exp(−uβ/2), β > 0, u ≥ 0, we say that W has a
multivariate power exponential distribution with parameters μ ∈ R

p, Σ(p × p) > 0
and β > 0, we write W ∼ PEp(μ,Σ, β). The DGF g(u) ∝ (1 + u/τ)−(τ+p)/2,
τ > 0, u ≥ 0, corresponds to the multivariate t distribution. Extra parameters may
appear in PDF (2.2) through the DGF g. For example, the multivariate slash distribu-
tion involves the tail parameter q and the multivariate t distribution has the degrees of
freedom parameter τ . In these two cases, the extra parameter models the tail behavior.
Also, the multivariate power exponential distribution has the kurtosis parameter β.
The multivariate normal distribution can be obtained as a limiting case of the multi-
variate slash and t distributions when q → ∞ and τ → ∞, respectively, and as a
special case of the multivariate power exponential distribution when β = 1. Further
details on elliptical distributions are found in Fang et al. [5]. Detailed studies about the
multivariate slash and multivariate power exponential distributions appear in Wang
and Genton [22] and Gómez et al. [9], respectively.

Let W ∼ E�p(μ,Σ; g) and let B ⊆ R
p be a measurable set. The distribution

obtained by conditioning W on {W ∈ B} is called a truncated elliptical distribution.
However, this definition may be given in terms of the PDF as in Definition 2.2.
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Definition 2.2 Let B ⊆ R
p be a measurable set. The random vector X has a truncated

elliptical distribution with support B and parameters μ ∈ R
p, Σ(p × p) > 0 and

DGF g, if its PDF is

fX (x) = g((x − μ)′Σ−1(x − μ))
∫
B g((x − μ)′Σ−1(x − μ)) dx

, x ∈ B. (2.3)

The DGF g is such that g(u) ≥ 0, for all u ≥ 0, and
∫ ∞
0 r p−1g(r2) dr < ∞. We write

X ∼ TE�p(μ,Σ; B; g).
The PDF of X ∼ TE�p(μ,Σ; B; g) can be expressed as

fX (x) = fW (x)

P(W ∈ B)
, x ∈ B, (2.4)

where fW is the PDF of a random vector W ∼ E�p(μ,Σ; g).
Note that the PDF of X ∼ TE�p(μ,Σ; B; g) exists if the PDF of W ∼

E�p(μ,Σ; g) exists, which occurs if Σ > 0; see Fang et al. [5, Sec. 2.5].
If B = R

p in (2.4), then P(W ∈ B) = 1, and we recover PDF (2.2). Hence, the
class of truncated elliptical distributions is a generalization of the elliptical class of
distributions.

Whenμ = 0 andΣ = I p in Definition 2.2, we say that X has a truncated spherical
distribution over B with DGF g, and we write X ∼ TSp(B; g). The corresponding
PDF is given by

fX (x) = g(x′x)
∫
B g(x′x) dx

, x ∈ B. (2.5)

If B = R
p in (2.5), we arrive at PDF (2.1).

The study of the class of Box–Cox elliptical distributions proposed by Morán-
Vásquez and Ferrari [16] is based on the class of the truncated elliptical distributions.
These authors showed that, for any p-dimensional rectangle R, the conditional dis-
tribution of any component Xk of X ∼ TE�p(μ,Σ; R; g), given all the other
components, is univariate truncated elliptical with the same support of Xk . This prop-
erty allowed to propose an algorithm to generate random samples of X , which in turn
is the basis for generating random samples of the Box–Cox elliptical distributions.

The DGF g provides a correspondence of the members in the class of the trun-
cated elliptical distributions with those in the class of the elliptical distributions.
By substituting g(u) ∝ exp(−u/2), u ≥ 0, in (2.3) we obtain the PDF of a ran-
dom vector X with a multivariate truncated normal distribution with support B and
parameters μ ∈ R

p and Σ(p × p) > 0, denoted by X ∼ TNp(μ,Σ; B). When

g(u) ∝ ∫ 1
0 tq+p−1 exp(−ut2/2) dt , q > 0, u ≥ 0, in (2.3) we obtain the PDF of a

random vector X with multivariate truncated slash distribution with support B and
parameters μ ∈ R

p, Σ(p × p) > 0 and q > 0, denoted by X ∼ TSLp(μ,Σ, q; B).
Also, when g(u) ∝ exp(−uβ/2), β > 0, u ≥ 0, we obtain the PDF of a random vector
X with a multivariate truncated power exponential distribution with support B and
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parameters μ ∈ R
p, Σ(p × p) > 0 and β > 0, denoted by X ∼ TPEp(μ,Σ, β; B).

Other special case is the multivariate truncated t distribution, which corresponds to
the DGF g(u) ∝ (1+u/τ)−(τ+p)/2, τ > 0, u ≥ 0. The multivariate truncated normal
distribution can be obtained as a limiting case of the multivariate truncated slash and
multivariate truncated t distributions when q → ∞ and τ → ∞, respectively, and
as a particular case of the multivariate truncated power exponential distribution when
β = 1.

Computations related to truncated elliptical distributions involve the evaluation of
the integral

∫
B g((x − μ)′Σ−1(x − μ)) dx; see (2.3). Genz and Bretz [6] present

algorithms to compute this integral when B = R is a rectangle in R
p and g is the

DGF of the multivariate normal and multivariate t distributions. We now propose a
procedure to evaluate the integral for the multivariate slash distribution. Let X ∼
TSLp(μ,Σ, q; R), where R is a rectangle in Rp. We propose the use of Monte Carlo
integration mixed with the algorithm proposed by Genz and Bretz [6] to evaluate
the PDF of X . In fact, if W ∼ SLp(μ,Σ, q), then the PDF of W is fW (w) =
q

∫ 1
0 uq−1φp(w;μ, u−2Σ) du, where φp( y; ξ ,Δ) is the PDF of Y ∼ Np(ξ ,Δ), and

P(W ∈ R) = q
∫ 1
0 uq−1Φp(R;μ, u−2Σ) du, where Φp(R; ξ ,Δ) is the probability

of {Y ∈ R} under Y ∼ Np(ξ ,Δ). This expression for P(W ∈ R) is obtained by
the Fubini theorem. Then, the PDF of X ∼ TSLp(μ,Σ, q; R) can be expressed
as

fX (x) = Eq(φp(x;μ,U−2Σ))

Eq(Φp(R;μ,U−2Σ))
,

where the expected values are calculated under the random variable U ∼ beta(q, 1).
Therefore, by drawing a random sample of large size n from U ∼ beta(q, 1), say
u1, . . . , un , the PDF of X ∼ TSLp(μ,Σ, q; R) can be approximated by

fX (x) ≈
∑n

i=1 φp(x;μ, u−2
i Σ)

∑n
i=1 Φp(R;μ, u−2

i Σ)
,

where Φp(R;μ, u−2
i Σ), i = 1, . . . , n, is evaluated using the algorithm proposed by

Genz and Bretz [6].
Figure 1 shows contour plots and PDF plots of bivariate truncated slash distribu-

tions. The contours are ellipses projected on the support set. The parameterσ12 controls
the association between the marginal distributions of X1 and X2 (see Fig. 1b, c, and
d for null, negative, and positive association, respectively). As the tail parameter q
grows, the contours tend to the corresponding contours of the bivariate truncated nor-
mal distribution (Fig. 1e, f). The tails of the truncated slash distributions are heavier
for smaller values of q.
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Fig. 1 Contour plots at levels 0.2, 0.15, 0.1, 0.06 and PDF of X ∼ TSL2(μ, Σ, q; R), where a μ1 =
μ2 = 0, σ11 = σ22 = 1, σ12 = 0, q = 3, R = (−∞, 1) × (−1, ∞), b μ1 = μ2 = 0, σ11 = σ22 = 1,
σ12 = 0, q = 3, R = (−∞, 1) × (−∞, 1), c μ1 = μ2 = 0, σ11 = σ22 = 1, σ12 = −0.36, q = 3,
R = (−∞, 1)× (−∞, 1), d μ1 = μ2 = 0, σ11 = σ22 = 1, σ12 = 0.36, q = 3, R = (−∞, 1)× (−∞, 1),
e μ1 = 2, μ2 = 1, σ11 = σ22 = 0.25, σ12 = 0.09, q = 3, R = (1.5,∞) × (0.5,∞), f μ1 = 2, μ2 = 1,
σ11 = σ22 = 0.25, σ12 = 0.09, q = 12, R = (1.5,∞) × (0.5,∞)

3 Main Results

Let O(p) be the orthogonal group of p × p matrices with entries in R, i.e., O(p) ={
H(p × p) : HH ′ = H ′H = Ip

}
. In Theorem 3.1 we state a property of closedness

of the truncated spherical distributions under orthogonal transformations.

Theorem 3.1 Let S ∼ TSp(B; g) and T : Rp → R
p be the orthogonal transformation

T (x) = Hx, where H ∈ O(p). Then T (S) ∼ TSp(T (B); g). The PDF of S satisfies
the relation fS(s) = fT (S)(T (s)), s ∈ B.

Proof See “Appendix A”. ��
If B = R

p in Theorem 3.1 we have that S and T (S) have exactly the same spherical
distribution. In other words, the spherical distributions are invariant under orthogonal
transformations; Fang et al. [5, Sec. 2.1]. On the other hand, if B is a proper subset
of Rp, the distributions of S and T (S) are truncated spherical with the same DGF,
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but the support of T (S) is T (B). Figure 1b shows a 90◦ counterclockwise rotation of
the truncated bivariate standard slash distribution shown in Fig. 1a. This orthogonal
rotation is obtained using the orthogonal transformation T : R

2 → R
2 given by

T ((x1, x2)′) = (−x2, x1)′, with associated rotation matrix

H =
[
0 −1
1 0

]

.

Theorem 3.2 gives a characterization of truncated elliptical distributions through
truncated spherical distributions.

Theorem 3.2 Let B ⊆ R
p be a measurable set, μ ∈ R

p, Σ(p × p) > 0 and
T : Rp → R

p be the affine transformation T (x) = μ+Σ1/2x. Then, S ∼ TSp(B; g)
if, and only if, T (S) ∼ TE�p(μ,Σ; T (B); g).
Proof See “Appendix B”. ��

Theorem 3.2 with B = R
p corresponds to the characterization of elliptical distri-

butions from spherical distributions as described in Sect. 2.
Theorem 3.3 gives a closedness property of truncated elliptical distributions under

affine transformations.

Theorem 3.3 Let B ⊆ R
p be a measurable set and let T : R

p → R
p be the

affine transformation T (x) = α + Δx, where α ∈ R
p and Δ(p × p) is a

matrix such that det(Δ) �= 0. If X ∼ TE�p(μ,Σ; B; g), then T (X) ∼ TE�p(α +
Δμ,ΔΣΔ′; T (B); g).
Proof See “Appendix C”. ��

Figure 1e shows the affine transformation T : R2 → R
2 of the truncated bivariate

slash distribution shown in Fig. 1d, with T (x) = α + Δx, where

α =
[
2
1

]

, Δ =
[−0.5 0

0 −0.5

]

.

In Theorem 3.4 we state a condition for a truncated elliptical distribution to have
MGF.

Theorem 3.4 Let B ⊆ R
p be a measurable set, μ ∈ R

p and Σ(p × p) > 0. If the
MGF of W ∼ E�p(μ,Σ; g) exists, so does the MGF of X ∼ TE�p(μ,Σ; B; g).
Proof See “Appendix D”. ��

Log-concave PDFs have desirable properties and play an important role in statistics.
A PDF f : Rp → [0,∞) is log-concave if

f (αx + (1 − α) y) ≥ [ f (x)]α[ f ( y)]1−α (3.1)

is satisfied for all x, y ∈ R
p and for all α ∈ [0, 1]. Some properties of log-concave

PDFs are as follows: (i) if X ∈ R
p is a random vector having a log-concave PDF fX ,
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then the contours of fX are convex sets and themarginal PDFs are log-concave; (ii) the
product of log-concave PDFs is also log-concave; (iii) fX is A-unimodal, i.e., the set
{x ∈ R

p : fX (x) ≥ λ} is convex for all λ > 0; (iv) if A1, . . . , Am are subsets of Rp

and α1, . . . , αm are real numbers such that αi ≥ 0, i = 1, . . . ,m and
∑m

i=1 αi = 1,
then

P

[

X ∈
m∑

i=1

αi Ai

]

≥
m∏

i=1

[P(X ∈ Ai )]αi , (3.2)

where

m∑

i=1

αi Ai =
{

z ∈ R
p : z =

m∑

i=1

αi xi , xi ∈ Ai , i = 1, . . . ,m

}

.

Bounds for probabilities involving random vectors having log-concave PDFs may be
found from inequality (3.2); see Tong [21, Sec. 4.2].

Theorem 3.5 presents conditions for a truncated elliptical distribution to have a
log-concave PDF.

Theorem 3.5 Let μ ∈ R
p, Σ(p × p) > 0 and B ⊆ R

p measurable convex set. If
the PDF fW of W ∼ E�p(μ,Σ; g) is log-concave, so does the PDF fX of X ∼
TE�p(μ,Σ; B; g).
Proof See “Appendix E”. ��

The PDF fX of a random vector having multivariate truncated power exponential
distribution, X ∼ TPEp(μ,Σ, β; B), with B ⊆ R

p being convex, is log-concave for
β ≥ 1. This comes from the log-concavity of the PDF fW of W ∼ PEp(μ,Σ, β)

when β ≥ 1 (see details in Appendix F). In particular, if β = 1, then the PDF fX of
X ∼ TNp(μ,Σ; B) is log-concave. This generalizes Theorem 9 of Horrace [13], who
shows the log-concavity of the PDF of the multivariate truncated normal distribution
with support in the one-sided rectangle R

p
≥α = [α1,∞) × . . . × [αp,∞), where

α ∈ R
p.

A PDF f : R
p → [0,∞) is said to be multivariate totally positive of order 2

(MTP2) if the inequality

f ( y) f ( y∗) ≤ f (x) f (x∗) (3.3)

holds for all y, y∗ in the domain of f , where xi = max{yi , y∗
i }, x∗

i = min{yi , y∗
i },

i = 1, . . . , p; see Tong [21, Sec. 4.3].
In Theorem 3.6 we state conditions for a random vector with a truncated elliptical

distribution to have a PDF with the MTP2 property.

Theorem 3.6 Let μ ∈ R
p, Σ(p × p) > 0 and R be a rectangle in R

p. If the PDF
fW of W ∼ E�p(μ,Σ; g) is MTP2, so does the PDF fX of X ∼ TE�p(μ,Σ; R; g).
Proof See “Appendix G”. ��
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If the PDF of W ∼ Np(μ,Σ) is MTP2 (see conditions in Tong [21, Sec. 4.3]),
then the PDF of X ∼ TNp(μ,Σ; R) is MTP2, where R is a rectangle in R

p. This
generalizes Theorem 16 of Horrace [13], who shows the MTP2 property of the PDF
of the multivariate truncated normal distribution with support in the one-side rect-
angle R

p
≥α . Theorem 3.6 does not necessarily hold for arbitrary support sets in R

p.
For example, if B ⊆ R

2 is the unit ball centered at the origin and W ∼ N2(0,Σ)

has PDF with MTP2 property, then the PDF fX of X ∼ TN2(0,Σ; B) is such that
fX ( y) fX ( y∗) > 0 for y = (0.8, 0.5)′ and y∗ = (−0.5, 0.8)′, but fX (x) fX (x∗) = 0,
since x = (0.8, 0.8)′ /∈ B and x∗ = (−0.5, 0.5)′ ∈ B.

In order to present results on independence and marginal and conditional distribu-
tions, we introduce the notation for partitions of X ∈ R

p, μ ∈ R
p and Σ(p× p) > 0

as follows:

X = (X ′
1, X

′
2)

′, μ = (μ′
1,μ

′
2)

′, Σ =
[
Σ11 Σ12
Σ21 Σ22

]

, (3.4)

where X1 ∈ R
r , X2 ∈ R

p−r , μ1 ∈ R
r , μ2 ∈ R

p−r , Σ11(r × r) > 0, Σ22((p −
r) × (p − r)) > 0 and Σ12(r × (p − r)) is such that Σ21 = Σ ′

12. The support set is
assumed to be the rectangle R ⊆ R

p, that may be expressed as the Cartesian product
of rectangles R1 = I1 × · · · × Ir ⊆ R

r and R2 = Ir+1 × · · · × Ip ⊆ R
p−r , i.e.,

R = R1 × R2. (3.5)

Let X ∈ R
p, μ ∈ R

p, Σ(p × p) > 0 be partitioned as in (3.4) and be such that
X ∼ TE�p(μ,Σ; R; g), with R given in (3.5). The marginal PDF of X1 is given by

fX1(x1) =
∫
R2

g((x − μ)′Σ−1(x − μ)) dx2
∫
R g((x − μ)′Σ−1(x − μ)) dx

, x1 ∈ R1. (3.6)

Note that the marginal PDF does not necessarily have the structure of the PDF of
a truncated elliptical distribution given in (2.3). Theorem 3.7 gives a condition for
marginal distributions to be truncated elliptical.

Theorem 3.7 Let X ∈ R, μ ∈ R
p, Σ(p × p) > 0 be partitioned as in (3.4) and

such that X ∼ TE�p(μ,Σ; R; g), with R given in (3.5). If Σ12 = 0, then X1 ∼
TE�r (μ1,Σ11; R1; g1), where

g1(u) =
∫

T (R2)

g(u + s′s) ds, u ≥ 0,

with T : Rp−r → R
p−r being the transformation T (x) = Σ

−1/2
22 (x − μ2) and g1

satisfies
∫ ∞
0 tr−1g1(t2) dt < ∞.

Proof See “Appendix H”. ��
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InTheorem3.8wepresent the conditional distribution of X1|X2 for a randomvector
X = (X ′

1, X
′
2)

′ with truncated elliptical distribution. This conditional distribution is
a truncated elliptical distribution.

Theorem 3.8 Let X ∈ R, μ ∈ R
p, Σ(p × p) > 0 be partitioned as in (3.4) and

such that X ∼ TE�p(μ,Σ; R; g), with R given in (3.5). Then, X1|X2 = x2 ∼
TE�r (μ1(x2),Σ11.2; R1; gq(x2)), where μ1(x2) = μ1 +Σ12Σ

−1
22 (x2 −μ2),Σ11.2 =

Σ11 − Σ12Σ
−1
22 Σ21 and gq(x2)(u) = g(u + q(x2)), u ≥ 0, with q(x2) = (x2 −

μ2)
′Σ−1

22 (x2 − μ2).

Proof See “Appendix I”. ��
Theorem 3.8 is a generalization of Theorem 1 of Morán-Vásquez and Ferrari [16],

which states that if X ∼ TE�p(μ,Σ; R; g), then Xk |X−k ∼ TE�1(μk.−k, σ
2
k.−k; Ik;

gk.−k), k = 1, . . . , p, where μk.−k = μk + Σk,−kΣ
−1
−k,−k(x−k − μ−k), σ 2

k.−k =
σkk − Σk,−kΣ

−1
−k,−kΣ−k,k and gk.−k(u) = g(u + q(x−k)), with q(x−k) = (x−k −

μ−k)
′Σ−1

−k,−k(x−k−μ−k). This result allows to obtain the complete conditional distri-
butions necessary to use Gibbs sampling for generating random samples of truncated
elliptical distributions; see Morán-Vásquez and Ferrari [16]. For example, random
samples of X ∼ TSLp(μ,Σ, q; R) and X ∼ TPEp(μ,Σ, β; R) may be generated
following Algorithm 1 proposed by Morán-Vásquez and Ferrari [16] with gk.−k(u) ∝∫ 1
0 tq+p−1 exp(−(u + q(x−k))t2/2) dt and gk.−k(u) ∝ exp(−(u + q(x−k))

β/2) as
the DGF of Xk |X−k , k = 1, . . . , p, respectively.

When the precision matrix Λ = Σ−1 is readily available, Algorithm 1 in Morán-
Vásquez and Ferrari [16] may be simplified by writing μk.−k = μk − Λk,−k(x−k −
μ−k)/λkk , σ 2

k.−k = 1/λkk and q(x−k) = (x−k − μ−k)
′Λ−k,−k(x−k − μ−k);

Geweke [8, Th. 5.3.1]. This approach avoids multiple matrix inversions and is partic-
ularly advantageous when Σ is close to a singular matrix.

If Σ12 = 0 in Theorem 3.8, then X1|X2 = x2 ∼ TE�r (μ1,Σ11; R1; gq(x2)). A
comparison of this conditional distribution with the marginal distribution of X1 given
in Theorem 3.7 reveals that if Σ12 = 0 and the DGFs gq(x2) and g1 coincide, then X1
and X2 are independent. This gives a characterization of the independence of X1 and
X2, as stated in Theorem 3.9.

Theorem 3.9 Let X ∈ R
p,μ ∈ R

p,Σ(p× p) > 0 be partitioned as in (3.4) and such
that X ∼ TE�p(μ,Σ; R; g), with R given in (3.5). Then, X1 and X2 are independent
if, and only if, X ∼ TNp(μ,Σ; R) and Σ12 = 0.

Proof See “Appendix J”. ��

4 Final Remarks

In this paper we stated several properties of truncated elliptical distributions, which is
a generalization of the elliptical distributions. The class of truncated elliptical distribu-
tions has as special cases the multivariate truncated normal and multivariate truncated
t distributions, among others. Our results provide new properties for the multivariate
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truncated slash distribution and the multivariate truncated power exponential dis-
tribution. The stated properties regard a characterization of the truncated elliptical
distributions through the truncated spherical distributions, distributional properties
obtained through transformations, MGF, log-concavity, MTP2 property, marginal and
conditional distributions, and independence.

We proposed a procedure to compute the PDF of the multivariate truncated slash
distribution by mixing Monte Carlo integration and the algorithm proposed by Genz
and Bretz [6] to evaluate probabilities on rectangles through the multivariate normal
distribution. This procedure will allow the implementation of maximum likelihood
estimation for the multivariate Box–Cox slash distribution, which is a member of the
class of Box–Cox elliptical distributions proposed byMorán-Vásquez and Ferrari [16].
The multivariate Box–Cox slash distribution is suitable for modeling correlated mul-
tivariate positive data that are skewed and possibly heavy-tailed. Implementation and
applications of multivariate Box–Cox slash models will be dealt with in a future
paper.
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Appendix

A Proof of Theorem 3.1

Let U = T (s) = HS, with Jacobian J (s → u) = ±1. From (2.5) and H ′H = I p,
we have

fS(s) = g(u′u)
∫
T (B)

g(u′u) du
, u = T (s), s ∈ B.

This proves the result.

B Proof of Theorem 3.2

Let X = T (S) = μ + Σ1/2S, with Jacobian J (s → x) = det(Σ)−1/2. From (2.5)
and by noting that s′s = (x − μ)′Σ−1(x − μ), we have that the PDF of X is

fX (x) = g((x − μ)′Σ−1(x − μ))
∫
T (B)

g((x − μ)′Σ−1(x − μ)) dx
, x ∈ T (B). (B.1)
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Hence, X ∼ TE�p(μ,Σ; T (B); g). The result follows by considering the transforma-
tion S = T−1(X) = Σ−1/2(X − μ) in (B.1), with Jacobian J (x → s) = det(Σ)1/2,
and by noting that (x − μ)′Σ−1(x − μ) = s′s.

C Proof of Theorem 3.3

Let Y = T (X) = α + ΔX , with Jacobian J (x → y) = det(Δ)−1. From (2.3), and
by noting that

(x − μ)′Σ−1(x − μ) = ( y − (α + Δμ))′(ΔΣΔ′)−1( y − (α + Δμ)),

the result follows.

D Proof of Theorem 3.4

Let t = (t1, . . . , tp)′ ∈ R
p be such that |ti | < h, i = 1, . . . , p, for some h > 0. Note

that

MX (t) = [P(W ∈ B)]−1
∫

B

exp(t ′x) fW (x) dx

≤ [P(W ∈ B)]−1
∫

Rp

exp(t ′x) fW (x) dx

= [P(W ∈ B)]−1MW (t).

Since MW (t) < ∞, we have that MX (t) < ∞.

E Proof of Theorem 3.5

Let x, y ∈ R
p. Wewill prove that inequality (3.1) holds for fX given in (2.4). If x /∈ B

or y /∈ B, we have that [ fX (x)]α[ fX ( y)]1−α = 0, for all α ∈ [0, 1]. Hence, (3.1)
holds, because fX (αx + (1 − α) y) ≥ 0. If x, y ∈ B, then, from the convexity of B,
it follows that αx + (1− α) y ∈ B, for all α ∈ [0, 1]. Hence, fX (αx + (1− α) y) > 0
and, therefore, fW (αx + (1 − α) y) > 0. Since fW is log-concave, then

fW (αx + (1 − α) y)
P(W ∈ B)

≥ [ fW (x)]α[ fW ( y)]1−α

P(W ∈ B)
, α ∈ [0, 1].

Equation (3.1) is seen to be satisfied by noting that P(W ∈ B) = [P(W ∈ B)]α[P(W ∈
B)]1−α , for all α ∈ [0, 1].
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F Log-Concavity of the Power Exponential Distribution

The PDF of W ∼ PEp(μ,Σ, β) is given by

fW (w) = pΓ (p/2) det(Σ)−1/2

21+p/2βπ p/2Γ (1 + p/2β)

exp
{
−1

2
[(w − μ)′Σ−1(w − μ)]β

}
, w ∈ R

p. (F.1)

Since the function u(t) = −tβ/2 is concave and non-increasing on (0,∞) for
β ≥ 1, and the function v(w) = (w − μ)′Σ−1(w − μ) is convex on R

p, then the
composition function h(w) = u(v(w)) = −[(w − μ)′Σ−1(w − μ)]β/2 is concave
on R

p for β ≥ 1; Boyd and Vandenberghe [4, Sec. 3.2.4]. This implies that the PDF
(F.1) is log-concave on Rp for β ≥ 1.

G Proof of Theorem 3.6

Let y, y∗ ∈ R
p. We will prove that the inequality (3.3) holds for fX given in (2.4).

If y /∈ R or y∗ /∈ R, then fX ( y) fX ( y∗) = 0. Also, fX (x) fX (x∗) = 0, with xi =
max{yi , y∗

i }, x∗
i = min{yi , y∗

i }, i = 1, . . . , p. Hence, (3.3) is satisfied. If y, y∗ ∈ R,
then fX ( y) fX ( y∗) > 0 and, hence, fW ( y) fW ( y∗) > 0. In this case, x, x∗ ∈ R.
Hence, fX (x) fX (x∗) > 0 and, consequently, fW (x) fW (x∗) > 0. Since fW is MTP2,
then

fW ( y) fW ( y∗) ≤ fW (x) fW (x∗).

By dividing each side of the inequality above by [P(W ∈ R)]2, we have that
fX ( y) fX ( y∗) ≤ fX (x) fX (x∗).

H Proof of Theorem 3.7

From (3.6) with Σ12 = 0, we have that the marginal PDF of X1 is

fX1(x1)

=
∫
R2

g((x1 − μ1)
′Σ−1

11 (x1 − μ1) + (x2 − μ2)
′Σ−1

22 (x2 − μ2)) dx2
∫
R1

∫
R2

g((x1 − μ1)
′Σ−1

11 (x1 − μ1) + (x2 − μ2)
′Σ−1

22 (x2 − μ2)) dx2 dx1
,

where x1 ∈ R1. Let s = T (x2) = Σ
−1/2
22 (x2 − μ2), with Jacobian J (x2 → s) =

det(Σ22)
1/2. It follows that

fX1(x1) = g1((x1 − μ1)
′Σ−1

11 (x1 − μ1))∫
R1

g1((x1 − μ1)
′Σ−1

11 (x1 − μ1)) dx1
, x1 ∈ R1.
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On the other hand, note that

g1(u) =
∫

T (R2)

g(u + s′s) ds ≤
∫

Rp−r

g(u + s′s) ds = h1(u), u ≥ 0.

The function h1 is such that
∫ ∞
0 tr−1h1(t2) dt < ∞; Fang et al. [5, Sec. 2.2].

I Proof of Theorem 3.8

The conditional PDF of X1|X2 is

fX1|X2(x1) = g((x − μ)′Σ−1(x − μ))
∫
R1

g((x − μ)′Σ−1(x − μ)) dx1
, x1 ∈ R1.

From the identity (x−μ)′Σ−1(x−μ) = (x1−μ1(x2))
′Σ−1

11.2(x1−μ1(x2))+q(x2),
the result follows.

J Proof of Theorem 3.9

X1 and X2 are independent if, and only if, the PDF of X ∼ TE�p(μ,Σ; R; g) is
factored as fX (x) = fX1(x1) fX2(x2). This equality holds if, and only if, Σ12 = 0
and g(u + v) = g(u)g(v), with u ≥ 0 and v ≥ 0. This functional equation has as
solution the DGF g(u) = exp(−ku), for some k ≥ 0; Gupta et al. [10, Sec. 1.3]. From∫ ∞
0 t p−1 exp(−kt2) dt = 2p/2−1Γ (p/2), we find that k = 1/2. Therefore, X1 and
X2 are independent if, and only if, X ∼ TNp(μ,Σ; R), with Σ12 = 0.
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