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Abstract

Predictors of random effects are usually based on the popular mixed effects (ME ) model developed under the assumption that
the sample is obtained from a conceptual infinite population; such predictors are employed even when the actual population is
finite. Two alternatives that incorporate the finite nature of the population are obtained from the superpopulation model proposed
by Scott and Smith (1969. Estimation in multi-stage surveys. J. Amer. Statist. Assoc. 64, 830–840) or from the finite population
mixed model recently proposed by Stanek and Singer (2004. Predicting random effects from finite population clustered samples with
response error. J. Amer. Statist. Assoc. 99, 1119–1130). Predictors derived under the latter model with the additional assumptions
that all variance components are known and that within-cluster variances are equal have smaller mean squared error (MSE ) than the
competitors based on either the ME or Scott and Smith’s models. As population variances are rarely known, we propose method of
moment estimators to obtain empirical predictors and conduct a simulation study to evaluate their performance. The results suggest
that the finite population mixed model empirical predictor is more stable than its competitors since, in terms of MSE, it is either the
best or the second best and when second best, its performance lies within acceptable limits. When both cluster and unit intra-class
correlation coefficients are very high (e.g., 0.95 or more), the performance of the empirical predictors derived under the three models
is similar.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

There are many instances where clustered finite populations occur naturally as in educational, public health or
sociological surveys, where classrooms in schools, physician practices in hospitals or families in communities are
typical examples of such clusters. In such settings, statistical inference is usually based on a multi-stage random sample
selected without replacement. In addition to the sample average, three approaches may be considered to predict latent
values of realized clusters (i.e., the average expected response of the units in those clusters). In each case, best linear
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unbiased predictors (BLUP) have been obtained. The most popular approach is based on the usual mixed effects (ME )
model derived under the assumption that the sample is obtained from a conceptual infinite population and is considered
in Goldberger (1962), Henderson (1984), Kackar and Harville (1984), Prasad and Rao (1990), McLean et al. (1991),
Robinson (1991), Stanek et al. (1999), Moura and Holt (1999) or McCulloch and Searle (2001) among others. The
second approach, suggested by Scott and Smith (1969) and extended by Bolfarine and Zacks (1992) to include response
error, considers the finite nature of the population and bases the inference on a superpopulation (SP) model. It has limited
application, in part because its performance may be affected by model miss-specification. The third approach, recently
suggested by Stanek et al. (2004) in a simple random sampling setup and extended by Stanek and Singer (2004)
to a balanced two-stage sampling setup with or without response error, considers a finite population mixed (FM )
model,1 induced by the sampling process. Since the stochastic model is developed directly from two-stage sampling
from a finite population, it can be applied to a wide range of practical settings.

In each case, the BLUPs of realized cluster latent values involve predictors of the response of the unobserved units and
depend on weights called shrinkage factors; these shrinkage factors are functions of population variance components
and of the number of sampled clusters. For the last two models, they also depend on finite population characteristics
such as cluster sizes. The predictors obtained under these three models can occasionally be quite similar, but sometimes
they can differ greatly.

As an example, suppose that an educational survey is conducted in a given high-school to evaluate the ability of second
graders in a certain subject by means of a test with scores ranging from 0 to 10. We assume that the student responses
include response error. To account for teacher effects, a two-stage random sample is obtained from the population of
second grade students assigned to classrooms (each with 30 students). Assume that a sample of 15 students is selected
from each classroom in a sample of classrooms in the school. In addition to estimating the school response and variance
components, suppose that there is interest in predicting the latent response for a sampled classroom. For illustration, let
us assume that the between classroom variance is 1.25, the within-cluster variance is 2.00 and that the response error
variance is 0.80. With these assumptions, the cluster intra-class correlation coefficient is 0.38 and the unit intra-class
correlation coefficient is 0.71 (see Section 2.4 for definitions of cluster and unit intra-class correlation coefficients).
Also, suppose that the school sample average is 6.75, while for the ith sample classroom, the sample average is 5.20.
Based on the sample data, there are four approaches to predict the latent classroom response. First, we may use the
sample classroom average that is 5.20. Alternatively, assuming that the response error model holds for all students,
the latent response for the ith sample classroom is predicted to be 5.40, 5.30 and 5.90, respectively, using the ME,
SP or FM model predictors (see Section 2.4 for details about each predictor). The 11% relative difference observed
between the predicted values obtained under the FM model and the SP model may be meaningful in this type of study.
Consequently, an evaluation of the performance of the predictors derived under these three models for a wide range of
conditions may be very helpful for practical applications. We consider such a comparison with the objective of selecting
the predictor with smaller mean squared error (MSE ).

The ME, SP and FM models can all be defined via a set of assumptions on the mean and on the covariance structure
and do not require the specification of the form of the underlying distribution. Only the FM model links the finite
population to the assumptions for the set of random variables that represent two-stage sampling (plus response error).
When all variances are known and within-cluster variances are equal, Stanek and Singer (2004) show that the predictors
of realized cluster latent values based on such a model have smaller MSE than those based on the other approaches. In
practical situations, variances are rarely known and need to be estimated. We propose estimators for such variances and
report simulation study results that compare the performance of empirical predictors of realized cluster latent values,
providing guidance for the choice among the alternatives.

In Section 2 we present a brief review of the models and specify the corresponding predictors of sampled cluster latent
values. We also propose empirical predictors based on variance components estimated from the sample. In Section 3 we
describe technical details of the simulation study to compare the performance of these predictors for finite populations
with different structures. Finally, in Sections 4 and 5 we present the simulation results and discussion, respectively.
Programs and additional results are available at http://www.umass.edu/cluster/ed/.

1 Although Stanek and Singer (2004) use the term “random permutation model”, we prefer “finite population mixed model” in order to avoid
confusion with the SP random permutation model of Hedayat and Sinha (1991).
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2. BLUPs of the cluster latent value under different models

We consider a finite population with M units, indexed by t =1, . . . , M in each of N clusters, indexed by s=1, . . . , N .
A fixed constant yst , called a “unit parameter”, is associated with unit t in cluster s. We summarize these parameters in
the vector

y = (y′
1 y′

2 · · · y′
N )′ where ys = (ys1 ys2 · · · ysM )′, s = 1, . . . , N .

For s = 1, . . . , N , we define the latent value of cluster s as �s = (1/M)
∑M

t=1yst and the corresponding variance as

(
M − 1

M

)
�2

s = 1

M

M∑
t=1

(yst − �s)
2.

Also, we let �2
e = (1/N)

∑N
s=1�

2
s denote the average within-cluster variance. Similarly, we define the population mean

and the between-cluster variance as � = (1/N)
∑N

s=1�s and

(
N − 1

N

)
�2 = 1

N

N∑
s=1

(�s − �)2,

respectively. Letting �s = (�s − �) denote the deviation of the latent value of cluster s from the population mean and
εst = (yst − �s) denote the deviation of the parameter for unit t (in cluster s) from the latent value of cluster s, we can
re-parameterize the vector of fixed values y via the non-stochastic model

y = X� + Z� + �, (2.1)

where X = 1NM , Z = IN ⊗ 1M , �′ = (�1 �2 · · · �N) and � is defined similarly to y. Here, 1a denotes an a × 1 column
vector with all elements equal to one, IN is an N ×N identity matrix and ⊗ denotes the Kronecker product. We assume
that a two-stage simple random sample is to be selected (without replacement) from this population. At the first stage,
a sample of n clusters is selected and at a second stage, a sample of m distinct units is selected from the M units in each
selected cluster.

2.1. The finite population mixed (FM) model

We briefly summarize the FM model presented by Stanek and Singer (2004). This model is a stochastic version of
(2.1) induced by the two-stage random sampling of a finite clustered population. To obtain the FM model, we first
define an ordered list of NM random variables, the values of which correspond to the elements of y obtained from
independent permutations of clusters and units in clusters. For each permutation, we assign a new label, i = 1, . . . , N

to the clusters according to its position in the permuted list. Similarly, we label the positions in the permutation of
units in a cluster by j = 1, . . . , M . For ease of exposition, we refer to the cluster that will occupy position i in the
permutation of clusters as primary sampling unit (PSU) i, and to the unit that will occupy position j in the permutation
of units within a cluster as secondary sampling unit (SSU) j . Since any unit in any cluster may occupy position ij, we
represent the response for SSU j in PSU i as the random variable Yij .

To relate yst to Yij we use two sets of indicator random variables; the elements of the first, Uis , take on a value of
one when the realized cluster corresponding to PSU i is clusters and a value of zero otherwise, and the elements of the
second set, U

(s)
j t , take on a value of one when the realized unit corresponding to SSU j in cluster s is unit t and zero

otherwise. As a consequence, the random variable corresponding to the response for SSU j in PSU i in a permutation
is given by

Yij =
N∑

s=1

M∑
t=1

UisU
(s)
j t yst .
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The finite population y can be viewed as a realization of the random variable

Y = (U ⊗ IM)

(
N⊕

s=1

U(s)

)
y,

where Y=(Y′
1 Y′

2 · · · Y′
N )′ ∈ RNM , with Yi=(Yi1 Yi2 · · · YiM )′ ∈ RM , U(s)=(U(s)

1 U(s)
2 · · · U(s)

M ) ∈
RM × RM, with U(s)

t = (U
(s)
1t U

(s)
2t · · · U

(s)
Mt )

′, and U = (U1 U2 · · · UN ) ∈ RN × RN , with columns Us =
(U1s U2s · · · UNs )′. Here, ⊕N

s=1 As denotes a block diagonal matrix with blocks As (Searle et al., 1992). One dif-
ference between the vectors Yand y lies in the interpretation of the subscripts that define their elements. The subscripts
in Y correspond to positions in a permutation, while the subscripts in y correspond to labels of units.

Using elementary properties of the indicator random variables and the simple structure of X and Z, it follows that
U1N =1N , U(s)1M =1M , (U⊗IM)(⊕N

s=1 U(s))X=X and (U⊗IM)(⊕N
s=1U(s))Z=U⊗1M =ZU. Then, pre-multiplying

both sides of (2.1) by (U ⊗ IM)

(
N⊕

s=1
U(s)

)
and using the above results, we obtain the FM model

Y = X� + ZB + E, (2.2)

where E = (U ⊗ IM)(⊕N
s=1 U(s))� and B = U� = (B1 B2 · · · BN )′. Given the random nature of U, the term

Bi = ∑N
s=1 Uis�s is a random effect that represents the deviation of the latent value for PSU i from the population

mean.
The expected value and covariance matrix of Y can be developed directly from the properties of the sampling indicator

random variables which formally represent the two-stage cluster sampling, as illustrated by Stanek and Singer (2004,
Appendix A). For the random variable Y in (2.2), we have

E�1�2
(Y) = X�

and

var�1�2
(Y) = �2

eINM + �∗2(IN ⊗ JM) − �2

N
JNM ,

where �∗2 = �2 − �2
e/M , Ja = 1a1′

a , and the subscripts �1 and �2 denote expectation with respect to permutations of
the clusters and to permutations of units in the clusters, respectively.

As the values of the finite population defined by y may not be observed directly, we assume a model of the form

Ỹ = y + W,

where W = (Wst ) ∈ RNM is a vector of independent response errors with E(Wst ) = 0 and var(Wst ) = �2
st , s =

1, . . . , t = 1, . . . , M.

Using this notation, the FM model with response error is

Y∗ = (U ⊗ IM)

(
N⊕

s=1

U(s)

)
Ỹ = Y + W∗,

where W∗ = (U ⊗ IM)(⊕N
s=1 U(s))W. Under the re-parameterization (2.1), we express this as

Y∗ = X� + ZB + (E + W∗). (2.3)

The first two central moments of Y∗ are

E�1�2�3
(Y∗) = X�

and

var�1�2�3
(Y∗) = (�2

e + �2
r )INM + �∗2(IN ⊗ JM) − �2

N
JNM .

Here, the subscript �3 denotes expectation with respect to response error and �2
r = ∑N

s=1
∑M

t=1�
2
st /NM denotes the

average response error variance.
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The same finite population with two-stage permuted elements is represented in each realization of Y∗. Once the
sample has been selected, the correspondence between clusters and particular sample PSUs will be apparent. We refer
to those clusters as realized PSUs.

Denoting the sample elements by Y∗
I = YI + W∗

I , the model for the sample is Y∗
I = XI�+ ZI B + (EI + W∗

I ) where
XI = 1n ⊗ 1m, ZI = In ⊗ 1m, E(Y∗

t ) = XI� and var(Y∗
I ) = (�2

e + �2
r )Inm + �∗2(In ⊗ Jm) − (�2/N)Jnm.

2.2. Scott and Smith’s SP model

Scott and Smith (1969) proposed an SP model according to which the finite population y is viewed as a realization
of a vector of random variables Y such that

E(Y) = X� and var(Y) =
N⊕

i=1

(�2
i IM + �2JM). (2.4)

Although we use the same notation, neither � nor �2 and �2
i necessarily refer to the finite population mean or variance

components specified at the beginning of Section 2, because the vector Y in (2.4) is not linked to the population
units as in the FM model. In this context, the cluster means, i.e., �1, . . . , �N may be considered as realizations of
independent identically distributed random variables �1, . . . ,�N in a SP such that for each i = 1, . . . , N , E(�i ) = �
and var(�i ) = �2. According to this model, elements within the same cluster are correlated, but elements in different
clusters are not.

Using a Bayesian approach, Bolfarine and Zacks (1992) extend the SP model by adding normally distributed response
error, and suppose that the potentially observable variables are given by elements of

Y∗ = Y + W,

where W ∼ N(0, ⊕N
i=1 �2

riIM), i = 1, . . . , N , j = 1, . . . , M , and W is independent of Y. Assuming that �2
ri = �2

r ,
i = 1, . . . , N , we obtain

E(Y∗) = X� and var(Y∗) =
N⊕

i=1

[(�2
i + �2

r )IM + �2JM ]. (2.5)

Denoting the sample elements by Y∗
t = YI + WI , it follows that E(Y∗

I ) = XI� and

var(Y∗
I ) =

n⊕
i=1

[(�2
i + �2

r )Im + �2Jm].

2.3. The mixed effects (ME) model

Under an ME model, the two-stage sample data are considered to have been selected from a conceptual infinite
population, which may be thought of as the limit (as the size increases) of the finite population of interest. In this case,
the sample elements in PSU i, given by YI i = (Yi1 Yi2 · · · Yim)′, i = 1, . . . , n, are modeled as

YI i = XI i� + ZI iBi + EI i , (2.6)

where XI i = ZI i = 1m and EI i = (Ei1 Ei2 · · · Eim)′. Here, Yij is the response of SSU j, j = 1, . . . , m in PSU i, �
corresponds to the expected response over SSUs and PSUs in the conceptual infinite population, Bi is a random effect
that corresponds to the deviation of the average expected response of SSUs in PSU i from �, and Eij is a random deviation
of the (conditional) expected response of SSU j from the (conditional) average expected response of elements in PSU i.
Typically, it is assumed that E(Bi)=0, var(Bi)=�2, E(EI i)=0, var(EI i)=�2

i Im and cov(Bi, Eij )=0, j =1, . . . , m,
so that E(YI i)=XI i� and var(YI i)=�2

i Im+�2Jm. If to (2.6) we add a response error term WI i =(Wi1 Wi2 · · · Wim)′,
with E(WI i)=0, var(WI i)=�2

r Im, cov(Bi, Wij )=0, j =1, . . . , m and cov(WI i , EI i)=0, then for Y∗
I i =YI i +WI i ,

we have E(Y∗
I i) = XI i� and var(Y∗

I i) = (�2
i + �2

r )Im + �2Jm. It follows that

Y∗
I = (Y∗′

I1 Y∗′
I2 · · · Y∗′

In)
′ = XI� + ZI BI + EI + WI , (2.7)
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where BI =(B1 B2 · · · Bn )′, EI =(E′
I1 E′

I2 · · · E′
In )′, and WI =(W′

I1 W′
I2 · · · W′

In )′, which implies
that E(Y∗

I ) = XI� and var(Y∗
I ) = ⊕n

I=1 [(�2
i + �2

r )Im + �2Jm].
Here again, neither � nor �2 and �2

i refer directly to the finite population mean or variance components, but to the
conceptual infinite population counterparts. In particular, �2 is the variance of the random cluster means (�+Bi) which
conceptually take on an infinite number of values as opposed to the finite population setup, where they can assume
only a finite number of values.

2.4. BLUPs of the latent value of a realized PSU

Our principal interest lies in the linear combination that defines the latent value of PSU i (for i�n), i.e., Ti=g′Y, where
g′ = (1/M)e′

i ⊗ 1′
M , and ei denotes an N × 1 column vector with 1 in position i and zero elsewhere. In the ME model,

Ti corresponds to � + Bi . From the sampled values Y∗
I = (Y∗′

I1 Y∗′
I2 · · · Y∗′

In)
′, where Y∗

I i = (Y ∗
i1 Y ∗

i2 · · · Y ∗
im )′,

the BLUPs of Ti (for i�n) under the three models [i.e., (2.3), (2.5) or (2.7)] are:

(i) for the ME model:

T̂i = �̂ + k
(ME)
i (Ȳ ∗

i − �̂) where Ȳ ∗
i = 1

m

m∑
j=1

Y ∗
ij , �̂ =

∑n
i=1Ȳ

∗
i /�i∑n

i=11/�i

,

�i = m�2 + �2
i + �2

r , and the shrinkage constant is

k
(ME)
i = m�2

m�2 + �2
i + �2

r

.

(ii) for the SP model: T̂i = �̂ + k
(SP )
i (Ȳ ∗

i − �̂), and the shrinkage constant is

k
(SP )
i = k

(ME)
i + f (1 − k

(ME)
i ) = m�2 + f (�2

i + �2
r )

m�2 + �2
i + �2

r

,

with f = m/M denoting the sampling fraction for units.
(iii) for the FM model: T̂i = Ȳ ∗ + k(FM)(Ȳ ∗

i − Ȳ ∗), where Ȳ ∗ = (1/n)
∑n

i=1 Ȳ ∗
i and the shrinkage constant is

k(FM) = m�2

m�∗2 + �2
e + �2

r

= m�2

m�2 + (1 − f )�2
e + �2

r

.

Under the assumption that the within-cluster variances are identical for all clusters (and equal to �2
e), the BLUPs of

Ti (for i�n) under the three models reduce to

T̂i = Ȳ ∗ + k(model)(Ȳ ∗
i − Ȳ ∗),

where

(i) for the ME model:

k(ME) = m�2

m�2 + �2
e + �2

r

,

(ii) for the SP model:

k(SP ) = m�2 + f (�2
e + �2

r )

m�2 + �2
e + �2

r

,
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Fig. 1. Theoretical shrinkage constants for different values of unit sampling fractions, with cluster intra-class correlation coefficient �s = 0.05 and
unit intra-class correlation coefficient �t = 0.5 .

(iii) for the FM model:

k(FM) = m�2

m�∗2 + �2
e + �2

r

= m�2

m�2 + (1 − f )�2
e + �2

r

.

It follows that 0�k(ME) �k(FM) �k(SP ) �1.

Studying the behavior of these theoretical shrinkage constants is a first step to understand the similarities and
differences between the predictors, although they do not take into account the cluster sampling fraction, as the MSE
does. In Fig. 1, we compare the behavior of the theoretical shrinkage constants as f varies, for a cluster intra-class
correlation �s = 0.05 and a unit intra-class correlation2 �t = 0.5. We include the performance of the cluster mean
(CM ) for which the shrinkage constant k

(CM)
2 is always equal to 1 (dot-dashed line). The solid line identifies the

theoretical shrinkage constant for the FM model predictor while the dashed and the dotted lines identify the theoretical
shrinkage constants for the SP and ME model predictors, respectively. From Fig. 1 we observe that when f tends to 0, all
the shrinkage constants (except k(CM)) become more similar and also that they increase as the unit sampling fraction
increases.

In Fig. 2, we compare the behavior of the theoretical shrinkage constants as f, �s and �t vary. Labels are similar to
those of Fig. 1 and are omitted for visual clarity. Since the FM model predictors have smallest MSE when variance
components are known, we consider it as reference to compare the rivals and identify those with similar as well as
different (poor) performance relatively to it.

We expect minor differences between the predictors, almost independently of f, when both �s and �t tend to one. In
Fig. 2, we also observe that when f tends to 0, k(ME), k(SP ) and k(FM) become more similar (and all of them differ from
k(CM)). When there is no response error (�t =1) and all units in a cluster are sampled (f =1), k(FM)=k(SP )=k(CM)=1
(and all differ from k(ME)), so that the best predictor is the CM. When �t tends to zero, k(ME) approaches k(FM) (almost
independently of f), so that for this situation, we expect the predictors derived under these two models to behave similarly.

Relatively to the theoretical results for the FM model predictor, when both �s and �t tend to zero, we expect the CM
to have poor performance when f approaches zero, while the SP model predictor is expected to have poor performance
as f approaches one. Also, we expect the ME model predictor to have poor performance as �s tends to zero and both �t

and f tend to one.

2 We define the cluster intra-class correlation coefficient as �s =�2/(�2 +�2
e ) and the unit intra-class correlation coefficient as �t =�2

e/(�2
e +�2

r ).
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Fig. 2. Theoretical shrinkage constants for different values of intra-class correlation coefficients and unit sampling fractions.

2.5. Empirical BLUPs of the latent value of a realized PSU

In practice, variance components are usually unknown and estimates are needed for the shrinkage constants. Empirical
predictors can be obtained by substituting the shrinkage constants by their respective estimators. To estimate variance
components, Searle and Fawcett (1970) developed a rule for converting expectations of mean squares obtained under
variance components infinite population models into expectations under finite population models, but these rules
have been seldom used, due, in part, to a lack of additional theoretical results and software. As the finite population
models used in this work do not involve any assumption about the response distribution besides the existence and the
structure of the first two central moments, we use method of moments to obtain estimators for the variance components.
These estimators may be derived from ANOVA mean squares, namely MSB = (n − 1)−1∑n

i=1
∑m

j=1(Ȳ
∗
i − Ȳ ∗)2 and

MSR = [n(m − 1)]−1∑n
i=1
∑m

j=1(Y
∗
ij − Ȳ ∗

i )2 that may be expressed as quadratic forms of the type Y∗′
I AY∗

I where A

is a convenient matrix. In particular, A = (n − 1)−1(Pn ⊗ Jm/m) for MSB and A = [n(m − 1)]−1(In ⊗ Pm) for MSR,
with Pa = Ia − a−1Ja and a denotes a positive integer. Since A1nm = 0 and E(Y∗

I ) = 1nm�, under any of the three
models, it follows that E(Y∗′

I )AE(Y∗
I ) = 0 and therefore,

E(Y∗′
I AY∗

I ) = tr[var(Y∗
I )A] + E(Y∗′

I )AE(Y∗
I ) = tr[var(Y∗

I )A]. (2.8)

Using these results, we obtain estimators for the variance components under each of the three competing models, derive
estimators for the shrinkage constants and obtain the corresponding empirical predictors as described next.
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2.5.1. Empirical BLUP under the FM model
Under the FM model, we have

var(Y∗
I ) = (�2

e + �2
r )Inm + �∗2(In ⊗ Jm) − �2

N
Jnm.

To evaluate the expected value of MSR, we let A=[n(m−1)]−1(In⊗Pm) in (2.8) which implies that E(MSR)=�2
e +�2

r .
To evaluate the expected value of MSB, we let A = (n − 1)−1(Pn ⊗ Jm/m) in (2.8) which implies that

E(MSB) = m�∗2 + �2
e + �2

r = m�2 + (1 − f )�2
e + �2

r .

Assuming that the response error variance �2
r is known and equating the observed and expected mean squares, we

obtain �̂2
e + �2

r = MSR and m�̂2 = MSB − (1 − f )MSR − f �2
r . Consequently, one method of moments estimator for

k(FM) is

k̂
(FM)
1 =

⎧⎨
⎩

0 if MSB = 0,

max

(
0,

MSB−(1−f )MSR−f�2
r

MSB

)
if MSB > 0.

Re-expressing k(FM) as

k(FM) = m�2

m�∗2 + �2
e + �2

r

= m�∗2 + f �2
e

m�∗2 + �2
e + �2

r

= m�∗2 + f �t (�
2
e + �2

r )

m�∗2 + �2
e + �2

r

,

an alternative method of moments estimator may be obtained when �t is assumed known. Equating the observed and
expected mean squares, it follows that m�̂∗2 + �̂2

e + �̂2
r = MSB, �̂2

e + �̂2
r = MSR and m�̂∗2 = MSB.MSR. Then, an

alternative method of moments estimator for k(FM) is

k̂
(FM)
2 =

⎧⎨
⎩

0 if MSB = 0,

max

(
0,

MSB−(1−f�t )MSR
MSB

)
if MSB > 0.

2.5.2. Empirical BLUPs under the ME and SP models
Under the ME and SP models, we have

var(Y∗
I ) =

n⊕
i=1

(a2
i Im + b2Jm),

where a2
i = �2

i + �2
r , and b2 = �2. Using A = [n(m − 1)]−1(In ⊗ Pm) in (2.8) it follows that

E(MSR) = 1

n

n∑
i=1

a2
i .

Letting A = (n − 1)−1(Pn ⊗ Jm/m) in (2.8) it follows that

E(MSB) = 1

n

n∑
i=1

a2
i + mb2.

When within-cluster variances are equal (i.e., �2
i = �2

e for all i = 1, . . . , n), we have a2
i = �2

e + �2
r for all i = 1, . . . , n,

and the expected mean squares terms reduce to

E(MSR) = �2
e + �2

r

and

E(MSB) = �2
e + �2

r + m�2.
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In this context, equating observed and expected mean squares, we obtain

k̂(ME) = m�̂2

m�̂2 + �̂2
e + �̂2

r

=
⎧⎨
⎩

0 if MSB = 0,

max
(

0, MSB−MSR
MSB

)
if MSB > 0

for the ME model,3 and

k̂
(SP )
1 = k̂(ME) + f (1 − k̂(ME))

=
⎧⎨
⎩

f if 0�MSB�MSR,

MSB − (1 − f )MSR

MSB
if MSB > MSR

or

k̂
(SP )
2 = m�̂2 + f (�̂2

e + �̂2
r )

m�̂2 + �̂2
e + �̂2

r

=
{

f if MSB = 0,

max
(

0,
MSB−(1−f )MSR

MSB

)
if MSB > 0

for the SP model.
The empirical shrinkage constants satisfy 0� k̂(ME) � k̂

(FM)
2 � k̂

(SP )
2 �1, 0� k̂

(FM)
1 � k̂

(SP )
2 �1 and 0� k̂(ME) �

k̂
(SP )
1 �1.

3. Details of the simulation study

We conducted a simulation study to compare the MSE of the different empirical predictors in the context of a two-stage
cluster sample from a balanced finite population. The simulation study was carried out in three steps: (1) generation of the
finite population, (2) selection of two-stage cluster samples from the finite population, and (3) evaluation of predictors
and empirical predictors of the realized PSU latent values for comparative purposes. The first two steps provide a
common context where the three models have been applied. We evaluated the predictors in this context, without regard
to the prior distribution from which the finite population parameters were obtained. The results reflect what would be
expected from repeated two-stage sampling of a finite population, and do not depend on the prior distribution or other
parametric assumptions. Superpopulation model approaches have been used to evaluate competing predictors based on
simulated clustered population settings (Li and Lahiri, 2006, Pfeffermann and Nathan, 1981), but the superpopulation
models used have not simultaneously included lack of fit and response error. We base the simulation studies on the
actual physical process that underlies the sampling design and measurement. This approach accounts simultaneously
for lack of fit, response error and the two-stage sampling without additional assumptions.

3.1. Generation of the finite populations

To encompass a broad number of situations, different compositions for the finite populations were considered. They
differ with respect to: (1) the number of clusters, N and the number of units within clusters, M, (2) the shape of
the response distribution, and (3) the between-cluster variance, �2. The presence (or absence) of response error was
considered at the sampling stage.

Each population of units and clusters was generated via the percentiles of some hypothetical distribution. The basic
distributions used for the finite populations were the normal, uniform, beta, and gamma. These distributions were used
only to generate the cluster means; their actual form was not used in the analysis. Although different distributions can

3 Note that if we assume that the response error variance (�2
r ) is known, we would obtain the same estimator for the shrinkage constant, which

makes no use of this information.
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Table 1
Characteristics of the simulated populations and sampling plans

Case No. of No. of units Cluster Unit parameter No. of cluster No. of Unit No. of generated No. of cluster No. of unit No.
clusters per cluster parameter distribution intra-class intra-class populations sampling sampling Settings
N M distribution correlation correlation fractions F3 fractions f 4

coefficients: coefficients:
�s

1 �t
2

1 10 5 Normal Normal 7 8 56 3 3 504

2 10 5 Normal Normal 7 8 336 3 3 3024
Uniform
Beta(10,1)
Beta(0.5,0.5)
Gamma(0.5)
Gamma(2)

3 10 5 Normal Normal 7 8 336 3 3 3024
Uniform
Beta(10,1)
Beta(0.5,0.5)
Gamma(0.5)
Gamma(2)

4 10 20 Normal Normal 7 8 56 3 7 1176

5 50 20 Normal Normal 7 8 56 3 7 1176

1�s = 0.01, 0.05, 0.2, 0.5, 0.8, 0.95, 0.99.
2�t = 0.01, 0.05, 0.2, 0.5, 0.8, 0.95, 0.99, 1.
3F = 0.2, 0.5, 0.8.
4f = 0.4, 0.6, 0.8 or 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9.

be selected for units within clusters, we used the same distribution to generate the unit effects for all clusters in each
population. The cluster distribution may or may not agree with the distribution adopted for the units.

For each simulation, the population was composed of N clusters with M units per cluster. We represented each
individual cluster parameter by �s and their mean by �. We fixed the between-cluster parameters variance, �2, divided
the [0,1] interval into N + 1 equally spaced subintervals and obtained the percentiles corresponding to the upper limit
of each subinterval from the appropriate probability distribution. We redefined the cluster parameters by centering them
at � and re-scaling their values so that the variance matched

�2 =
N∑

s=1

(�s − �)2

N − 1
.

Next, we generated unit effects for the M units within each cluster, using percentiles of a specified distribution. The
variance of the unit effects was set constant for all clusters. Unit effects were then re-scaled to have zero mean for each
cluster and within-cluster variance equal to a specified value, �2

e . The unit parameters, yst , were formed by adding the
unit effects to the cluster mean.

Using �2, �2
e and �2

r , we defined the cluster and unit intra-class correlation coefficients. We assumed that the response
error was normally distributed for all clusters and units, with the response variance determined by specification of �t

and �2
e . Note that �t = 1 corresponds to the case with no response error.

The characteristics of the simulated populations are summarized in Table 1. Fifty-six populations were generated in
case 1, corresponding to combinations of seven cluster and eight unit intra-class correlation coefficients. In cases 2 and
3, 336 = (6 × 7 × 8) populations were generated and in cases 4 and 5, 56 = (7 × 8) populations were generated. In
total, 840 populations were evaluated.
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3.2. Two-stage cluster sampling

A simple random sample without replacement of n cluster labels obtained from a list was identified for each generated
population. The identified sample cluster labels were combined with the population data, and following a similar process,
a simple random sample without replacement of m units in each sampled cluster was selected from the labeled data.
When response error was considered, it was added to the unit parameters yst during the selection of the second-stage
samples. We refer to this entire process as a ‘trial’.

For each population generated under cases 1, 2, and 3 (Table 1), three cluster sampling fractions (F = n/N = 0.2,
0.5 and 0.8) and three unit sampling fractions (f = m/M = 0.4, 0.6 and 0.8) were considered. This resulted in nine
sampling plans for each generated population. For cases 4 and 5 (Table 1), three cluster sampling fractions (F = 0.2,
0.5 and 0.8) and seven unit sampling fractions (f = 0.1, 0.2, 0.4, 0.5, 0.6, 0.8 and 0.9) were considered, resulting in 21
sampling plans for each generated population. For each population and sampling plan, the number of trials was 10 000.
In total, 8904 different settings for population/sampling plans were simulated.

3.3. BLUPs and empirical BLUPs of the realized PSU latent values

Once the two-stage samples were obtained, we computed the predictors and empirical predictors of the realized PSU
latent values as detailed in Sections 2.4 and 2.5, respectively. When variances were considered known, the ME and SP
model predictors were obtained under the assumption that the values of �2 and �2

e corresponded to the between and
within-cluster variances, respectively. The MSE of each predictor was obtained as the mean of the squared differences
between the predictor and the true value of the realized PSU latent value. For the cases where variance components
were considered known, the observed MSE was denoted by SMSE; otherwise, the observed MSE was denoted by EMSE.
The latter correspond to the empirical predictors described in Section 2.5

4. Simulation results

To clarify the exposition, we present the results in two sections. First, we evaluate the performance of each predictor
(i.e., with known variance components) by comparing their SMSE in order to give a reference framework for the
empirical predictor results. Second, we evaluate the performance of the empirical predictors (i.e., with estimated
variance components).

Initially, we compute the relative loss in terms of EMSE with respect to SMSE that occurs when we replace the
theoretical shrinkage constants by their estimators obtained under each of the three competing models (i.e., when
using the empirical predictors). Then, we determine under what settings each empirical predictor presents the best
performance as well as under what settings they perform poorly.

To compare the (empirical) predictors we consider three criteria. First, we identify the best (empirical) predictor for
each setting as the one that presents minimum (EMSE ) SMSE.As sometimes the differences between the (EMSE ) SMSE
of two (empirical) predictors is very small, we also use the relative percent increase4 (RPI ) in (EMSE ) SMSE of each
(empirical) predictor relatively to the (EMSE ) SMSE of the best (empirical) predictor to identify settings where two
(empirical) predictors may be considered “equivalent”. We use RPI < 5% or RPI < 15% as a criterion for comparing the
predictors or the empirical predictors, respectively. Finally, we identify (empirical) predictors with poor performance
(RP I > 50%) relatively to the best (empirical) predictor.

Since initial simulation results indicated that the magnitude of the (EMSE ) SMSE is only slightly affected by changes
in the shape of the response distribution, we confine our subsequent analysis to cases 1, 4 and 5 in Table 1. A preliminary
analysis also showed that the empirical predictors for the SP model with shrinkage constant k̂(SP )

1 and for the FM model

with shrinkage constant k̂
(FM)
1 generally have lower EMSE than those for which the shrinkage constants are k̂

(SP )
2 and

k̂
(FM)
2 , respectively, so that in Sections 4.2 and 4.3 we restrict the analysis to the former. Due to space limitations, only

a few tables and figures are presented for illustration purposes; a more extensive set of tables and figures are available
at the web site (http://www.umass.edu/cluster/ed/).

4 The RPI in A relative to B is defined as RPI = A−B
B

× 100%.
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Table 2
Maximum relative percent increase (RPI) in SMSE for the CM, ME, SP and FM model predictors relatively to the SMSE of the best predictor

Population Model Maximum relative percent increase in SMSE

F = 0.2 F = 0.5 F = 0.8

N = 10, M = 5 CM 104.472 410.709 702.816
ME 36.433 62.335 68.598
SP 64.231 259.148 447.711
FM 0.026 0.009 0.003

N = 10, M = 20 CM 104.632 411.194 707.206
ME 96.093 158.565 174.631
SP 80.672 316.102 560.318
FM 0.012 0.009 0.002

N = 50, M = 20 CM 907.801 2387.214 3861.398
ME 181.850 194.393 197.749
SP 713.619 1814.274 2966.400
FM 0.003 0.001 0.001

4.1. Performance of predictors

The FM model predictor generally presents minimum SMSE. Only in a small number of settings (generally for
extreme values (0.01 or 0.99) of �s and �t ) the ME or the SP model predictors showed minimum SMSE. For these
settings, the RPI in SMSE of the FM model predictor relatively to the best predictor is at most 0.03%, which may be
justified by the variability introduced in the simulation process.

To complete the study of the performance of the different predictors, we consider a relative comparison of their
SMSE. For the sampling fractions considered here, Table 2 shows the maximum RPI in SMSE for the ME, the SP and
the FM model predictors with respect to the best predictor (generally obtained under the FM model). The FM model
predictor is at least equivalent to the best predictor in all the settings. Excluding it, the ME model predictor is closer
to the best predictor, having a lower maximum RPI in SMSE than either the CM or the SP model predictors. As the
number of clusters and the cluster sampling fraction increase, the RPI in SMSE also increases.

In Table 3, we summarize general settings (depending on the cluster and unit intra-class correlation coefficients and
overall cluster and unit sampling fractions), where the CM, the ME and the SP model predictors have similar SMSE to
that of the best predictor (generally the FM model predictor).

From Table 3 we observe that all predictors have similar performance when both intra-class correlation coefficients
are large (�s �0.95 and �t �0.5). The performance of the ME model predictor is more similar to that of the best
predictor under a wider range of conditions (i.e., �s �0.95 or �t �0.2), followed by the SP model predictor when
both intra-class correlation coefficients vary (from �s �0.5 and �t �0.8 to �s �0.99 and �t �0.05 with one correlation
coefficient increasing as the other decreases).

The predictor derived under the ME model has poor performance (i.e., RPI > 50%) when the cluster intra-class
correlation coefficient is small (�s �0.2), the unit intra-class correlation coefficient is large (�t �0.95) and the unit
sampling fraction is large (f �0.8) (see Fig. A.2 in the web site). Both the SP model predictor and the CM perform
poorly as intra-class correlation coefficients tend jointly to zero, but this happens for increasing f in the case of the SP
model predictor and for decreasing f in the case of the CM (see Figs. A.3 and A.1 in the web site). In contrast, the FM
model predictor never presents poor performance.

4.2. Performance of empirical predictors

4.2.1. Loss of efficiency due to the use of empirical predictors
To evaluate the loss of efficiency associated to the use of empirical predictors instead of those where variance

components are known, we computed the RPI of the EMSE with respect to the SMSE for each predictor. For the ME
and the FM models, the EMSE associated with the empirical predictors is always greater than the SMSE, while for the
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Table 3
Settings (depending on the intra-class correlation coefficients) where the CM, ME and SP model predictors have SMSE equivalent to that of the best
predictor (RP I < 5%)

Percent Increase in MSE relative to the best predictor. < 5% for the ME model. < 5% for the SP Model.

< 5% for the CM.

Table 4
Descriptive statistics for the relative percent increase (RPI) in EMSE relatively to SMSE for each predictor

Population Predictor Min. Q1 Mean Median Q3 Max. St. Dev.

N = 10 M = 5 ME 0.1810 10.36 28.13 23.60 38.25 114.54 24.13
SP −5.1669 1.50 10.98 5.89 14.65 64.34 14.19
FM 0.0259 6.76 24.05 21.18 34.72 80.10 20.15

N = 10 M = 20 ME 0.0384 5.81 23.01 18.51 31.55 163.34 22.57
SP −5.5243 0.70 12.83 4.51 16.36 119.45 20.07
FM 0.0017 2.63 19.97 15.69 28.77 103.27 20.23

N = 50 M = 20 ME 0.0061 0.64 20.75 9.27 25.14 197.16 30.61
SP −10.9744 0.02 9.01 0.43 5.66 154.27 23.99
FM 0.0002 0.30 16.56 4.00 19.68 141.35 25.83

SP model empirical predictor, the EMSE is greater than the SMSE in 85–96% of the settings. 5 In Table 4 we present
some descriptive statistics for the RPI of the EMSE with respect to the SMSE for each predictor (see also Fig. A.4 in
the web site for the corresponding box plots).

In general, the SP model empirical predictor presents a smaller efficiency loss than the other two empirical predictors,
showing |RPI | < 16% in 75% of the settings, followed by the FM model empirical predictor and, lastly, by the ME
model empirical predictor. These last two predictors show RPI lower than 35% and 38% in 75% of the settings,
respectively.

5 The settings where EMSE is smaller than SMSE generally correspond to situations where MSB �MSR for almost all samples. When this

happens, we may expect Ȳ ∗ to be a better predictor than Ȳ ∗
i

. Additionally, when MSB �MSR, we generally have k(SP ) � k̂
(SP )
1 , so that the

theoretical SP model predictor places more weight on Ȳ ∗
i

(and less on Ȳ ∗) than the empirical predictor, leading to the superiority of the latter.
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Table 5
Percentage of settings where each predictor presents the best (minimum EMSE ) or equivalent to the best (0 < RPI < 15%) performance

Population F Model % of cases % of cases where Total %
where each predictor each predictor is
has minimum “equivalent” to the
EMSE best (0 < RPI < 15%)

N = 10, M = 5 0.2 CM 36.31 16.07 52.38
ME 16.67 59.52 76.19
SP 17.86 55.36 73.22
FM 29.17 67.26 96.43

0.5 CM 15.48 29.76 45.24
ME 19.05 63.69 82.74
SP 38.69 19.64 58.33
FM 26.79 63.69 90.48

0.8 CM 0 44.05 44.05
ME 19.05 59.52 78.57
SP 41.07∗ 16.07 57.14
FM 41.67∗ 48.81 90.48

N = 10, M = 20 0.2 CM 46.94 14.54 61.48
ME 18.11 65.05 83.16
SP 16.07 72.19 88.26
FM 18.88 81.12 100.00

0.5 CM 14.80 40.82 55.62
ME 17.09 70.15 87.24
SP 48.47∗ 27.81 76.28
FM 20.41∗ 76.28 96.69

0.8 CM 0.51 52.30 52.81
ME 17.09 69.64 86.73
SP 51.79∗ 22.19 73.98
FM 31.89∗ 63.52 95.41

N = 50, M = 20 0.2 CM 0 49.23 49.23
ME 17.09 68.88 85.97
SP 45.66∗ 26.53 72.19
FM 38.01∗ 57.65 95.66

0.5 CM 0 45.41 45.41
ME 15.56 70.41 85.97
SP 35.97∗ 32.65 68.62
FM 50.26∗ 45.92 96.18

0.8 CM 0 45.41 45.41
ME 15.82 69.90 85.72
SP 30.10∗ 37.50 67.60
FM 56.12∗ 40.05 96.17

The worst performance for all predictors (not shown) is attained when unit-sampling fractions are small, especially
when both cluster and unit intra-class correlation coefficients decrease.An exception occurs for the ME model empirical
predictor, where this poor performance is also observed for large unit sampling fractions when �t �0.8 and for varying
values of �s depending on population and cluster sampling fractions.

4.2.2. Comparison of the EMSE
We computed the percentage of settings where each empirical predictor satisfies each of the three adopted criteria,

namely: (a) minimum EMSE, (b) “equivalence” to the best empirical predictor (i.e., RPI < 15%) and (c) poor perfor-
mance (RP I > 50%). Although these percentages depend on the selection of settings, i.e., on the specified population
sizes and sampling plans considered in this investigation, such a summary is one way to provide an overall description
of results. All the percentages are computed considering the combination of all intra-class correlation coefficients and
unit sampling fractions in the denominator, i.e., 168(=7 × 8 × 3) for the populations with N = 10 and M = 5 and
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392(=7 × 8 × 7) for the other populations (Tables 5 and 7). In some cases (identified by * in Table 5), the sums of
the percentages exceed 100% because the EMSE for the SP and FM model empirical predictors have exactly the same
minimum value. In Table 5, the boldfaced figures identify the percentage of settings for the two empirical predictors
with the best performance for each type of population and cluster-sampling fraction. The FM model empirical predictor
does not always have the best performance in terms of the minimum EMSE.

For populations with N = 10, the CM presents the minimum EMSE for small cluster sampling fractions (F = 0.2),
followed by the FM model empirical predictor. As the cluster sampling fraction increases, the FM or the SP model
empirical predictors are best. For populations with N = 50, the SP or the FM model empirical predictors also appear as
the two best ones, with the first being better for small cluster sampling fractions (F =0.2) and the second, for moderate
to large sampling fractions (F = 0.5, 0.8).

We identify certain patterns (depending on �s and �t ) where each empirical predictor can be considered equiva-
lent (in terms of EMSE ) to the best one. Table 6 summarizes these results (RP I < 15%) for all cluster and unit sampling

Table 6
Settings (depending on the intra-class correlation coefficients) where the CM, ME, SP and the FM empirical predictors have similar performance
(RP I < 15%) relatively to the predictor with minimum EMSE
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Table 6 (contd.)

Percent increase in MSE relative to best predictor. < 15% for the FM model predictor. < 15% for the SP model

predictor. < 15% for the ME model predictor. < 15% for the CM.

Table 7
Poor performance of each empirical predictor

Population F Model % of cases where
each predictor has
poor performance
relative to the best
(RP I > 50%)

Maximum RPI (%)

N = 10, M = 5 0.2 CM 5.95 67.76
ME 4.17 79.55

0.5 CM 43.45 273.50
ME 5.95 192.82
SP 26.19 177.11

0.8 CM 47.02 473.70
ME 6.55 245.37
SP 32.14 305.84

N = 10, M = 20 0.2 CM 5.10 53.68
ME 4.34 165.14

0.5 CM 35.46 225.10
ME 4.85 468.41
SP 10.97 186.19

0.8 CM 38.27 392.25
ME 5.36 608.48
SP 14.29 321.28

N = 50, M = 20 0.2 CM 39.29 500.27
ME 5.61 574.51
SP 14.54 414.36

0.5 CM 41.58 1284.02
ME 6.63 718.50
SP 18.62 1046.82

0.8 CM 42.35 2038.30
ME 6.89 780.11
SP 20.15 1676.37
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fractions, but these regions may be extended for specific numbers and sizes of clusters and cluster or unit sampling
fractions.6

Independently of the population characteristics and sampling fractions, the FM model empirical predictor is the best
or equivalent to the best in a larger number of settings (90–100%) than any competitor (see Table 5).

As in the case of known variances, both the CM and the empirical predictor derived under the SP model have poor
performance (RP I > 50%) in many settings (up to 47% and 32%, respectively), followed by the ME empirical predictor
(up to 7%). These results may be visualized in Table 7.

In particular, the empirical predictors derived under the ME model show a poor performance when the cluster intra-
class correlation coefficient is small (�s �0.5), the unit intra-class correlation coefficient is large (�t �0.8) and the unit
sampling fraction is large (f �0.6). For these empirical predictors, the maximum overall RPI is 780%. The SP model
empirical predictor and the CM perform poorly as the intra-class correlation coefficients tend jointly to zero, but this
happens for increasing f in the case of the SP model empirical predictor and for decreasing f in the case of the CM.
The RPI reaches an overall maximum value of 1676% for the SP model empirical predictors and 2038% for the CM.
In contrast, the FM model empirical predictor never has such a poor performance. This suggests that, in practice, this
empirical predictor is more robust (in the sense of not having very bad performance) than its competitors.

5. Discussion

The FM model empirical predictor shows a more stable performance than its competitors, being the best or equivalent
to the best empirical predictor in 90–100% of the settings; furthermore, it never exhibits a poor performance. The
response distributions under consideration have almost no effect on the values of the MSE.

In the absence of response error and when all the units in each sampled cluster are observed, both the SP and the
FM model empirical predictors reproduce the cluster mean, while the ME model empirical predictor does not. This
highlights the focus of the ME model on predicting a conceptual latent value where the observed portion (the PSU
sample data) has an insignificant contribution to the predictor since PSUs are assumed to contain infinite units.

The superiority of the SP model empirical predictor under some of the settings considered in this investigation may be
attributed to a smaller loss in efficiency for the empirical SP predictor than for the empirical FM predictor. Nevertheless,
the performance of the empirical predictor obtained under the FM model improves as the number of clusters and the
cluster sampling fraction increase, becoming the best over a wider range of settings.

We based the simulation studies on the actual physical process that underlies sampling design and measurement.
This approach accounts simultaneously for lack of fit, response error and the two-stage sampling. Our conclusions are
restricted to the case of identical within-cluster variances. We anticipate that the results presented here would be similar
to results from simulation studies based on an extended superpopulation model that includes lack of fit and response
error.

Another study considering different within-cluster variances is in progress and preliminary results are consistent
with the present conclusions. Keeping the limitations of simulation studies in mind, our results point in the direction of
recommending the FM model empirical predictor against its competitors in a variety of settings. Further developments
to obtain the MSE (or some approximation) for the empirical predictors under the FM model are required for practical
applications.
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