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THE PARALLEL DERIVATIVE

Glaucio Terra

Abstract

This paper concerns the definition and applications of the parallel
derivative of a differentiable fiber bundle morphism between differentiable
vector bundles endowed with connections. This is a dual concept to the
well known fiber derivative of such morphisms, and the combined use of
both fiber and parallel derivatives has proven to be a powerful tool to
make coordinate-free computations.

1 Introduction

The aim of this paper is to introduce the “parallel derivative” of a differentiable
fiber bundle morphism between vector bundles endowed with connections. This
is a dual concept to the so-called “fiber derivative” of such morphisms. In [9],
[8] and [7], the combined use of both derivatives was proven to be a powerful
technique to make computations in a coordinate free manner.

The organization of the paper is the following: in section 2 we introduce
some definitions and notation. In section 3 we define the parallel derivative
and prove a theorem relating higher order fiber/parallel derivatives of a differ-
entiable fiber bundle morphism between differentiable vector bundles endowed
with connections to the curvature tensors of these connections. Finally, in sec-
tion 4, we present some applications showing how these derivatives can be used

to make intrinsic calculations.

2 Basic notations and definitions

In this section we set up some notation and basic definitions.

Keywords. Parallel derivative, fiber derivative, connections on vector bundles.
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We denote by M a smooth connected paracompact finite-dimensional man-
ifold; TM is the tangent bundle of M, and T*M its cotangent bundle, and we
denote by v : TM — M, 73, : T*"M — M the corresponding projections. The
trivial vector bundle over M with fiber F is denoted by Fy. By “differentiable”
or “smooth” we mean C'*°. The set of differentiable functions on M, differen-
tiable vector fields on M and differentiable forms on M are denoted by §(M),
X(M) and Q(M), respectively. If 75 : E — M is a smooth vector bundle, we
denote by Og (or simply 0) the zero section of E, i.e. 0g = {0, : p € M}, where
0, is the zero vector of E, = ng[p], p € M. The set of smooth sections of
g B — M is denoted by I'*°(E).

In the sequel, we recall some notions regarding the geometry of tangent
bundle TE of a smooth vector bundle E over M (see, for example, [4], [3], [6],
2], [5], [1]), which we shall use later on.

Given a smooth vector bundle 7z : E — M, the vertical lift \¥ is the smooth

vector bundle morphism (where 7 is the projection on the first factor):

)\E
EowE TE
T O TE
B E

such that, for all ¢ € M, u,v € E,, AP(u,v) is the image of v by the natural
isomorphism E, — T,(E,) of the fiber E, of mp : E — M over ¢ with its tangent
space at u, that is, \f(u,v) = L~ (u+tv).

t |i=o0
The image of A is the vertical sub-bundle Ver(E) = ker Trg of the tangent
bundle of E. Since A¥ is a monomorphism, it is an isomorphism of smooth vector

—

bundles onto Ver(E); we denote by k% : Ver(E) — E @y E the inverse of \¥,
and by kY, : Ver(E) — E the composite 73 o /:;g, where 75 is the projection on
the second factor. Besides, for v, € E, we call A7 = A\(v,,-) : E, — Ver,, (E)
the vertical lift at v, where Ver,, (E) is the fiber of Ver(E) over v,.

An affine connection (or, simply, a connection) on 7 : TE — M is a smooth
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vector sub-bundle Hor(E) of TE satisfying the following conditions:

(V1) TE = Hor(E) ®g Ver(E), i.e. Hor(E) is a horizontal vector sub-bundle
of TE;

(V2) for all s € R and all v, € E, Tp® - Hor,, () = Horg,, (E), where Hor,, (E)
denotes the fiber of Hor(E) over v, and p® : E — E is defined by v, — svj,.

We denote by Py : TE — Ver(E) and Py : TE — Hor(E) the projections
induced by the Whitney sum decomposition in (V1).

The condition (V2) means that the horizontal sub-bundle Hor(FE) is invari-
ant by Tu®, for all s € R. So is the vertical bundle Ver(FE), since p* : E — FE
preserves fibers. It then follows that Tu® commutes with the projections Py
and Py.

As Ver(E) = Ker Trg, condition (V1) implies that the restriction of the
vector bundle epimorphism Trng : TE — TM to the horizontal sub-bundle
Hor(FE) is an epimorphism of smooth vector bundles whose restrictions to to the
fibers are linear isomorphisms, i.e. Trg : Hor, — T,M is a linear isomorphism
for all v, € E. Given v, € E, we designate by H,, : T,M — Hor, (E) the
inverse of Trg : Hor, (E) — T4M, called the horizontal lift at vy. For all ¢ € M,
s €R, vy € By and 24 € T,M, we have Tp® - H,, (24) = Hy, (24)-

A connection on 7p : ' — M defines a smooth vector bundle epimorphism:

TE—"  E@uE

TE 1

E

E

idg

given by kg = mgoPV. We denote by kg the composite myokyp : TE — E; kg is
called the connector of the connection Hor(E). The restriction of the connector

to the vertical sub-bundle is independent of the connection, since it coincides
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with the inverse of the vertical lift. Note that, for all v, € £ and X,,, € T, E:
Xy, = Hy (T - X)) + Ao, (ke - Xo,).

Given z, € TM, the connection Hor(E) defines a map VZ : I°(E) — E,,
by VEX = kg -TX - 2. This map is a derivation, ie. for all f € F(M)
and all X € I'™(F), qufX = f(q)quX + 24[f] X (q). We can then define a
map V7 1 X(M) x T®(E) — T(E), by (V§Y)(q) = V§,)Y € E,, for all
q € M. Then V¥ is F(M)-linear on the first factor, and a derivation on the
second. Reciprocally, given a map VE : X(M) x I*(E) — I'*°(FE) which is
§(M)-linear on the first factor and a derivation on the second, there exists a
unique connection Hor(FE) which induces V#. The map V¥ is also called a
connection.

Given a curve v : I — M defined on the interval I C R, we define the
covariant derivative VE along ~, induced by the connection, by V& : X €
I'*(y*E) — kg - % € I'°(y*E), where v*E denotes the pull back vector
bundle.

Given a curve v on M, t, € dom v and v € E,q,), there exists a unique
section X € I'®°(y*E) such that X(tg) = v and VEX = 0; X is said to be
obtained by parallel translation of v along v, and we use the notation (Vt €
dom v) X (t) = 7, ,(v). Besides, given ¢; € dom v, the map 7, , : Eyu,) —
E,1,) defined by v — 7} ; (v) is a linear isomorphism. Using parallel translation,

we can compute the horizontal lift at v, € E by, for all z, € T,M, H, (2,) =

T

2 . ; ith T —
T oo To+(Vg), where v : (—¢,¢) — M is a curve on M with 51~ = z,.

dt o=

A connection on the smooth manifold M is a connectionlvo on its tangent
bundle 7y : TM — M. Such a connection defines a spray S € X(TM), by
S(vq) = H,, (vg) - the so-called geodesic spray induced by the connection V.
The geodesics of (M, V) are the base integral curves (i.e. the projections on
M of its integral curves) of the second order vector field S, that is to say, the
curves v on M which satisfy Vt% =0.

Given a connection Hor(E) on the smooth vector bundle 7p : £ — M,

the curvature tensor R¥ : X(M) x X(M) x I'*(E) — T'*°(E), induced by the
connection, is defined by R(X,Y) - Z = VEVE¢L — VEVELE — V&’Y}f, for all
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X, Y € X(M),§ € I'°(F). The connection is said to be flat if its curvature
tensor R” vanishes identically. For a connection V on a smooth manifold M,
we also define its torsion tensor T : X(M) x X(M) — X(M) by T(X,Y) =
VxY — Vy X — [X,Y]. Such a connection is called symmetric or torsionless if
its torsion tensor vanishes identically.

Finally, given n € N, there exists a flat connection naturally defined on the
trivial vector bundle R},: for each (¢,v) € R}, = M x R, we have a canonical
linear isomorphism T, /Ry = T, M@ R", and the second factor of this direct
sum can be naturally identified with the vertical subspace at (g,v). We then

define the horizontal subspace Hor (4. (Rfy) as the first factor of this direct sum.

3 The Parallel Derivative

Let g : E — M and 7p : I — N be smooth vector bundles over M and N,
respectively, and let b : E — F be a morphism of smooth fiber bundles (i.e.
it preserves fibers and is smooth, but it needs not be linear on the fibers) over
b: M — N. We denote by Fb: E — L(E, b*F) the fiber derivative (see [1]) of b,
that is to say, the morphism of smooth fiber bundles defined by, for all w, € E,,
Fb(vy) - wy = K - Tb- Ay, (wy) € Fypy-

Let 7y : E — M and 7r : F — N be vector bundles endowed with connec-
tions Hor(F) and Hor(F), respectively. We now define the parallel derivative
of b':

Definition 1. The differentiable fiber bundle morphism Pb : E — L(TM, b*F)

defined by, for all v, € E and all z, € T,M:

Pb(vg) - 24 = kp - Tb- Hy, (2) € Fy,
15 called the parallel derivative of b.

Roughly speaking, the usefulness of the fiber and parallel derivatives con-

sists in providing a coordinate-free technique to compute the tangent map of b,

!this definition was suggested in [9], [8], [7].
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allowing its computation at a given element of TE in terms of its vertical and
horizontal components. That is to say, for all X, € TE, the following formulae
hold:

Trp-Th-X,, =Tb-Trg - X,,
kp-Tb- Xy, =Fb(vg) - kg - Xy, + Pb(vg) - Trg - X,

Therefore, given a curve 7 on M and X € I'°(y*E), we have:

Ty

VEbo X)=Fb(X)-VEX +Pb(X) - o

Note that the connection V¥ induces a connection V¥ in the pull back
b*F; for all z, € TM and X € T(b*F), we define VXXX = kp - TX -2, € Fy .
Besides, if mg : G — M is another differentiable vector bundle over M, endowed
with a connection V&, we define a connection on the differentiable vector bundle
L(E,G) — M in the following way: for all A € T*(L(E,G)), Z € X(M) and
X eT2(E), (V37YA) - X = VE{A(X)} — A(VEX) e T>(G).

Let us now fix a connection V on M. We then have connections defined on
the smooth vector bundles L(E, b*F) and L(TM, b*F), naturally induced by the
connections on E and F' and by the connection on M. Through the use of these
connections, we can consider the fiber and parallel derivatives of the morphisms
Fb: E — L(E,b0*F) and Pb : E — L(TM, b*F), obtaining the following differen-

tiable fiber bundle morphisms:

FFb: E — L(E,L(E,b'F)) = L(E® E,b*F)

PFb: E — L(TM,L(E,b'F)) =L(TM® E,b*F)
FPb: E — L(E,L(TM,b"F)) = L(E® TM,b*F)
PPb: E — L(TM,L(TM,5"F)) = L(TM ® TM, b*F)

The relation of these morphisms to each other and to the curvature tensors

of the chosen connections is given by the following theorem:
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Theorem A. Using the notation above, let R¥ and R be the curvature tensors
of the connections on E and F, respectively, and T the torsion tensor of the

connection on M. Then the following formulae hold:
(1) For all g € M, vy, wy, 2, € Ey:

F2b(”q) (W, 2) = sz(vq) (245 wyq)

(ii) For all g € M, vy, w, € E,, z, € T,M:

FPb(v,) - (wg, 24) = PFb(v,) - (24, wy)

(i1i) For allq e M, v, € E,, wg, 2z, € T,M:
sz(vq) : (wq, Zq) = P%(Uq) : (anwq) + Fb(”q) : RE(anwq> “ Vgt
+ Pb(vq) : T(an wq) + RF(TB * Wy, Tbh- Zq) : b(vq)

Proof. (i) Given ¢ € M, v,,w,, 2, € E,, by definition we have Fb(v,) - z, =
4 b(vg + tzg) and F2b(v,) - (24, wq) = (F(Fb)(vy) - 2) - wy. That is:

dt 1o

F2b(v,) - (24, W,) = %ho (Fb(vy + tzg)) - wy =
= %lt—o (Fb(vg + tzg) - wy) =
— % . % - b(vg + tw, + sz,) =
- % L R e
=F£(vg) - (wy, 29)

(ii) Let ¢ € M, v, w, € E, and z, € T,M. By definition: (1) Pb(v,) - z, =
Vflszob(\/(s)), where V' is the parallel transport in E of v, along a curve 7, :
(—€,€) — M tangent to z, at 0 (i.e. - o Ve = z,) and (2) FPb(v,) - (wy, 24) =

(F(Pb)(vg) - wg) « 2 = (L, Pblvg + twy)) - 2 = 4 o (Pb(vy + twy) - z4) =

dt |19
F
Vzt|t:0

and a curve t — X (t) on Ey, then the derivative 4 X coincides with the covari-

(Pb(vq + tw,) - zq). In the last equality we have used that, given ¢ € M

ant derivative VEX | considering X as a section of £ along the constant curve
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t — q on M. To compute Pb(v, + tw,) - 24, let V : (=7, 7) x (—€,€) — E such
that V(t, ) is the parallel translation of (v, +tw,) along v, , for each t € (-7, 7).
Then Pb(v, + tw,) - 2 V5|8 ob(V(t,s)), so that:

pr(vq) : (wq,zq) vzt|t ovs\s 0b<v(t>5)) =
- v5|s Ovt|t 0b(V(t, S)) + RF(O7 TE ' Z(I) ’ b(UQ)J =

[

-~

VE o {Fb(V(0,5)) - VE_V (1, 5)+
—l—IP’b(V(Qs)) . %| vzq(s)} =
t:OZO

= PFb(vg) - (2, wq) + Fb(vy) - Vs|s Ovt|t oV (t, 5)1

=RE(24,0)-v4=0

Hence, FPb(v,) - (wq, 24) = PFb(v,) - (24, w,), as asserted.

(iii) Let ¢ € M, v, € E, and w,, 2z, € T,M. By definition, P?b(v,) - (wy, z,) =

(P(Pb wg) - 4. To compute P(Pb)(v,) - wg, let vy, : (=7, 7) — M such that

zt o Yy = Wy and V/(t) the parallel translation on E of v, along 7,,. Then
L(TM,b* F)

P(Pb) (vy)w, = VLo " P(V (1)), hence P2b(v,)- (w,, ) = (Vi iy Bb(V (2)))-

2. Let Z(t) be the parallel translation on TM of z, along 7,,,. By the definition
of the induced connection on L(TM,b*F), we have Vt|t o(Bb(V (1)) - Z(1)) =
(Vi lo POV (1)) - 24+ Bb(v,) - VIM Z(t) = (Vi Bb(V (£))) - 2, since
Z is parallel. On the other hand, to compute Po(V'(t)) - Z(t), let I" : (—7,7) X
(—€,€) — M be such that g‘ ['(t,s) = Z(t) for each t € (—7,7), and
Vi (—=7,7) x (—€,€) — E such that V(t,-) is the parallel translation of V()
along I'(t,-) for each t € (—7,7). Then Po(V(t)) - Z(t) = VS‘S DLV (t,5)), so

that:
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P?b(vy) - (wq, z4) = vﬁt_o{l%(v ®)-Z(t)} =

t\t O{Vs\s 0 (V t,S )} =
s‘s O{Vt‘t B (V (t,s) )}+RF Th- wq,Tb 24) - b(v,) =
s\s O{Fb( ) t\t OV t 8)

+Pb(V(0,s)) - dzt ) I(ts)}+ RE(Th - wg, Th- z,) - b(vy) =

= F?b(v,) - (0,0) + PFb(v,) - (24,0) + Fb(v,) - R¥ (24, wy) - vg+

T

I'(t
s|s Odt|t . (,S)—|—

(2,
+ P20(vy) - (24, w,) +Pb(vg) - V
+ RE(Thb - wy, Th- 2,) - b(v,)

But VS‘S Odt‘ F( s) = V;"—Lv'ogs o L(t,s)+T (24, wy) = Vﬂt 0 Z+T (24, wq) =
T(z4, wy) (since Z is parallel). We have then obtained P?b(v,) - (wg, z,) =
P2b(vg)- (24, we) +FD(vg) RF (24, wg) g +Pb(vg) T (24, wq)+RF(Tl~7'wq> TE'Zq)'b(Uq)a

as asserted.

4 Examples and Applications

In this section we present two examples of how the fiber and parallel derivatives
can be used to make intrinsic computations. Firstly, we compute a formula for
the Lie bracket of vector fields on the total space of a smooth vector bundle, and
we use this formula to reobtain a well known characterization of flat connections.
Secondly, we reobtain a well known formula for the canonical symplectic form in
the tangent bundle of a Riemannian manifold in terms of vertical and horizontal
components of tangent vectors. The reader is referred to [7], [9] and [8] for other

examples and applications.

4.1 The Lie Bracket of Vector Fields on a Vector Bundle

As an application of theorem A, given a smooth vector bundle 7 : E — M
over M, endowed with a connection Hor(E), we obtain a formula for the Lie
bracket of two vector fields X,Y € X(FE) in terms of its horizontal and vertical

components.
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Firstly, given f € §(FE), let us consider the differentiable fiber bundle mor-
phism ]7: E — Ry given by f(vq) = (q, f(q)), and let Hor(Ry) be the trivial

connection on Ry. Then, given v, € F and X, € T,E, we have:

df (vg) - X, = kg - To f - Xoy = Ff(vg) - 6 - Xy + PF(vg) - T - X,

We shall omit henceforth the “~” in this notation, tacitly identifying f with

f, and we make use of this formula to calculate df.

Proposition 1. Using the notation above, for all X,Y € X(E) and v, € E, we

have:

ke [ X,Y]|(vy) =F(kpoY)(vy) - kg - X(vg) + P(kp o Y)(v,) - Tmg - X(vy)—

—F(kpoX)(vy) - kg - Y (vg) —P(kg o X)(vg) - Trg - Y (vy)+
+ R (Trg - Y(vy), Trp - X (vy)) - vg

Trg - [X,Y|(vy) =F(TrngoY)(v,) - kg - X(vy) + P(TrgoY)(v,) - Trg - X(vy)—
—F(TrgoX)(v,) - kg - Y (vy) —P(Trgo X)(v,) - Trg - Y(v,)

Proof. We consider a torsionless connection on M to compute P2. Given

feF(E), g€ Mand v, € E,, we have Y (v,)[f] = df (vy) - Y (v,) =Ff(v,) - kg -

Y (vy) + Pf(vy) - Trg - Y(v,). Then, for all vy, w, € Ey:

F(Yf])(vg) - wg = % o {Ff(vg + twy) - kg o Y (v, + tw,)+

+Pf(vg+twy) - Trg oY (v, +tw,)} =
= FQf(Uq) : (wq’ KE - Y(Uq)) + Ff(vq) F(kgo Y)(Uq) CWqt
+FPf(vq) - (wq’ Trg - Y(Uq)) +Pf(vg) - F(Trp oY) (vy) - w,

Tvwg

and, for all v, € E,, w, € T(M, taking 7, : (—¢, €) — Msuch that — ey = Wq
and V parallel translation on E of v, along v,,:
d
PYLf])(vg) - wq = d {Ff(V)-kpoY(V)+Pf(V) - TagoY(V)} =
t=0

= PFf(”q) : (qu Kg - Y(”q)) + Ff(vq) ‘P(kp o Y)(”q) “Wqt
+ P2 f(v,) - (wq> Trp - Y(“q)) +Pf(vg) - P(Trp oY )(vy) - wy
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Hence, for all v, € E, we have:

[X, Y(0g)[f] = X (0g) [Y[f]] = Y (vg) [ X[f]] =
=FY[f)(vg) - 5 - X(vg) + PY[f])(vg) - Trp - X(vg)—
FX[fD)(vg) - & Y(Uq) —P(X[fD)(vg) - Trg - Y (vg) =
=TF*f(vy) - (ke X(vg), ke Y (vg)) +Ff(vg)  Flip oY) (vg) - ki - X(vg)+
) -
) -

+FPf(v, ( ( ) Trg - Y(“q)) + Pf(vq) F(Trgo Y)(Uq) (Uq +

(
+PFf(vy) - (Trg - X(vg), 6 - Y (v9)) + Ff(vg) - P(p oY) (vy) - Trp - X (vg)+
+P2f(vy) - (Tmg - X (vy), TWE-Y(U )) +Pfvg) P(TrgoY)(v,) Trg - X (vg)—
—{F*f(vg) - (kg - Y (vy), & vg)) + Ff(vg) - Frg o X)(vg) - ke - Y (vg)+
+FPf(vg) - (k- Y (vg), T - < 2) +Pf(vg) - F(Trpo X)(vg) - k- Y (vy)

+PFf(vy) - (Trp - Y (v,), k- X (vg)) +Ff(vy) - Plkip o X)(vg) - Trg - Y (vg)+

+P?f(vg) - (Trg - Y (vg), Trg - X (vg)) +Pf (vg) - P(Trp o X)((U)q) Trg - Y (vg) }
1

)
)
_l’_

On the other hand:

(X Y](0g)[fT = Ff(vg) - k- [ X, Y(vg) + Pf(vg) - Trp - [X, Y](vg)  (2)

Thus, by theorem A (note that Hor(Ry) is flat) and by the arbitrariness of
f € (M), the proposition follows comparing equations (1) and (2).

As a corollary, we reobtain the following well known characterization of flat

connections:

Corollary 1. With the same notation, the horizontal sub-bundle Hor(E) is
completely integrable if, and only if, the connection Hor(F) is flat.

Proof. Indeed, given X,Y € Fw(Hor(E)), we have kpo X = kgoY = 0;
consequently, it follows from proposition 1 that, (V v, € E) ke - [X,Y](v,) =
RE(Trg - Y (vy), Trg - X(vg)) - vg. Hence, if the connection is flat, then kg o
[X,Y] =0,i.e. Hor(F)isinvolutive. The same formula shows that, reciprocally,

if Hor(E) is involutive, i.e. if kg o [X,Y] =0 for all X,Y € I'°(Hor(E)), then
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R = 0, by the arbitrariness v, € F, X,Y € '™ (Hor(E)) and by the fact that

T7E|Hor,, (1) : Hory, (E) — TyM is a linear isomorphism.

4.2 The Symplectic Form on the Tangent Bundle of (M, g)

Let (M, g) be a Riemannian manifold. We denote by wq the canonical symplectic
form of the cotangent bundle of M, and by wty its pull back by the Legendre
transformation g’ : TM — T*M, g’(v,) = (v,,-). Let us consider on T*M
the connection induced by the Levi-Civita connection of (M, g). With respect
to these connections, the tangent map of the Legendre transformation, Tg” :
TTM — T*T*M, is a smooth vector bundle isomorphism which preserves the
horizontal and vertical sub-bundles, i.e. Tg’ - Hor(TM) = Hor(T*M) and Tg’ -
Ver(TM) = Ver(T*M). It then follows that g’ is natural with respect to the
connectors, i.e. k1m0 T8 = g’ o kM. We can then use the following corollary

of proposition 1 to compute wg and wrm:
Corollary 2. Using the notation above, we have:
(i) For allp, € T*M, X,,.,Y,, € T, (T*M):

wO(XPtN}/Pq) = <TTT*M ’ XPq’ kTem - }/pq> - <TTT*M ) )/17117 Ktem qu>

(ii) For allvy € TM, X, .Y, € T, (TM):

wrm( X, Yo,) = (Trrm - Xoy, 57m - Ya,) — (Trrm - Yoo i - Xoy,)

Proof. We need to show only part (i), since part (ii) is an immediate conse-
quence of the formula from part (i) and of the following remarks: (1) wrm(X,,,Ys,) =
(&) wo(Xy,, Ye,) = wo(Tg - Xy, Tg” - Ya,), (2) kom0 Tg® = g o kitm and
Trremo Tg® = Trrm.

Let 8y be the canonical 1-form of the cotangent bundle of M, and X,Y €
X(T*M) such that X (p,) = X,,, Y (pg) = Yp,. We have:

WO(qu, }/Pq) = _dQO(XPq’ )/Pq) =

3)
= =X, [(00, V)] + Y3, [{60, X)] + (0o(pq) [ X, Y](pg)) (
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In order to calculate X,, [(6o, Y)], note that (V W, € T, (T*M)) (6o(pq), Wp,)
= (pg, TTr=m - Wp,). A direct computation then shows that F{(0y,Y)}(p,) -
KoM - Xpy = (K1em - Xpy, TT1em - Yy,) + (P, F(T7rem 0 Y) (D) - K1em - X)) and
P{(0o,Y ) }(pg) - TTrem - Xp, = 0g: P(TTrem 0 Y)(pg) - TTrem - Xp,). Thus:

X, [(00,Y)] = F{(00,Y) }(pg) - k1em - Xp, + P{(00,Y)}(0g) - TTrem - X, =
= (h1em - Xpys TTrem - Yp,) + (0 F(Trrem oY) (pg) - K1em - Xy, )+

+ (Pg, P(Trrem 0 Y) (0g) - Trem - Xop,)
(4)

On the other hand, it follows from proposition 1 that:
(00(pq), [X,Y](pg)) = (pg, F(TTrem 0 Y)(pg) - KoM - Xp,+
+P(Trr=m o Y)(pg) - Trrem - Xp, ) —
— (g, F(T7rem © X)(pg) - £7em - Yy, +
+ P(Trrem 0 X)(pg) - Trrem - Yp,)
Substituting equations (4) and (5) in (3), the thesis follows.
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