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THE PARALLEL DERIVATIVE

Gláucio Terra

Abstract

This paper concerns the definition and applications of the parallel

derivative of a differentiable fiber bundle morphism between differentiable
vector bundles endowed with connections. This is a dual concept to the
well known fiber derivative of such morphisms, and the combined use of
both fiber and parallel derivatives has proven to be a powerful tool to
make coordinate-free computations.

1 Introduction

The aim of this paper is to introduce the “parallel derivative” of a differentiable

fiber bundle morphism between vector bundles endowed with connections. This

is a dual concept to the so-called “fiber derivative” of such morphisms. In [9],

[8] and [7], the combined use of both derivatives was proven to be a powerful

technique to make computations in a coordinate free manner.

The organization of the paper is the following: in section 2 we introduce

some definitions and notation. In section 3 we define the parallel derivative

and prove a theorem relating higher order fiber/parallel derivatives of a differ-

entiable fiber bundle morphism between differentiable vector bundles endowed

with connections to the curvature tensors of these connections. Finally, in sec-

tion 4, we present some applications showing how these derivatives can be used

to make intrinsic calculations.

2 Basic notations and definitions

In this section we set up some notation and basic definitions.

Keywords. Parallel derivative, fiber derivative, connections on vector bundles.
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We denote by M a smooth connected paracompact finite-dimensional man-

ifold; TM is the tangent bundle of M, and T∗M its cotangent bundle, and we

denote by τM : TM → M, τ ∗
M

: T∗M → M the corresponding projections. The

trivial vector bundle over M with fiber F is denoted by FM. By “differentiable”

or “smooth” we mean C∞. The set of differentiable functions on M, differen-

tiable vector fields on M and differentiable forms on M are denoted by F(M),

X(M) and Ω(M), respectively. If πE : E → M is a smooth vector bundle, we

denote by 0E (or simply 0) the zero section of E, i.e. 0E = {0p : p ∈ M}, where

0p is the zero vector of Ep = π−1
E [p], p ∈ M. The set of smooth sections of

πE : E → M is denoted by Γ∞(E).

In the sequel, we recall some notions regarding the geometry of tangent

bundle TE of a smooth vector bundle E over M (see, for example, [4], [3], [6],

[2], [5], [1]), which we shall use later on.

Given a smooth vector bundle πE : E → M, the vertical lift λE is the smooth

vector bundle morphism (where π1 is the projection on the first factor):

E ⊕M E

�

λE
//

π1

��

TE

τE

��

E
idE

// E

such that, for all q ∈ M, u, v ∈ Eq, λE(u, v) is the image of v by the natural

isomorphism Eq → Tu(Eq) of the fiber Eq of πE : E → M over q with its tangent

space at u, that is, λE(u, v) = T
dt |t=0

(u + tv).

The image of λE is the vertical sub-bundle Ver(E) = ker TπE of the tangent

bundle of E. Since λE is a monomorphism, it is an isomorphism of smooth vector

bundles onto Ver(E); we denote by κ̃V
E : Ver(E) → E ⊕M E the inverse of λE,

and by κV
E : Ver(E) → E the composite π2 ◦ κ̃V

E , where π2 is the projection on

the second factor. Besides, for vq ∈ E, we call λE
vq

.
= λE(vq, ·) : Eq → Vervq

(E)

the vertical lift at vq, where Vervq
(E) is the fiber of Ver(E) over vq.

An affine connection (or, simply, a connection) on πE : TE → M is a smooth
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vector sub-bundle Hor(E) of TE satisfying the following conditions:

(∇1) TE = Hor(E)⊕E Ver(E), i.e. Hor(E) is a horizontal vector sub-bundle

of TE;

(∇2) for all s ∈ R and all vq ∈ E, Tµs ·Horvq
(E) = Horsvq

(E), where Horvq
(E)

denotes the fiber of Hor(E) over vq and µs : E → E is defined by vq 7→ svq.

We denote by PV : TE → Ver(E) and PH : TE → Hor(E) the projections

induced by the Whitney sum decomposition in (∇1).

The condition (∇2) means that the horizontal sub-bundle Hor(E) is invari-

ant by Tµs, for all s ∈ R. So is the vertical bundle Ver(E), since µs : E → E

preserves fibers. It then follows that Tµs commutes with the projections PV

and PH .

As Ver(E) = Ker TπE, condition (∇1) implies that the restriction of the

vector bundle epimorphism TπE : TE → TM to the horizontal sub-bundle

Hor(E) is an epimorphism of smooth vector bundles whose restrictions to to the

fibers are linear isomorphisms, i.e. TπE : Horvq
→ TqM is a linear isomorphism

for all vq ∈ E. Given vq ∈ E, we designate by Hvq
: TqM → Horvq

(E) the

inverse of TπE : Horvq
(E) → TqM, called the horizontal lift at vq. For all q ∈ M,

s ∈ R, vq ∈ Eq and zq ∈ TqM, we have Tµs · Hvq
(zq) = Hsvq

(zq).

A connection on πE : E → M defines a smooth vector bundle epimorphism:

TE

�

κ̃E
//

τE

��

E ⊕M E

π1

��

E
idE

// E

given by κ̃E
.
= κ̃V

E ◦PV . We denote by κE the composite π2◦ κ̃E : TE → E; κE is

called the connector of the connection Hor(E). The restriction of the connector

to the vertical sub-bundle is independent of the connection, since it coincides
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with the inverse of the vertical lift. Note that, for all vq ∈ E and Xvq
∈ Tvq

E:

Xvq
= Hvq

(TπE · Xvq
) + λvq

(κE · Xvq
).

Given zq ∈ TM, the connection Hor(E) defines a map ∇E
zq

: Γ∞(E) → Eq,

by ∇E
zq

X
.
= κE · TX · zq. This map is a derivation, i.e. for all f ∈ F(M)

and all X ∈ Γ∞(E), ∇E
zq

fX = f(q)∇E
zq

X + zq[f ]X(q). We can then define a

map ∇E : X(M) × Γ∞(E) → Γ∞(E), by
(
∇E

XY
)
(q)

.
= ∇E

X(q)Y ∈ Eq, for all

q ∈ M. Then ∇E is F(M)-linear on the first factor, and a derivation on the

second. Reciprocally, given a map ∇E : X(M) × Γ∞(E) → Γ∞(E) which is

F(M)-linear on the first factor and a derivation on the second, there exists a

unique connection Hor(E) which induces ∇E. The map ∇E is also called a

connection.

Given a curve γ : I → M defined on the interval I ⊂ R, we define the

covariant derivative ∇E
t along γ, induced by the connection, by ∇E

t : X ∈

Γ∞(γ∗E) 7→ κE · TX
dt

∈ Γ∞(γ∗E), where γ∗E denotes the pull back vector

bundle.

Given a curve γ on M, t0 ∈ dom γ and v ∈ Eγ(t0), there exists a unique

section X ∈ Γ∞(γ∗E) such that X(t0) = v and ∇E
t X ≡ 0; X is said to be

obtained by parallel translation of v along γ, and we use the notation
(
∀ t ∈

dom γ
)
X(t) = τ

γ
t0,t(v). Besides, given t1 ∈ dom γ, the map τ

γ
t0,t1 : Eγ(t0) →

Eγ(t1) defined by v 7→ τ
γ
t0 ,t1(v) is a linear isomorphism. Using parallel translation,

we can compute the horizontal lift at vq ∈ E by, for all zq ∈ TqM, Hvq
(zq) =

T
dt |t=0

τ
γ
0,t(vq), where γ : (−ε, ε) → M is a curve on M with Tγ

dt |t=0

= zq.

A connection on the smooth manifold M is a connection ∇ on its tangent

bundle τM : TM → M. Such a connection defines a spray S ∈ X(TM), by

S(vq) = Hvq
(vq) - the so-called geodesic spray induced by the connection ∇.

The geodesics of (M,∇) are the base integral curves (i.e. the projections on

M of its integral curves) of the second order vector field S, that is to say, the

curves γ on M which satisfy ∇t
Tγ
dt

= 0.

Given a connection Hor(E) on the smooth vector bundle πE : E → M,

the curvature tensor RE : X(M) × X(M) × Γ∞(E) → Γ∞(E), induced by the

connection, is defined by R(X, Y ) · Z
.
= ∇E

X∇
E
Y ξ − ∇E

Y ∇
E
Xξ − ∇E

[X,Y ]ξ, for all
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X, Y ∈ X(M), ξ ∈ Γ∞(E). The connection is said to be flat if its curvature

tensor RE vanishes identically. For a connection ∇ on a smooth manifold M,

we also define its torsion tensor T : X(M) × X(M) → X(M) by T(X, Y ) =

∇XY −∇Y X − [X, Y ]. Such a connection is called symmetric or torsionless if

its torsion tensor vanishes identically.

Finally, given n ∈ N, there exists a flat connection naturally defined on the

trivial vector bundle R
n
M

: for each (q, v) ∈ R
n
M

= M × R, we have a canonical

linear isomorphism T(q,v)R
n
M

≡ TqM⊕R
n, and the second factor of this direct

sum can be naturally identified with the vertical subspace at (q, v). We then

define the horizontal subspace Hor(q,v)(R
n
M

) as the first factor of this direct sum.

3 The Parallel Derivative

Let πE : E → M and πF : F → N be smooth vector bundles over M and N,

respectively, and let b : E → F be a morphism of smooth fiber bundles (i.e.

it preserves fibers and is smooth, but it needs not be linear on the fibers) over

b̃ : M → N. We denote by Fb : E → L(E, b̃∗F ) the fiber derivative (see [1]) of b,

that is to say, the morphism of smooth fiber bundles defined by, for all wq ∈ Eq,

Fb(vq) · wq
.
= κV

F · Tb · λvq
(wq) ∈ Fb̃(q).

Let πE : E → M and πF : F → N be vector bundles endowed with connec-

tions Hor(E) and Hor(F ), respectively. We now define the parallel derivative

of b1:

Definition 1. The differentiable fiber bundle morphism Pb : E → L(TM, b̃∗F )

defined by, for all vq ∈ E and all zq ∈ TqM:

Pb(vq) · zq
.
= κF · Tb · Hvq

(zq) ∈ Fb̃(q)

is called the parallel derivative of b.

Roughly speaking, the usefulness of the fiber and parallel derivatives con-

sists in providing a coordinate-free technique to compute the tangent map of b,

1this definition was suggested in [9], [8], [7].
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allowing its computation at a given element of TE in terms of its vertical and

horizontal components. That is to say, for all Xvq
∈ TE, the following formulae

hold:

TπF · Tb · Xvq
= Tb̃ · TπE · Xvq

κF · Tb · Xvq
= Fb(vq) · κE · Xvq

+ Pb(vq) · TπE · Xvq
.

Therefore, given a curve γ on M and X ∈ Γ∞(γ∗E), we have:

∇F
t (b ◦ X) = Fb(X) · ∇E

t X + Pb(X) ·
Tγ

dt

Note that the connection ∇F induces a connection ∇b̃∗F in the pull back

b̃∗F ; for all zq ∈ TM and X ∈ Γ∞(b̃∗F ), we define ∇b̃∗F
zq

X
.
= κF ·TX · zq ∈ Fb̃(q).

Besides, if πG : G → M is another differentiable vector bundle over M, endowed

with a connection ∇G, we define a connection on the differentiable vector bundle

L(E, G) → M in the following way: for all A ∈ Γ∞
(
L(E, G)

)
, Z ∈ X(M) and

X ∈ Γ∞(E),
(
∇

L(E,G)
Z A

)
· X

.
= ∇G

Z{A(X)} − A
(
∇E

ZX
)
∈ Γ∞(G).

Let us now fix a connection ∇ on M. We then have connections defined on

the smooth vector bundles L(E, b̃∗F ) and L(TM, b̃∗F ), naturally induced by the

connections on E and F and by the connection on M. Through the use of these

connections, we can consider the fiber and parallel derivatives of the morphisms

Fb : E → L(E, b̃∗F ) and Pb : E → L(TM, b̃∗F ), obtaining the following differen-

tiable fiber bundle morphisms:

FFb : E → L
(
E, L(E, b̃∗F )

)
≡ L(E ⊗ E, b̃∗F )

PFb : E → L
(
TM, L(E, b̃∗F )

)
≡ L(TM ⊗ E, b̃∗F )

FPb : E → L
(
E, L(TM, b̃∗F )

)
≡ L(E ⊗ TM, b̃∗F )

PPb : E → L
(
TM, L(TM, b̃∗F )

)
≡ L(TM ⊗ TM, b̃∗F )

The relation of these morphisms to each other and to the curvature tensors

of the chosen connections is given by the following theorem:



THE PARALLEL DERIVATIVE 163

Theorem A. Using the notation above, let RE and RF be the curvature tensors

of the connections on E and F , respectively, and T the torsion tensor of the

connection on M. Then the following formulae hold:

(i) For all q ∈ M, vq, wq, zq ∈ Eq:

F
2b(vq) · (wq, zq) = F

2b(vq) · (zq, wq)

(ii) For all q ∈ M, vq, wq ∈ Eq, zq ∈ TqM:

FPb(vq) · (wq, zq) = PFb(vq) · (zq, wq)

(iii) For all q ∈ M, vq ∈ Eq, wq, zq ∈ TqM:

P
2b(vq) · (wq, zq) = P

2b(vq) · (zq, wq) + Fb(vq) · R
E(zq, wq) · vq+

+ Pb(vq) · T(zq, wq) + RF (Tb̃ · wq, Tb̃ · zq) · b(vq)

Proof. (i) Given q ∈ M, vq, wq, zq ∈ Eq, by definition we have Fb(vq) · zq =

d
dt |t=0

b(vq + tzq) and F
2b(vq) · (zq, wq) =

(
F(Fb)(vq) · zq

)
· wq. That is:

F
2b(vq) · (zq, wq) =

d

dt |t=0

(
Fb(vq + tzq)

)
· wq =

=
d

dt |t=0

(
Fb(vq + tzq) · wq

)
=

=
d

dt |t=0

d

ds |s=0

b(vq + twq + szq) =

=
d

ds |s=0

d

dt |t=0

b(vq + twq + szq) =

= F
2f(vq) · (wq, zq)

(ii) Let q ∈ M, vq, wq ∈ Eq and zq ∈ TqM. By definition: (1) Pb(vq) · zq =

∇F
s|s=0b

(
V (s)

)
, where V is the parallel transport in E of vq along a curve γzq

:

(−ε, ε) → M tangent to zq at 0 (i.e. T
ds |s=0

γzq
= zq) and (2) FPb(vq) · (wq, zq) =

(
F(Pb)(vq) · wq

)
· zq =

(
d
dt |t=0

Pb(vq + twq)
)
· zq = d

dt |t=0

(
Pb(vq + twq) · zq

)
=

∇F
t|t=0

(
Pb(vq + twq) · zq

)
. In the last equality we have used that, given q ∈ M

and a curve t 7→ X(t) on Eq, then the derivative d
dt

X coincides with the covari-

ant derivative ∇E
t X, considering X as a section of E along the constant curve
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t 7→ q on M. To compute Pb(vq + twq) · zq, let V : (−τ, τ) × (−ε, ε) → E such

that V (t, ·) is the parallel translation of (vq+twq) along γzq
, for each t ∈ (−τ, τ).

Then Pb(vq + twq) · zq = ∇F
s|s=0b

(
V (t, s)

)
, so that:

FPb(vq) · (wq, zq) = ∇F
t|t=0∇

F
s|s=0b

(
V (t, s)

)
=

= ∇F
s|s=0∇

F
t|t=0b

(
V (t, s)

)
+ RF (0, Tb̃ · zq) · b(vq)︸ ︷︷ ︸

=0

=

= ∇F
s|s=0

{
Fb

(
V (0, s)

)
· ∇E

t|t=0V (t, s)+

+ Pb
(
V (0, s)

)
·

T

dt |t=0

γzq
(s)

︸ ︷︷ ︸
=0

}
=

= PFb(vq) · (zq, wq) + Fb(vq) · ∇
E
s|s=0∇

E
t|t=0V (t, s)

︸ ︷︷ ︸
=RE(zq ,0)·vq=0

Hence, FPb(vq) · (wq, zq) = PFb(vq) · (zq, wq), as asserted.

(iii) Let q ∈ M, vq ∈ Eq and wq, zq ∈ TqM. By definition, P
2b(vq) · (wq, zq) =

(
P(Pb)(vq) ·wq

)
· zq. To compute P(Pb)(vq) ·wq, let γwq

: (−τ, τ) → M such that

T
dt |t=0

γwq
= wq and V (t) the parallel translation on E of vq along γwq

. Then

P(Pb)(vq)·wq = ∇
L(TM,b∗F )
t|t=0 Pb(V (t)), hence P

2b(vq)·(wq, zq) =
(
∇

L(TM,b∗F )
t|t=0 Pb(V (t))

)
·

zq. Let Z(t) be the parallel translation on TM of zq along γwq
. By the definition

of the induced connection on L(TM, b∗F ), we have ∇F
t|t=0

(
Pb(V (t)) · Z(t)

)
=

(
∇

L(TM,b∗F )
t|t=0 Pb(V (t))

)
· zq + Pb(vq) · ∇

TM

t|t=0Z(t) =
(
∇

L(TM,b∗F )
t|t=0 Pb(V (t))

)
· zq, since

Z is parallel. On the other hand, to compute Pb(V (t)) · Z(t), let Γ : (−τ, τ) ×

(−ε, ε) → M be such that T
ds |s=0

Γ(t, s) = Z(t) for each t ∈ (−τ, τ), and

V : (−τ, τ) × (−ε, ε) → E such that V (t, ·) is the parallel translation of V (t)

along Γ(t, ·) for each t ∈ (−τ, τ). Then Pb(V (t)) · Z(t) = ∇F
s|s=0b(V (t, s)), so

that:
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P
2b(vq) · (wq, zq) = ∇F

t|t=0

{
Pb

(
V (t)

)
· Z(t)

}
=

= ∇F
t|t=0

{
∇F

s|s=0b
(
V (t, s)

)}
=

= ∇F
s|s=0

{
∇F

t|t=0b
(
V (t, s)

)}
+ RF (Tb̃ · wq, Tb̃ · zq) · b(vq) =

= ∇F
s|s=0

{
Fb

(
V (0, s)

)
· ∇E

t|t=0V (t, s)+

+ Pb
(
V (0, s)

)
·

T

dt |t=0

Γ(t, s)
}

+ RF (Tb̃ · wq, Tb̃ · zq) · b(vq) =

= F
2b(vq) · (0, 0) + PFb(vq) · (zq, 0) + Fb(vq) · R

E(zq, wq) · vq+

+ P
2b(vq) · (zq, wq) + Pb(vq) · ∇

TM

s|s=0

T

dt |t=0

Γ(t, s)+

+ RF (Tb̃ · wq, Tb̃ · zq) · b(vq)

But ∇TM

s|s=0
T
dt |t=0

Γ(t, s) = ∇TM

t|t=0
T
ds |s=0

Γ(t, s)+T(zq, wq) = ∇TM

t|t=0Z+T(zq, wq) =

T(zq, wq) (since Z is parallel). We have then obtained P
2b(vq) · (wq, zq) =

P
2b(vq)·(zq, wq)+Fb(vq)·R

E(zq, wq)·vq+Pb(vq)·T(zq, wq)+RF (Tb̃·wq, Tb̃·zq)·b(vq),

as asserted.

4 Examples and Applications

In this section we present two examples of how the fiber and parallel derivatives

can be used to make intrinsic computations. Firstly, we compute a formula for

the Lie bracket of vector fields on the total space of a smooth vector bundle, and

we use this formula to reobtain a well known characterization of flat connections.

Secondly, we reobtain a well known formula for the canonical symplectic form in

the tangent bundle of a Riemannian manifold in terms of vertical and horizontal

components of tangent vectors. The reader is referred to [7], [9] and [8] for other

examples and applications.

4.1 The Lie Bracket of Vector Fields on a Vector Bundle

As an application of theorem A, given a smooth vector bundle πE : E → M

over M, endowed with a connection Hor(E), we obtain a formula for the Lie

bracket of two vector fields X, Y ∈ X(E) in terms of its horizontal and vertical

components.
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Firstly, given f ∈ F(E), let us consider the differentiable fiber bundle mor-

phism f̃ : E → RM given by f̃(vq)
.
=

(
q, f(q)

)
, and let Hor(RM) be the trivial

connection on RM. Then, given vq ∈ E and Xvq
∈ TqE, we have:

df(vq) · Xvq
= κRM

· Tvq
f̃ · Xvq

= Ff̃(vq) · κE · Xvq
+ Pf̃(vq) · TπE · Xvq

.

We shall omit henceforth the “∼” in this notation, tacitly identifying f with

f̃ , and we make use of this formula to calculate df .

Proposition 1. Using the notation above, for all X, Y ∈ X(E) and vq ∈ E, we

have:

κE · [X, Y ](vq) = F(κE ◦ Y )(vq) · κE · X(vq) + P(κE ◦ Y )(vq) · TπE · X(vq)−

− F(κE ◦ X)(vq) · κE · Y (vq) − P(κE ◦ X)(vq) · TπE · Y (vq)+

+ RE
(
TπE · Y (vq), TπE · X(vq)

)
· vq

TπE · [X, Y ](vq) = F(TπE ◦ Y )(vq) · κE · X(vq) + P(TπE ◦ Y )(vq) · TπE · X(vq)−

− F(TπE ◦ X)(vq) · κE · Y (vq) − P(TπE ◦ X)(vq) · TπE · Y (vq)

Proof. We consider a torsionless connection on M to compute P
2. Given

f ∈ F(E), q ∈ M and vq ∈ Eq, we have Y (vq)[f ] = df(vq) · Y (vq) = Ff(vq) · κE ·

Y (vq) + Pf(vq) · TπE · Y (vq). Then, for all vq, wq ∈ Eq:

F(Y [f ])(vq) · wq =
d

dt |t=0

{Ff(vq + twq) · κE ◦ Y (vq + twq)+

+ Pf(vq + twq) · TπE ◦ Y (vq + twq)} =

= F
2f(vq) ·

(
wq, κE · Y (vq)

)
+ Ff(vq) · F(κE ◦ Y )(vq) · wq+

+ FPf(vq) ·
(
wq, TπE · Y (vq)

)
+ Pf(vq) · F(TπE ◦ Y )(vq) · wq

and, for all vq ∈ Eq, wq ∈ TqM, taking γwq
: (−ε, ε) → M such that

Tγwq

dt |t=0

= wq

and V parallel translation on E of vq along γwq
:

P(Y [f ])(vq) · wq =
d

dt |t=0

{Ff(V ) · κE ◦ Y (V ) + Pf(V ) · TπE ◦ Y (V )} =

= PFf(vq) ·
(
wq, κE · Y (vq)

)
+ Ff(vq) · P(κE ◦ Y )(vq) · wq+

+ P
2f(vq) ·

(
wq, TπE · Y (vq)

)
+ Pf(vq) · P(TπE ◦ Y )(vq) · wq
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Hence, for all vq ∈ E, we have:

[X, Y ](vq)[f ] = X(vq)[Y [f ]] − Y (vq)[X[f ]] =

= F(Y [f ])(vq) · κE · X(vq) + P(Y [f ])(vq) · TπE · X(vq)−

− F(X[f ])(vq) · κE · Y (vq) − P(X[f ])(vq) · TπE · Y (vq) =

= F
2f(vq) ·

(
κE · X(vq), κE · Y (vq)

)
+ Ff(vq) · F(κE ◦ Y )(vq) · κE · X(vq)+

+ FPf(vq) ·
(
κE · X(vq), TπE · Y (vq)

)
+ Pf(vq) · F(TπE ◦ Y )(vq) · κE · X(vq)+

+ PFf(vq) ·
(
TπE · X(vq), κE · Y (vq)

)
+ Ff(vq) · P(κE ◦ Y )(vq) · TπE · X(vq)+

+ P
2f(vq) ·

(
TπE · X(vq), TπE · Y (vq)

)
+ Pf(vq) · P(TπE ◦ Y )(vq) · TπE · X(vq)−

−
{
F

2f(vq) ·
(
κE · Y (vq), κE · X(vq)

)
+ Ff(vq) · F(κE ◦ X)(vq) · κE · Y (vq)+

+ FPf(vq) ·
(
κE · Y (vq), TπE · X(vq)

)
+ Pf(vq) · F(TπE ◦ X)(vq) · κE · Y (vq)+

+ PFf(vq) ·
(
TπE · Y (vq), κE · X(vq)

)
+ Ff(vq) · P(κE ◦ X)(vq) · TπE · Y (vq)+

+ P
2f(vq) ·

(
TπE · Y (vq), TπE · X(vq)

)
+ Pf(vq) · P(TπE ◦ X)(vq) · TπE · Y (vq)

}

(1)

On the other hand:

[X, Y ](vq)[f ] = Ff(vq) · κE · [X, Y ](vq) + Pf(vq) · TπE · [X, Y ](vq) (2)

Thus, by theorem A (note that Hor(RM) is flat) and by the arbitrariness of

f ∈ F(M), the proposition follows comparing equations (1) and (2).

As a corollary, we reobtain the following well known characterization of flat

connections:

Corollary 1. With the same notation, the horizontal sub-bundle Hor(E) is

completely integrable if, and only if, the connection Hor(E) is flat.

Proof. Indeed, given X, Y ∈ Γ∞
(
Hor(E)

)
, we have κE ◦ X = κE ◦ Y = 0;

consequently, it follows from proposition 1 that,
(
∀ vq ∈ E

)
κE · [X, Y ](vq) =

RE
(
TπE · Y (vq), TπE · X(vq)

)
· vq. Hence, if the connection is flat, then κE ◦

[X, Y ] ≡ 0, i.e. Hor(E) is involutive. The same formula shows that, reciprocally,

if Hor(E) is involutive, i.e. if κE ◦ [X, Y ] ≡ 0 for all X, Y ∈ Γ∞
(
Hor(E)

)
, then
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RE ≡ 0, by the arbitrariness vq ∈ E, X, Y ∈ Γ∞
(
Hor(E)

)
and by the fact that

TπE|Horvq (E) : Horvq
(E) → TqM is a linear isomorphism.

4.2 The Symplectic Form on the Tangent Bundle of (M, g)

Let (M, g) be a Riemannian manifold. We denote by ω0 the canonical symplectic

form of the cotangent bundle of M, and by ωTM its pull back by the Legendre

transformation g[ : TM → T∗M, g[(vq)
.
= 〈vq, ·〉. Let us consider on T∗M

the connection induced by the Levi-Civita connection of (M, g). With respect

to these connections, the tangent map of the Legendre transformation, Tg[ :

TTM → T∗T∗M, is a smooth vector bundle isomorphism which preserves the

horizontal and vertical sub-bundles, i.e. Tg[ · Hor(TM) = Hor(T∗M) and Tg[ ·

Ver(TM) = Ver(T∗M). It then follows that g[ is natural with respect to the

connectors, i.e. κT∗M ◦ Tg[ = g[ ◦ κTM. We can then use the following corollary

of proposition 1 to compute ω0 and ωTM:

Corollary 2. Using the notation above, we have:

(i) For all pq ∈ T∗M, Xpq
, Ypq

∈ Tpq
(T∗M):

ω0(Xpq
, Ypq

) = 〈TτT∗M · Xpq
, κT∗M · Ypq

〉 − 〈TτT∗M · Ypq
, κT∗M · Xpq

〉

(ii) For all vq ∈ TM, Xvq
, Yvq

∈ Tvq
(TM):

ωTM(Xvq
, Yvq

) = 〈TτTM · Xvq
, κTM · Yvq

〉 − 〈TτTM · Yvq
, κTM · Xvq

〉

Proof. We need to show only part (i), since part (ii) is an immediate conse-

quence of the formula from part (i) and of the following remarks: (1) ωTM(Xvq
, Yvq

) =

(g[)
∗
ω0(Xvq

, Yvq
) = ω0(Tg[ · Xvq

, Tg[ · Yvq
), (2) κT∗M ◦ Tg[ = g[ ◦ κTM and

TτT∗M ◦ Tg[ = TτTM.

Let θ0 be the canonical 1-form of the cotangent bundle of M, and X, Y ∈

X(T∗M) such that X(pq) = Xpq
, Y (pq) = Ypq

. We have:

ω0(Xpq
, Ypq

) = −dθ0(Xpq
, Ypq

) =

= −Xpq
[〈θ0, Y 〉] + Ypq

[〈θ0, X〉] + 〈θ0(pq), [X, Y ](pq)〉
(3)
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In order to calculate Xpq
[〈θ0, Y 〉], note that

(
∀Wpq

∈ Tpq
(T∗M)

)
〈θ0(pq), Wpq

〉

= 〈pq, TτT∗M · Wpq
〉. A direct computation then shows that F{〈θ0, Y 〉}(pq) ·

κT∗M · Xpq
= 〈κT∗M · Xpq

, TτT∗M · Ypq
〉 + 〈pq, F(TτT∗M ◦ Y )(pq) · κT∗M · Xpq

〉 and

P{〈θ0, Y 〉}(pq) · TτT∗M · Xpq
= 〈pq, P(TτT∗M ◦ Y )(pq) · TτT∗M · Xpq

〉. Thus:

Xpq
[〈θ0, Y 〉] = F{〈θ0, Y 〉}(pq) · κT∗M · Xpq

+ P{〈θ0, Y 〉}(pq) · TτT∗M · Xpq
=

= 〈κT∗M · Xpq
, TτT∗M · Ypq

〉 + 〈pq, F(TτT∗M ◦ Y )(pq) · κT∗M · Xpq
〉+

+ 〈pq, P(TτT∗M ◦ Y )(pq) · TτT∗M · Xpq
〉

(4)

On the other hand, it follows from proposition 1 that:

〈θ0(pq), [X, Y ](pq)〉 = 〈pq, F(TτT∗M ◦ Y )(pq) · κT∗M · Xpq
+

+ P(TτT∗M ◦ Y )(pq) · TτT∗M · Xpq
〉−

− 〈pq, F(TτT∗M ◦ X)(pq) · κT∗M · Ypq
+

+ P(TτT∗M ◦ X)(pq) · TτT∗M · Ypq
〉

(5)

Substituting equations (4) and (5) in (3), the thesis follows.
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[7] Terra, G., Sistemas Mecânicos e Lagrangeanos com Vı́nculos não-Lineares,
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