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FOLIATIONS BY PLANES IN THE COMPLEMENT OF A
COMPACT SET

J. L. ARRAUT AND C. BIASI

ABSTRACT. Let N be a closed orientable n-manifold, n > 3, and K a compact
non-empty subset such that w1 (N \ K) is finitely generated. We prove that
the existence of a transversally orientable cod.l foliation on N\ K with l=aves
homeomorphic to R™~! in the relative topology, implies that K mus: be
connected. If in addition one imposes some restrictions on the homology - f K.
then N must be a homotopy sphere. An application to Lie group actions is
also given.

RESUMO. Seja N uma variedade diferenciavel orientavel e fechada de dimensao
n > 3 ¢ K um subconjunto compacto nao vazio tal que 7 (N \ K) é finitamente
gerado. Proba-se que a existencia de uma folheacdo transversalmente oricntavel de
codimensdo um de N \ K com folhas homeomorfas a R™"~1, na topologia relativa,
implica que K tem que ser conexa. Se ademés se impoem algumas restricoes na
homologia de K, obtem-se que IV tem que ser uma esfera homotopica. Tambem se
d4 uma aplicacdo a agdes de grupos de Lie difeomorfos a R" 1.

1. INTRODUCTION

A codimension one C? foliation defined on a n-manifold such that all leaves are
diffeomorphic to R"~! is called a foliation by planes. Two foliated manifolds (V, F)
and (V', F') are said to be conjugated if there exists a homeomorphism i : V — V'
that takes leaves of F onto leaves of F'. Several authors have studied foliation by
planes. The common idea behind these studies is that very few manifolds admit
such foliations. In [4], Rosenberg and Sondow proved that the torus T3 is the
only closed 3-manifold which admits a foliation by planes. Let M be a compact
3-manifold whose boundary is a union of tori. A foliation of M tangent to the
boundary and such that the interior leaves are planes is called a Reeb foliation. In
[5], Rosenberg and Roussarie proved that if M admits a C? Reeb foliation, then M
is diffeomorphic either to S x D? or to [0, 1] x 2. In [3], Palmeira studied foliations
by planes on open manifolds. Among others, he proved:

Theorem 1.1. (/3] page 125) If V is an orientable open n-manifold, n > 3, which
has finitely generated fundamental group and with a transversally orientable C? foli-
ation by closed planes F, then there exists an orientable surface ¥ and an orientable
one dimensional foliation Fo of ¥ such that (V,F) is conjugated by a diffeomor-
phism to (£ x R"™2, Fo x R"~2). The leaves of the foliation Fo X R"~2 are of the
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form Ly % R 2, where Ly € Fo. When V is simply connccled il is nol necessary
lo assume that the leaves are closed and besides the surfacc ¥ is precisely R2.

In this paper we shall make extensive use of Palmeira’s theorem to study foli-
ations by planes on a closed manifold N minus a compact subset K. The results
obtained apply to the case of a singular foliation on N defined by a C? integrable
one form in which all regular leaves are planes that cluster in /', where K is the
union of all singular leaves. The conclusions that we obtain point in the same di-
rection that the former results i.e., that very few closed manifolds admit singular
foliations by planes. Here, we prove the following propositions:

Proposition 1.2. Let V" be an open orientable manifold of dimension n > 3 and
K a compact subset such that m(V \ K ) is finilely generated. If there exists a
transversally orientable foliation by planes of V' \ K such thal each leaf is closed,
then K = (.

Proposition 1.3. Let N be a closed connected and orientable n-manifold, with
n >3, and K a compact non-empty subset such that m, (N \K) is finitely generated.
If there egists a transversally orientable foliation by planes of N\ K such that each
leaf is closed, then K is connected.

Example 1.1. Consider the singular foliation of S? whose regular leaves arc the
meridians and the singular ones are the poles Py and P, and form the product
S2x[0,1]. Nezt, identify (x,1) with (¢(z),0), where 1 S2 — 52 is a rotation, that
fix the poles, of an angle o such that the numbers {a,2m} are linearly independent
as elements of the vector field R over the rationals. In this way one obtains a
foliation by planes of N = 5% x S' with a singular sct K = (P} x S'U{P:} x S!
which is not connected. Notice that here the regular leaves are not closed in N\ K
instead they are dense in N.

Due to Proposition 1.3 there is no lost of generality if one assumes, in the next
two theorems, that K is connected.

Theorem 1.4. Let N be a closed connected and orientable n-manifold, withn > 3,
and K C N a non-emply compact and connected ANR such that m(N\ K) is
finitely generated. Assume that Hp(K;Z) =0, for each 0 <p < [B]. If there egists
a transversally orientable foliation by planes on N\K such that each leaf is closed,
then N is a homology sphere.

Theorem 1.5. Let N and K be as in Theorem 1.4 and assume, besides, that
H" %2(K) = 0 and thal dimgopK < 1 — 2. Then N is a homotopy sphere for
n = 3 and homeomorphic to S™ if n > 4.

Corollary 1.6. Let N be a closed connected and orientable n-manifold, withn > 3,
and K a compact non-empty subset with dimyopK = 0 and such that m(N\ K) is
finitely generated. If there exists a transversally orientable foliation by planes on
N\ K such that each leaf is closed, then

i) K contains only one point,

ii) N is homeomorphic to S™.

Example 1.2. If (21,2, ..., %) are the coordinates of a point in R™, then the form

dz,, defines a foliation by closed planes of R® = S™\{oo}. The form e~ da,, where
r? = 22 4 23 + ... + 22, defines a foliation by planes of S™ with {oo} as the only
singular leave.



FOLIATION BY PLANES 3

Now. let GG denote a Lie group diffeomorphic to R"~'. For n — 1 = 2 there are
two such Lie groups: R? and A? the connected component of the identity of the
group of affine transformations of R. Given an action of G on .\ a point p is said to
be a singular point of the action if the orbit of p has topological dimension strictly
less than (n — 1). l

Theorem 1.7. Let N be a closed connected orientable n-manifold, n = 3 ., with
7y (N) finite and G a Lie group diffeomorphic to R"~! acting in class C* on N.
Assume that the sel K of singular points of the aclion is a non-cmpty finile subsel.
Then

i) I contains only one point,

i) N is homeomorphic to S™.

Example 1.3. Let S = {x € R*™' |22 + . +a22., = 1}, FF = (0...,0,1),
R" = {x € R"*! | znyy =0} and P : S"\F — R" the projection using I as focus.
The vector fields P;19/0x; , 1 < j <n—1, defined on S™\F extend to C° veclor
fields X on S™ and clearly any two of them commute. They define an action of
R"1 on S™ where all orbits are planes that cluster in the stationary point .

Notice that in Theorem 1.7 we did not assume neither that the leaves were planes
nor that they were closed in N\K. On the other hand we imposed that 71(/N) be
finite. It would be interesting to decide if this assumption is really necessary.

Theorem 1.8. Let N be a closed connected an orientable 3-manifold and K a
circle. Suppose that there exists a transversally orientable foliation by planes of
N\ K such that each leaf is closed, then N admits a Heegaard diagram of genus
one and thus w1 (N) is a cyclic group. Thus

i) If 71 (N) = 0, then N is homeomorphic to 88,

i) if m(N) = Z, then N is homeomorphic to S1 x §2,

Example 1.4. Consider the following three foliations on St x D?, the compact
solid torus. Using (¢,(x,y)) as coordinates put wy = d¢ and wg = q*" (—y dz+x dy),
where q : S* x D? — D? is the projection. The leaves of the foliation Fi, defined
by wy, are the disks {¢} x D?. The regular leaves of Fa, defined by we, are of the
form S* x {ray}, and the singular leaf is the ceniral circle K =S U x {0}. Fs is
obtained from Fy by turbulaizing the disks along the central circle. Now consider a
copy of the solid torus with the foliation F, and another copy with Fy and identify
their boundaries through the map that sends meridians onto parallels. One obtains
a foliation by closed planes of S3\ K. If one uses Fy on one copy and F3 on the
other and identify them with the identity map of the boundary, then one oblains a
foliation by closed planes of S* x S*\ K.

It should be remarked that we only considered foliations by planes on N\ K
such that each plane was closed. The analogous questions without this assumption
remain open.

2. PROOF OF THE RESULTS

In this section we give the proof of the statements that appear in the introduction
with the exception of Proposition 1.2 whose proof is very similar to that of Propo-
sition 1.3. We start with a lemma that translates Theorem 1.1 into homological
information on N \ K.
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Lemma 2.1. Let N be a closed connecled and orientadle n-manifold. n. > 3. and
K a compact non-empty subset such that N\ K is connected and m (N \ K) is
finitely generated. If there exists a transversally orientable foliation by planes of
N\ K such that each leaf is closed, then H,(N \ K) =0 for eachp > 2.

Proof. N\ K is a connected orientable n-manifold with a finitely generated funda-
mental group and with a transversally orientable foliation .7 by closed planes. By
Theorem 1.1 there exists an orientable connected surface ¥ and an orientable one
dimensional foliation Fy of S such that (N\K, F) is conjugated by a diffeomorphism
to (L x R""2, Fy x R""2). In particular, N \ K and ¥ have the same homotopy
tvpe and thus H,(N \ K) 2 H,(E) for each p. X can only be an open surface or the
torus S' x S!. Since the leaves of Fy must be homeomorphic to R, it follows that
¥ can not be the torus. Thus ¥ is an open surface and H,(N \ K) = H,(X) = 0,
for each p > 2.

Proof of Proposition 1.3. Consider the exact sequence of singular homology
groups with coefficients in Z

(2.1) — Hp1(N,N\K) - Hy(N\ K) — H,(N) — Hy,(N,N\ K) —

and of the isomorphisms

(2.2) H (N, N\ K)=H" F{K)

for each 0 < p Svn, given by the Alexander-Poincaré duality. The cohomology we

use for K is the Cech cohomology. Replacing Hn, (N, N\ K) by H°(K) in the exact
sequence 2.1 and using Lemma 2.1 one obtains the short exact sequence

0—Z— H'(K)—0
Thus, H°(K) = Z and consequently, K is connected.

Proof of Theorem 1.4. Consider the singular homology sequence of the pair
(N, K) with coefficients in Z

(2.3) — Hy(K) — Hy(N) — Hy(N,K) — Hyp_1(K) —

and also the singular homology and cohomology groups of N\ K. Since K is
an ARN (absolute neighborhood retract) we have, by duality, the isomorphisms
H,(N,K) = H" ?(N\ K) for each p > 0. Notice that By Lemma 2.1 Hy(N\K) =
0, for each p > 2, and therefore HP(N \ K ) =0, too. Write
(2.4) H,(N)=F,®T, and H?(N)=F,® T,
where F' denotes the free part and 7' the torsion part. From 2.3 and duality we
have

— H,(K) — Hp(N) — H" P(N\K)—
By assumption Hp(K) =0 foreach 1 <p < [5]. and since n —p > 2, we know that
H™" P(N \ K) = 0, too. The sequence above looks 0 — H,(N) — 0 and therefore
H,(N) =0, for each 1 < p < [§]. By Poincaré duality H"~P(N) = 0. Using this
information in 2.4 one obtains that H,(N) =0 for each 1 <p <n— 1L

Proof of Theorem 1.5. We already know, from Theorem 1.4, that NV is a
homology sphere. By a theorem of Hurewicz, it is enough to prove that m1(N) = 0.
The exact sequence 2.1 for p = 1, after using that H" 2(K) = 0and that HY(N)=



FOLIATION BY PLANES 5

0 gives H'(N \ K) = H(Z) = 0. Thus X is diffeomorphic to R? and by Theorem
1.1 that N \ K is diffeomorphic to R™ and therefore that (N \ K) = 0. Finally,
since dimgop(K) < n—2and N is a Cantor manifold, it follows from ([4], page
93), that thee map 1 (N \ K) — m1(V) induced by the inclusion is surjective and
consequently 71(IN) = 0, as we wanted. That N is homeomorphic to S™ follows
from celebrated theorems of Freedman [1], 7 = 4, and Smale (8], n > 5.

Proof of Corollary 1.6. By Proposition 1.3 K is connected and since dimopK =
0, it follows that K reduces to a point. By Theorem 1.5 N is a homotopy sphere
and therefore homeomorphic to S™, for n > 4. For n = 3 the fact that K is a point
and N \ K is homeomophic to R3 implies that IV is homeomorphic to 58,

Proof of Theorem 1.7. We know that m1(/N\K) is isomorphic to m1(/N) and
therefore finite. Denote by G the regular codimension one C2-foliation on N\K
defined by the orbits of the action and let L be any leaf of G. Fix a point p € L
and consider the map j, : T1(L,p) — T1(N\K, p). We are going to show that j.
is injective. Proposition 3.10 in [1] says that a codimension one C!-foliation of a
manifold defined by a locally free action of a Lie group has no vanishing cycle. But
Theorem 3.3, in the same book, guarantees that if j, were not injective, then g
would have a vanishing cycle. Thus, it is injective, and consequently 71(L,p) is
finite. Since L is the injective image of G/Gp and dim(L) = n — 1, it follows that
G, is a discrete subgroup of G. Therefore A, : G — L is a covering map and
m1(L,p) is isomorphic to Gp. From x(Gp) > 0and 1 =x(G) = x(Gp) x xX(G/Gp),
it follows that x(Gp) = 1, i.e., G, = {e}. Thus, L is obtained from an injective
immersion of R*~!. It follows from a now classical argument by Haefliguer, see (3],
that every leaf of G is closed in N \K. Finally, we apply theorem 1.6 and the proof
is complete.

Proof of Theorem 1.8 Let T(J) be a tubular neighborhood of K diffeomorphic
to §' x D? and put V = N\ T(K). Since V is diffeomorphic to N \ K and
w1 (V) is finitely generated, then it satisfies the assumptions of Theorem 1.1 and
therefore V is diffeomorphic to ¥ x R, where ¥ is an open connected orientable
surface. By Lemma 2.1 Hy(V) = Hp(Z) = 0 for each p = 2. From the formula

(V) = x(V) = X(T(K)), that relates the Euler characteristics, we obtain

0=050(%) - B(Z)=1- B,(%)

i.e., 3,(X) = 0. Since 3, is a complete invariant for orientable surfaces, it follows
that ¥ is homeomorphic to S x (0,1) and in consequence V is homeomorphic to
S! % D2, Thus. N is obtained by pasting two copies of S' x D? which means that
N admits a Heegaard Splitting of genus 1.

REFERENCES

[1] M. H. FREEDMAN, The topology of four-dimenswnal manifolds, J. Differential Geom.. 17
(1982), no. 3. 357-453.
[2] C. GODBILLON, Feuilletages, Etudes géométriques [1, Institut de Recherche Mathématique

Avancée. Université Louis Pasteur, 1986.
3] A. HAEFLIGUER, Sur les feuilletages des variétés de dimension n par des feuilles fermées de
dimension n — 1, Colloque de Topologie de Strasbourg, 1955.



6 J. L. ARRAUT AND C. BIASI

[4] W. HUREWICZ AND H. WALLMAN, Dimension Theory, Princeton University Press. Princeton
1948.

[5] C. F. B. PALMEIRA, Open manifolds foliated by planes, Annals of Math., 107 (1970), 109-131.

[6] H. ROSENBERG, Foliations by Planes, Topology, vol 7 (1968), 131-138

[7] H. ROSENBERG AND R. ROUSSARIE, Reeb Foliations, Annals of Math., 91 (1970), 1-24.

[8] S. SMALE, Generalized Poincaré 's conjecture in dimensions greater than /, Annals of Mathe-

matics, vol. 64 (1956), 399-405.

DEPARTAMENTO DE MATEMATICA, INSTITUTO DE MATEMATICA E COMPUTAGAO, UNIVERSIDADE
DE SAO PAULO-CAMPUS DE SAO CARLOS, CAIXA POSTAL 668, 13560-970, SA0 CARLOS SP, BRASIL
E-mail address: arraut@icmc.sc.usp.br

E-mail address: biasi@icmc.sc.usp.br



105/2000

104/2000

103/2000

102/2000

101/2000

100/2000

099/2000

098/2000

097/2000

096/2000

NOTAS DO ICMC

SERIE MATEMATICA

BENA, M.A.; GODOY, S.M.S. — On the stability in terms of two measures of
perturbed neutral functional differential equations.

CARVALHO, A.N.; CHOLEWA, J.W.; DLOTKO, T. — Abstract parabolic
problems in ordered Banach spaces.

GUTIERREZ, C.;: NUNEZ, J.M.G.; FUSTER, C.R.; SANCHEZ-BRINGAS,
F. — Rigid immersions of vector bundles of rank 1 on a surface into IR’.

CARBINATTO, M.C.; RYBAKOWSKI, K.P. - On convergence,
admissibility and attractors for damped wave equations on squeezed domains.

CARBINATTO, M.C.; RYBAKOWSKI, K.P. — On a general conley index
continuation principle for singular perturbation problems.

CARBINATTO, M.C.; RYBAKOWSKI, K.P. — Conley index continuation
and thin domain problems.

HERNANDEZ M., E. — Existence results for partial neutral differential
equations.

CONDE, A.; SANKARAN, P.; ZVENGROWSKI, P. — A note on the adjoint
representation for the classical groups.

BIASI, C.; LADEIRA, L.A.C.; GODOY, S.M.S. — A remark on the area of a
surface.

HERNANDEZ M., E. — Regular for partial neutral functional differential
equations with unbounded delay.



