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A new family of asymmetric models for item response theory:

A Skew-Normal IRT family

Abstract

Normal assumptions for the latent variable and symmetric item characteristics curves have been
used in the last 50 years in many psychometric methods for item-response theory (IRT) models.
This paper introduces a new family of asymmetric models for item response theory, namely the
skew-normal item- response theory (SN-IRT) model. This family extends the ogive normal
(symmetric probit-normal) model by considering: a) an accumulated skew-normal distribution for
the item characteristic curve and b) skew-normal distributions are assumed as priors for latent
variables for modeling individuals’ ability. Four models compose the SN-IRT family: skew-
probit-skew-normal, skew-probit-normal, probit-skew-normal and probit-normal models as a
particular case. Hence, the SN-IRT is a more flexible model for fitting data sets with dichotomous
responses. Bayesian inference methodology using two data augmentation approaches for
implementing the MCMC methodology is developed. Model selection between symmetric and
asymmetric models is considered by using the deviance information criterion (DIC) and the
expected AIC and expected BIC and by using latent residuals. The proposed penalization
(asymmetry) parameter is interpreted in the context of a particular data set related to a
mathematical test. Suggestions for use the in news applications of skew probit propose in the
paper are discussed.

Key words: skew probit link, item response theory, Bayesian estimation, normal ogive model,

skew-normal distribution, binary regression



The Item Response Theory (IRT) for multivariate dichotomous respor.xses resulting from n
individuals evaluated in a test with / items, considers a latent variable U that explains (is
associated to) individuals ability and a set of parameters associated to the items under
consideration. Different characterizations have been considered in the literature over the last 40
years regarding the status of the latent variables (Borboom et al., 2003), such as latent parameter
and latent variable; with Bayesian and classical interpretations (see Rupp et al., 2004). In this
paper we consider the characterization due to Holland & Rosembaum (1986) and Bartholomew &
Knoot (1999) and the Bayesian interpretation given by Albert (1992).

IRT models analyze the probability of correctly answering the items of a test as a function of a
linear relationship involving item parameters and examinees abilities. Formally, let y; the
dichotomous (or binary) response corresponding to the ith individual, i=1,...,n, on the jth item,
j=1,...1, which takes the value 1 if the response is correct and 0 otherwise. It is considered that:
Y; ~ Bern(p;) (Bem: Bernoulli distribution) with p;=P(Y; =1lu,,7,) being the probability
that the ith examine is able to answer the jeh item correctly. In fact, p; is the conditional
probability of correct response given the ith ability value u; and jth item parameters 77, = (@, , 8 ).
It is considered that p;=F(m;), where, the function F links the probability p; with the linear
function m, =a;(u; - B ;) In the literature F is known as the item response curve or the item
characteristic curve (ICC), it is common for all j, and all j, and satisfy the latent monotonicity
property (Holland and Rosembaum, 1986). Moreover, the IRT model satisfies the latent
conditional independence principle (known as "independence local" in the psychometric
literature), which considers that for the izh examinee Yj; is conditionally independent given u;,. It is

also considered that responses from different individuals are also independent. Considering the



above assumptions for the IRT model, the multivariate joint density of ¥ =(¥T,---,¥7)", with
Y[ =(¥,,-,Y;), given the vector of latent variables " =(u,, --,u,)” and the item parameter

vector 77" =(77,,-++,7,) can be written as

[
@ 1wy =[[[[[Fenp]*h-Fm)]™, i=1,....5, j=1,....1 )

=1 j=i

An assumption added to the model is that U; ~ N (#.0%), which establishes that the latent
variables associated with the individuals taking the test are well behaved and that their abilities are
a random sample from this distribution (Albert, 1992). Specification of values for & and o? (as
in Albert (1992), who considers £ =0 and o2= 1) or specification of distributions for # and o
(as in Patz & Junker, 1999) solves the identifiability problem for the IRT model. The model is not
identifiable since it is possible to preserve the model (likelihood) by conveniently transforming
the parameters. As also pointed out in Albert & Ghosh (2000) this model involves n + 21 + 2
unknown parameters which means that it is overparameterized. Other characteristics of IRT
models are listed, for example, in Albert & Ghosh (2000), Rupp et al. (2004), Patz & Junker
(1999) and Baz4n et al. (2004).
Item-Response Theory is a set of models used for modelling variables related to buman behavior,
replacing observed scores for the items of a test. Since these variables are not observable, they are
assumed as latent variables. Statistical assumptions in modeling academic achievement and other
variables associated with human behavior are based on the normality assumption of the
distribution of the scores. Several anthors have questioned this assumption (see Samejima, 1997
and Micceri, 1989) since it is somewhat restrictive for modelling human behavior. Micceri (1989)
presents examples of situations where the latent variables can be assumed not normally

distributed. In an investigation of the distributional characteristics of 440 large-sample



achievements and psychometric measures, Micceri (1989) found that 15.2% of the distributions
had both tails with weights at or about the Normal, 49.1% of the distributions had at least one
extremely heavy tail, and 18% had both tail with weights less than the normal distribution. Among
ability measures, the percentages were similar with 19.5% having both tails with weights at or
about the Normal, 57.6% having at least one heavy tail, and 22.9% having both tails less than the
Normal. Amongst psychometric measures, 13.6% had tail weights near the Normal, 65.6% had at
least one moderately heavy tail, and 20.8% had both tail weights less than the Normal.

Lord considered the first IRT model in 1952, in which p,=F(m;)=®(m,.) where ®(.) is
the cumulative distribution function of the standard normal distribution. This model is known in
the literature as the ogive normal model. In 1968 Birbaum introduced the logistic model, in which
F()=L{)is the cumulative distribution of the standard logistic distribution, known as the two
parameter logistic model. A special feature of both models is the symmetric nature of the link
function F~' or ICC F. By considering normally distributed latent variables a convenicnt
nomenclature that we follow in this paper for those models are probit-normal and logit-normal
models, respectively (see Bazdn et al., 2004). This notation allows distinguishing the link function
and the distribution associated with the latent variables.

Chen et al. (1999) emphasizes that commonly used symmetric links for binary response data
models, such as logit and probit links, do not always provide the best fit available for a given
dataset. In this case the link could be misspecified, which can yield substantial bias in the mean
response estimates (see Czado & Santner, 1992). In particular, when the probability of a given
binary response approaches 0 at a different rate than it approaches 1, a symmetric link function, is

inappropriate.



Samejima (2000) proposed a family of models, called the logistic positive exponent family, which
provides asymmetric ICC and includes the ICC with logit link as a particular case. She considers
that asymmetric ICCs are more appropriate for modelling human item response behavior, Also
Samejima (1997) points out that there should be restrictions in using statistical theories and
methods developed for something other than human behavior, in particular, those based on normal
assumptions. One necessity under these circumstances is a departure from normal assumptions in
developing psychometric theories and methodologies.

In this paper a new asymmetric ICC curve F is assumed, by considering the cumulative
distribution function of the standard skew-normal distribution (Azzalini, 1985). Moreover, a new
latent variable distribution is assumed considering the skew-normal distribution. Considering
simultaneously or separately, asymmetric ICC or asymmetric latent variables, a new family of
IRT models can be formed. The new family defined is called as the Skew Normal Item Response
Theory (SN-IRT) familiy and includes the symmetric probit-normal model as a special case, and
hence extending the usual symmetric IRT models. According to the methodology considered in
this paper, four models can be proposed for a data set under consideration: 1) the symmetrical
ogive normal, namely, the "probit-normal (PN) model", 2) the skew-normal ICC model, namely
the “skew probit- normal (SPN) meodel”, 3) the ogive normal model with asymmetric latent
variable, namely, the *“probit-skew normal (PSN) model”, and 4) the model that considers both
types of asymmetry, asymmetrical ICC and asymmetry in the latent variable, namely, the “skew
probit-skew normal (SPSN) model”.

The skew-normal distribution is an important asymmetric distribution with the normal distribution
as a special case. Recent developments of asymmetric-normal models in the statistical literature

include Azzalini & Dalla Valle (1996), Azzalini & Capitanio (1999) and Sahu et al. (2003). This



distribution has been considered in the psychometric context in Arnold (1993). The possibility of
considering asymmetric ICC has been previously formulated in Samejima (1997) and a particular
skew-normal distribution has been used as a link function in Chen et al. (1999) for dichotomous
quantal response data in regression models. (see also Chen, 2004)

The paper is organized as follows. Section 2 introduces the skew-normal item response theory
model by considering the asymmetry parameter in the item characteristics curve, called here
penalty parameter and by considering asymmetry in the latent variable. In the third Section,
maximum likelihood fitting for the SN-IRT model is discussed. A Bayesian estimation approach
is developed in Section 4 by using the MCMC methodology for simulating from the posterior
distributions of item parameters and latent variables. Two data augmentation approaches are
considered. In Section 5 an application with a data set from a mathematical test is reported
comparing the presented models and also interpreting the proposed penalization (asymmetry)
parameter.

2. The Skew-normal item response model

2.1 A new asymmetric item characteristic curve: the skew probit ICC

A new item characteristic curve IRT model is defined considering that the conditional probability
py; of a correct response for item j, given the value u; of the latent variable corresponding to the
ith individual, is given by

Py = gy (m;:4)=20,(m, 07 ~d,)i=1,....n, j=1,....] @

with—=o<lj<oo,dj=(l—+-i'jz—)m-, |d,|<1,i=1,...,n, j=1,...,L
7

Where @y () denotes the cumulative distribution function of the standard skew-normal

distribution (Azzalini, 1985) and ®,(.) is the cumulative distribution function of the bivariate



normal distribution (see as the last expression is deduced in Appendix A), with ,1). the parameter
of asymmetry of the skew-normal distribution and d, the correlation coefficient in the bivariate
normal distribution. Note that d;is a reparametrization (1-1 transformation) of 4,, so, it also seen

as a parameter of asymmetry.

In the above expression, the probability p; is expressed as a function of the quantity u and the
parameters 77, =(a;,,)and of A, (or d ;). which are parameters associated with item j. For
A4=0, p; reducesto p,= ®(m,), and the symmetric ICC probit follows.

As a consequence of the properties of the cumulative skew-normal distribution, it can be verified
that the ICC skew-probit is a monotone increasing function of the quantity u;, which is considered
as a unidimensional latent variable. This means that the SN-IRT models are unidimensional
monotone latent variable models (Junker & Ellis, 1997).

Figure 1 shows skew-probit ICCs for different values of a latent variable U when fixing
the item parameters 0=1 and B=0 and varying asymmetric parameter values d. Six different ICCs
are considered for d = -0.9, 0.7, -0.5, 0.5, 0.7,0.9 for comparison with d=0. For d = 0 (or A=0),
the ICC is symmetric and for d> O (or A > 0) the ICC presents positive asymmetry, and for d < 0
(or A <0), its presents negative asymmetric. The ICC skew-probit is asymmetric as in the case of
the family of positive exponent logistic models considered in Samejima (1997, 2000), which also
considers an asymmetric item parameter called acceleration parameter. The ICC that we propose
is an extension of the probit ICC, by directly introducing an asymmetry parameter. The
asymmetric part is contained in the cumulative distribution of the standard normal distribution

®(4;z). Further comments considering asymmetric ICC will be given in Section 4.3.
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FIGURE 1. Skew-probit ICCs for (c=1, B= 0) and different values of the asymmetry parameter d

The distance between the probabilities associated with the two ICCs (skew-probit and probit) at a
point z, that is, [0(z) — ®(z, ), is at most arctan( |1 4;1 )z (see Property 6, Appendix A). This
means that if the model presents increasing positive asymmetry, then the probability of a correct
response for considering a skew-probit ICC is diminished with respect to the symmetric probit
ICC. On the other hand, if, the model presents increasing negative asymmetry, the skew-probit
ICC presents increasing probabilities of a correct response with respect to the symmetric probit
ICC. Such changes in the probability of a correct response occur due to the changes in the shape
of the characteristic curve. However, the changes are not uniform as the latent variable changes.
For highly negative values of the latent variable there is little change on the probability of correct

response. On the other hand, for highly positive values, there are great changes on the probability



of correct response. The item asymmetry parameter can be psychometrically interpreted as penalty
(reward) of the probability of comect response. Hence, an item with negative asymmetry
parameter penalizes (rewards) students with larges (smaller) levels of the latent variable and an
item with positive asymmetry parameter rewards (penalizes) individuals with larger (smaller)
levels of the latent variable (see Figure 1). Hence, we call the asymmetry parameter 4 as the item
penalization parameter.

Figure 2 presents six different characteristic curves assuming different values for A;, the
asymmetry parameter. The first three curves consider additional variations in the parameter f, with
a; fixed. The last three curves consider variations in the parameter gj with f3, fixed. The parameter
f3; is called the item intercept or item difficulty parameter. This parameter controls item difficulty
levels. If we fix the parameters ¢; and f; and increment the value of £ , the basic form of the
characteristic curve does not change but is translated to the right. Curves C1, C2 and C3 in Figure
2 correspond, respectively, to (=1, f=-1), (=1, f=0). and (=1, § =1).

An jtem of a test with a highly negative value of £ (curve CI) corresponds to an easy item in
which individuals with smaller averages in the latent variable presents relatively low probability
of correct response. In contrast, an item with a large value of £ (curve C3) is difficult since
individuals with large levels of the latent variable presents relatively low probability of correct

response. The behavior of this parameter for the skew-probit ICC can be observed in Figure 2 for

different values of the asymmetry parameter.
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FIGURE 2. Skew-probit ICCs for different values of the (¢, [5) item parameters and the

penalization parameter A

The parameter &; is called slope or discrimination parameter. This parameter controls the slope of
the response function of an item. If we consider an ICC with £ and 4; fixed, the curve is steeper
for increasing vatues of ¢;. The curves C4, C5 and C6 in Figure 2 correspond, respectively, to (g
=05, f=0), (=1, f=0) and (@ =2, £ =0). A steeper item response curve corresponds to an
item that highly discriminates students of smaller and greater levels of the latent variable. The
probability of correct response changes rapidly for higher values of the latent variable in an
interval containing zero. This means that the probability of correct response changes just a small

amount when the latent variable goes from a student with lower latent variable values to a student



with higher latent variable values. An item with a small value of g is a relatively poor
discriminator between students for changing values of the latent variable.
In summary, the interpretation of the item parameters (g5 , /), is the same for probit ICC and
skew-probit ICC in the usual probit-normal model and the SN-IRT model.
Following different proposals in the literature, we reparameterized the model introduced by
considering a =g and b=-af such that m; =au, —b,, with 77, =(a,,b,) the item parameter
corresponding to jzh item. According to Cook et al. (2002) and Baker (1992) this parameterization
resulted in more stable computations. We use the notation a=(a,,-,a,)" and b=(b,,---,b,)".

2.2 Asymmetrically distributed latent variable
A new distribution for the latent variable U; corresponding to ith individual can be defined
considering

Ui~SN(u, & k), i=1,...,n, €)]

which denotes the skew-normal distribution with location parameter —eo< g <oo, scale
parameter ¢> >0 and asymmetry parameter — oo < k < co. See Appendix A for some properties
of this distribution. Its density function is denoted by @y, (i; 1,02, x).
Hence, we are considering that the latent variable follows a skew-normal distribution with
common asymmetric parameters x for the individuals. It is our opinion that asymmetry does not to
change from individual to individual since it is a property of the distribution of the latent variable.
Figure 3 shows the density functions of latent variables for different values of hyperparameters 4
and ¢ and for the asymmetry parameter x The three curves on the right side are examples of
positive asymmetry parameter x; modeling latent variables concentrated on lower values. The

three curves on the left side are examples of negative asymmetry parameter x modeling latent
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variables concentrated on higher values. As a reference, in all cases, the N(0,1) curve is also

presented.
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FIGURE 3. Different density functions describing latent variables skew-normally distributed

SN, &, k)

Note that the curves showed in Figure 3 may correspond to the distribution of latent variables
corresponding to human behavior in different cases, as observed in Micceri (1989). Examples of

such behavior are depression (see Riddle et al. 2002) and anxiety (see Zaider et al., 2003) where



certain asymmetry is expected considering a non-clinic population. Moreover, in educational
contexts several predictor variables related to school proficiency can be asymmetrically
distributed, as noted in Hashimoto (2002) and Vianna (2003). Then, the skew normal distribution
is a flexible model for modeling of lateat variables and accommodates the normal distribution as
an especial case.

2.3 The Skew-Normal Item-Response Theory family
Formally, the SN-IRT family is defined by considering the specification of the news asymmetric
ICCs and asymmetry distributions for the latent variable. Four SN-IRT models are possible by
considering two or just one type of asymmetry on the specification of the ICC curve and on the
specification of the distribution of the latent variable. They are:
a) The skew-probit skew-normal (SPSN) model,
b) The skew-probit-normal (SPN) model in that x=0;
¢) The probit-skew-normal (PSN) model in that 4=0;
d) The probit-normal (PN) model in that x=0 and d;=0.
Note that the PN model is a special case of the SN-IRT model. An interesting aspect of the models
formulated above are the flexibility in detecting items specified according to ICCs with skew-
probit links and items specified according to ICCs with probit links. As such, the SN-IRT family
presents flexible models for mathematical modelling of the psychological and educational
behavior, based in deductive processes (Samejima, 1997) and fulfill the search for models that fits
the behavior in question theoretically. Inductive processes (Samejima, 1997) as nonparametric
IRT are just important as deductive processes and dynamic uses of both processes enable us to

simulate human behavior. Besides, the link function studied in this paper can be also, considered
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for regression models with multivariate binary outcomes (see Chib & Greenberg, 1998) in which
m;,-:X;jT/% with £ a vector of unknown parameters, and Xj; a vector of covariates.

3. Maximum Likelihood Fitting
Let Dyss = y denotes the observed data, so that the likelihood function for the SN-IRT family is

given by

a i
L A0 =[[TT[@ s m;: 4] 1~ @ gy (m: 2] . @

=1 j=1
Using the equivalent representation for the cumulative distribution function of the skew-normal

distribution (see appendix A), we can be writing

L.nd\D,,)= Hﬁ ko, m, 0 -2, ] [i-20.[m, 0 -4, ] .

i=l j=1

As in the case of the probit-normal model, computing the maximum likelihood estimators or the
observed Fisher information matrix using the likelihood above is simplified if we have available
procedures for computing bivariate integrals. Joint maximum likelihood (JML) estimates similar
to the ones used with the probit-normal model can be implemented for the estimation of #,77and A
(or d). Estimates can be obtained by iteratively maximizing the likelihood over ecither item
parameters or latent variables while treating the other group of parameters as fixed at their current
values (Baker, 1992). However, limitations of this method are well known (see Baker, 1992, and
Bock & Aitkin, 1981). Assuming the latent variable or the item parameters known, we can also
implement separated maximum likelihood estimators for the latent variables and item parameters.

Another procedure based on the “divide-and-conquer” strategy (Patz & Junker, 1999) for
estimating only the item parameters 7 and 4 (or d) is the marginal maximum likelihood (MML)
approach. The procedure can be developed by implementing an EM type algorithm as considered

in Bock & Aitkin (1981) treating the latent variables as missing data and requiring the



specification of a distribution for the latent variable U. As we propose to consider a skew-normal
distribution for the latent variable with common asymmetry parameters for individuals, i.e. U; ~
SN (4, ®,i=1,..., n,it follows that the marginal likelihood function for the SN-IRT model

with interest on the item parameters can be written as:

L D)= [[TTT(sm,: )P =@y (my: )] 00 0" 0. @

o =l el
Estimation procedures based on the EM algorithm can be implemented by using Gaussian
quadrature as a way of dealing with the multiple integral in the likelihood. The same approach can
be used with the likelihood expressed in terms of the truncated bivariate normal distribution
parameterized with d;. However, as mentioned in Patz & Junker (1999) as the complexity of the
model increases, as in the SN-IRT model situation, using the EM algorithm becomes less
straightforward and is difficult to incorporate uncertainty (standard errors) into the item estimation
of the parameters and in calculations of uncertainty (standard errors) for inferences on examinees
(individuals), and there is no way of assessing the extent to which standard errors for examinee
inferences are overly optimistic because of this. Chen et al. (1999) discuss conditions on existence
of maximum likelihood estimators in probit models with skew-normal links, which can be
extended to the models considered in this paper.
4. Bayesian Estimation
4.1 Priori Specification
Considering the likelihood function above, it is possible to implement a Bayesian estimation
procedure by incorporating prior distributions for &, 77 and A (or d). For the SN-IRT familiy, we

consider the following general class of indepents prior distributions:

x(u!”!j'):Hgli(ui)Hggj(nj)ng(lj)l (7)
=1 =
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where g2(7;) = g21(a;)g22,( b;) in which g {.) should be proper to guarantee a proper posterior
distribution (see Albert & Ghosh, 2000 & Ghosh et al. 2000). Following proposals usually
considered (see Rupp et al., 2004), we take g2, {.) as the density of the N(x,,s2),j=1,...,1,
and g3 /(.) as the density of N(O, L), j=1,...,1 the normal distribution, so that g, (.) is the
density of the Na(u, , %), with mean vector p,,T = (4,, 0T and variance-covariance matrix

st 0
"’F[o s:]‘

Additionally, we consider g;(.) as the density of the SN(u; ; k), i=1, ..., n, and g3, (.) as the
density of the SN(Aj; w),j=1,...,1, where 4,, 5, 5%, kKand @ are known. In more general

- situations where & and @ are also unknown, the prior structure needs to be enlarged so that prior
information are also considered for those hyperparameters. A possible extension of the model
follows by considering g; i(.) as the density of the SNGw; ; &, &, %), i=1, ..., n, with adequate
specification of the hyperparameters 4, o or by specifying hyperpriors for them.

Using the Bernoulli likelihood type and the prior distribution above it is possible to obtain
posterior distributions and implement a Bayesian estimation procedure using the WinBUGS
scheme (Spiegelhalter et al,, 2003). However, such an approach is complicated because the
integrals involved to obtain the marginal posterior distributions involve the cumulative function of
the skew-normal distribution, which is not available in WinBUGS. We use instead an approach
based on data augmentation as considered in Albert (1992) and Sahu (2002) for the PN model.
This approach allows the implementation of Markov chain Monte Carlo methods, which simplify

efficient sampling from the marginal posterior distributions.
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4.2 Data augmentation approach
Using auxiliary latent variables, where these underlying variables have a standard skew-normal
distribution, motivates our approach. The result that we present next is an extension of a similar
result in Albert (1992) for the case of the PN model and is obtained using Property 6 in Appendix
A. It can be shown that the skew-probit link in the SN-IRT family, involving 7 items and n
individuals, with Y; ~ Bern(p,) and p; = P(Y; =11V, =u‘,r)’.,ﬂi) = d)s,,(mii;lj)in which

m, = au, —b;, is equivalent to considering that

[1, Z,>0

yb.=10, z, <0’ where Z; ~ SN(my, 1,=4j), i=1...,n j=1...,1L

Clearly, in the special case of 4j=0, j=1, ..., I, the corresponding result in Albert (1992) for the
symmeuic PN model follows. The auxiliary latent variables Z; are introduced to avoid working
with Bernoulli type likelihoods. As a consequence of property 5 in the Appendix A it follow that

the asymmetry parameter with the auxiliary latent variable is the opossit (in sign) of the

asymmetry parameters with the ICC. In the following, we use the notation Z = (Z7,..-,ZT)7,

with Z[ =(Z,,---,Z;) the vector of auxiliary latent variables. The next result follows from the

previous results. The complete-data likelihood function for the SN-IRT models with skew-probit

link and D = (Z,y) is given by

n I
L7, AD)=[][1#(z,:m,.1.- 2,)1(Z,.5,) ®)

=1 j=l

where m; =au, —b, ,and 1(Z,,y,)=1(Z,; >0)i(y, =1)+ I(z, <0)i(y, =0).j=1,...,7and i
=1,...,n,is used on the derivation of the conditional likelihood p(y,j i1z, ) Note that, if A;=0

then the likelihood function above is equal to the one given in Albert (1992). Hence, the PN

model is a reduced model in the SN-IRT family.



Considering the SN-IRT family with complete likelihood and prior distributions above for &, 7

and 4, the full posterior distribution corresponding to #, 77,4 and Z is given by

n 1 n I
F@n,A,2) = [ [T 10w 2Zyimy 1-A)12Z, 5[ 1050 s O [ 67, : 20 0 A, 2 0) ©)

=l j=1 =l j

This distribution has an intractable form and will be very difficult to simulate from it. Therefore, a
Gibbs sampling algorithm will be used where the three steps of the original algorithm by Albert
(1992) are extended to four steps. Each step consists of sampling from the posterior distribution of
one of the four parameter vectors &, 7, A and Z conditionally on all other parameters. This full
conditional distribution should be tractable and easy to simulate from. The main steps for
posterior in the Equation 8 are:
Step 1 Sampling Z. Given u, nand A the variables Z; are independent, and Z; | u, 5,4 is distributed
as the SN(my;, 1,4 ) truncated at the left by 0 if y; =1 and truncated at the right by 0 if y; =0, for i
=1,...,nandj=1,...,L
Step 2 Sampling u. The latent variables are independent given 5,4 and Z, with
7 NZ,,,A4,D ) < @lu,im, v, W), i=1,... .n,

!

2 iy th; )

j=l

I
where m, = v ,and y/(u,.)=H<I>(—-5iZ,.j —m Y(ku,),

1+3al 1+Ya?

= =

Step 3. Sampling 1 . The classical item parameters are independent given # , 4 and Z with
xn;\u,Z,;,4;,D,,) o< @, (7;3my, vy, w@,) forj=1,....1

n = 1 _
with w(n,-)=H¢(— A,Z,-W[n,), mean vector m, = [w’w+z”l‘f wrz AZ)4, | and

covariance matrix V, =WW+Z;'J-I where W=W,, - W7 , W =(u,-1),i=1,...,n
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Step 4. Sampling A. The asymmetry parameters are independent given u,5 and Z with

(4, 14,Z,.7,,D,0,) = $(A, (A, ) in which w(4,)=[]®(-8,Z, -m,¥0(@h,), i =1, ... n

i=l
andj=1,...,1

Note that some of the full conditionals cannot be directly sampled. For example, the case of the
full conditional posterior for the parameter 7 requires algorithms such as the Metropolis-Hastings
(Chib & Greenberg, 1995). Further, if »=0 and 4;=0,j=1, ..., I, then it follows that the full
conditional distributions become the ones in Albert (1992).

4.3 An alternative data augmentation approach

To overcome the difficulties described above we propose to incorporate extra latent variables by
modifying the auxiliary latent variable Zy, j=1,...,Iandi= 1, ..., n. These variables are
considered next. Further, we consider the SN-IRT models in terms of the asymmetry parameter dj,
j=1,...,1 taking values in the interval (—1, 1), so that we can consider a uniform priorin (-1, 1)
for gs;(.) and hence hyperparameters are not necessary. To consider a uniform prior for g; it is

equivalent to consider a Student-t distribution for 4; with location 0, scale 1/2 and 2 degree of

freedom (to see this, use the variable transformation A =

d
2 ).
Vi-d
For n examinees responding to 7 items of a test it is known (Albert, 1992) that the probit link in

the PN model should be rewritten as

(1, Z,>0

Z,,.=mi,+e‘.,,withe,.j‘—N(O,l)andy,=i0 z SO,i=l,...,nandj:l,...,l.
]

It follows that py = P, =11U; = u;,77,}=®(m,) . This representation shows a linear structure

in the auxiliary latent variable Z; normally distributed, which produces an equivalent model with a
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probit link. Further, the error e in the linear structure introduced are latent residuals independent
and identical distributed (see Albert & Chib, 1995), a fact that can be used for model checking.
Similarly, we define a linear error structure for the SPN and SPSN models with skew-probit link

by considering that.

f1, Z,>0

Zi=m; te withe,.,.~SN(0,l,-Z,-)andy,7=iO Z <0,i=
> §j =

l,..,nandj=1,...,IL

i

Notice that p; = P(Y; =11U, =u;,n;,4;) = @4 (m;;A,) . Using the stochastical representation
for a skew-normal distribution (Henze, 1986, Property 7 in the Appendix A) we can write
e,=—dV, —(1-d})"*W,, with V;; ~ HN(0,1), the half normal distribution, and W; ~ N(0,1), the
standard normal distribution. By consideﬂng. this stochastical representation, the skew probit link
that we propose is more general than the probit link and is different from a skew link as given in
Chen et al. (1999) (see also Chen, 2004) where e;=W; +d,V; take a different skew normal
distribution class (see Sahu et al. 2003). It follows that the conditional distribution of ejlVij=vjis
a normal distribution with mean -djv; and variance 1 -d (see Property 8 in Appendix A).
Moreover simulation of Z; in the lineal structure should be considered in two steps. First simulate
Vjj ~ HN(0,1) and then simulate the conditional Zs; ;= Z;; 1 Vi ;= vij ~ N(m, —d v, ,1-d,). This
defines an important hierarchical representation of the skew-normal distribution similar to the one
derived for the Student-t distribution (see Arellano et al.,1994). In a similar way, the latent
residuals in the probit link, the latent residuals e, in the skew probit link are independent and
identically distributed and also can be used for model checking.

We consider now the new complete data likelihood function involving the conditional auxiliary

latent  variables  Zs = (Zs] -, Zs} ) with  ZsT=(Zs,, -, Zs;), i=l,..n, and
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V=W,V with V'=(V,,-,V,),i=1,...,n The new complete-data likelihood

function for the SN-IRT models with D= (Zs,V, y) is given by

Lig,n, A |D)=f[["[¢(2s,.,;-d,vv +my1-d2)1(Zs, )00, 00V, >0),  (10)

e
where my =au,~b, , and 1(Zs,,y,)=1{Zs,>0){y, =1)+ I{Zs, sO)1(y, =0), j=1,...,1
andi=1,...,n,is used in the derivation of the conditional likelihood p(y, 1Zs,). Note that if
=0 then the likelihood function above is similar to the one given in Albert (1992), and Vj; is not
necessary,

Considering the SN-IRT models with new complete likelihood in the Equation 9 and prior

distributions for #, 7and 4 given above, the full posterior distribution corresponding to &, n,d and

Z,V is given by

a I
f(u,f],d, ZS,V) €3 HH¢(by;_ d]Vy + mu;l)l(z‘qn yy)¢(V,,'.0,l)I(V,., > 0))(
=l A

Hﬁsx(u,,'f)l:!%(ﬂjiﬂ,,.z,,) a0
Although this density has an intractable form, we can simulate from it using a direct Gibbs
sampling algorithm with five steps. Each step consists of sampling from the posterior of one the
four-parameter vectors &, 5, d, Z, and V conditionally on all other parameters. This fully
conditional distribution should be tractable and easy to simulate from. Some algebraic
manipulations yield:
Step 1 Sampling Zs. Given u, 5, d, and V, the variables Zsy are independent and distributed
according to the N(m, —d,v,1-d}), j=1,...,/andi=1,...,n; distribution truncated at the

left by O if yy=1 and truncated at the right by 0 if y;=0.
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Step 2 Sampling V. Given u, 7, and d, the variables Vare independent and distributed according
to the HN(dj(m,.j -v;), l—d,?), j=1L1,...,Tandi=1, ..., m; distribution truncated at the left by
0.

Step 3 Sampling u. The latent variables u; are independent given Zs, V,  and d with

w(w, \Zs;,V,,1,d,D,,) < ¢(u, :m, v, YOku,),i=1,...,n,

!

Zaj(lsij+dij+b,) gt

=l 1 dl
where m, = Y

I l‘i= ]

1_ g2 2 g2

1+ Elal.—d]. 1+§.1aj—dj
I= J=

Step 4. Sampling 17. Given Zs, V, u, and d, the item parameters 7); are independent and distributed

according to the N,(m, ,v, ), j=1,...,1, with mean vector
m, = lwrw +3] & [W'Z: (25, +d v, )+3 ], | and covariance marix
. =[w’w +x] f', where W =W ,... WY WT =(u,~D.i=1,.... n:.

Steps 5. Sampling d. Given Zs, V, u, and n, the asymmetry parameters d; are independent and

s . mx‘j _Zsij 1 .
distributed according to the N{ —/——,— |, j=1,...,1L
V; \£

v
We call attention to the fact that the conditional distributions of Zs, u and 7 given the other
parameters are as given in Johnson & Albert (1999) for the special case of the symmetric PN
model.
5. An application
We illustrate the Bayesian approaches to SN-IRT family developed in the paper, using the data set

corresponding to the Mathematics Test applied in Peruvian schools with the goal to estimate the

item parameter, included the new asymmetry parameter and to show advantages of the SPN model
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with respect to the PN model to capture more information on the item, in the presence of
asymmetric scores.

The prior specification, starting values to define the initial state of the Markov Chain, and
convergence diagnostics for the Markov chain are discussed by implementing the MCMC
algorithm for the second augmentation approach above, The MCMC procedure is based on results
of Proposition 6 and implemented on WinBUGS software.

We also present comparison of symmetrical and asymmetrical IRT models by using the Deviance
Information Criterion (DIC) described in Spiegelhalter et al. (2002), a Expected Akaike
Information Criterion (AIC) and Expected Bayesian Information (Schwarz) Criterion (EBIC) as
suggested in Carlin & Louis (2000) and Brooks (2002) and sum-of-squared-latent residuals.
Spiegelhalter et al. (2002) claim that the DIC as implemented in the WinBUGS can be used to
compare complex models (see Johnson, 2003, for example) and large differences in the criterion
can be attributed to real predictive differences in the models, although there are critics to this
approach. In hierarchical modelling with auxiliary latent variables as in the SN-IRT family, the
likelihood (or “model complexity”) is not unique so that the deviance (and also DIC and pp which
are based on it) of a model with latent variables is not unique and can be calculated in several
ways (see Delorio and Roberts, 2002). With auxiliary latent variables, WinBUGS uses a complete
likelihood of the observed variable and the auxiliary latent variable introduced (as fixed effects
and random effects in hierarchical modeling) to obtain posterior distributions for the parameters of
interest. When this is the case, marginal DICs for the observed variables (fixed effects) and
auxiliary latent variables (random effects) are presented. For a proper comparison of the proposed
models, we considered marginal DIC for the observed variable because the focus of the analysis is

in p(ylu, n) and although auxiliary random variables are introduced (in two steps) they are not



the focus of the analysis. On the other hand, EAIC and EBIC are criterions proposed in Carlin &
Louis (2000) and Brooks (2002) that penalizes the Posterior expected deviance by using 2p and
plogn, respectively, where as usual p is the number of parameters in the model, and n is the

number of datapoints. As in Yan et al. (2003) we used the posterior sum of squares of latent

n f
residuals (SSR=ZZe;) for the data set as a global discrepancy measure for models

i=l j=l
comparison.
5.1 Implementing the MCMC Algorithm

Prior specification

As have been mentioned, proper priors for a;and b, guarantee that the complete posterior for the
model is proper. Albert & Ghosh (2000) mentions that the choice of proper prior distributions for
the latent trait resolves particular identification problems, further, informative prior distributions
placed on a;and b;can be used to reflect the prior belief that the values of the item parameters are
not extreme (in the frontier of the parametric space). In the common situation where little prior
information is available about the difficulty parameters, we can choose S to be large. This
choice will have a modest effect on the posterior distribution for non-extreme data, and will result
in a proper posterior distribution when extreme data (where students are observed to get correct or
incorrect answers to every item) is observed (Albert & Ghosh, 2000). Furthermore Sahu (2002)
states that larger values of the variance led to unstable estimates. In Baz4n et al. (2004) it is
compared the use and perfomance of six different priors in literature for discrimination and
difficulty parameters in the PN model. A sensitivity analysis by checking model adequacy that
follows by using a series of prior distributions is conducted. It includes the specification of vague

prior distributions for the difficulty parameters and precise parameters for the discrimination
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parameiers. The priors specified were suggested in previous studies by other authors. The
different priors considered lead to similar estimates of the DIC (described in Spiegelhalter et al.,
2002) leading to the conclusion that the Bayesian analysis for the data set under consideration is
not sensitive to the priors considered. However, the priors considered in Sahu (2002), which

specifies that a,~N(1; 0.5)I(0; ) and b,~N(0; 2), j = 1,....], seems to us the most adequate because

it results in great precision for discrimination and difficulty parameter estimates.

For the models with link skew-probit, i.e., SPN and SPSN models, priors were specified for d; and
not (directly) for 4;, j= 1, ..., I, . The prior specified for diisU(-1,1).

For the models with asymmetry in the latent variable, i.c. SPSN and PSN models, we can
consider U; ~ SN(%), i=1, ... ,n. We consider with the SPSN model used for comparison, the
values suggested by the scores in the test which for data set is question leads to Hx =-0.804 and
02=6.329 . This specification is based in that the distribution of the scores in the test is a £ross
approximation to the distribution of the latent variable,

Initial values

We considered, as in Spiegelhalter (1996), initial values 1 and 0 for the item parameters a; and b;,
Jj=i ..., I respectively. For the SPSN model we consider value 0 for the parameterx: For the
SPN and SPSN models we propose as initial values d; = 0 for the asymmetry parameters because
it corresponds to the mean/expected value of the uniform distribution on (-1, 1). Initial values for
the latent variable U; and auxiliary latent variables corresponding to the different models (as Vi
and Wj), are considered as generated from standard normal distributions.

Markov chain convergence

Model SPSN is the more general. In the Math data set it involves 42 item parameters and 131

individual traits for the 131 individuals in the sample, but we can be interested only in the mean
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and standard deviation of the latent traits. Becausc a great number of chains must be generated for
the different parameters, the MCMC procedure becomes slow (with the algorithm considered, PN
model takes about 1 minute to run 1000 iterations on a Pentium IV Processor with 256 MB
- RAM). Informally, under the SPN model it takes twice the time it takes under the PN model;
under SPSN model it takes about 1.5 times it takes under the PN model, and the generation was
fastly complicated under PSN model. The time needed to run the chains for each model is also
related to the presence of structures of the latent variables and mixtures (Chen et al. 2000), and to
sample size (Sahu, 2002), which may significantly affect time of execution of SN-IRT models.

When using MCMC, the sampled values for initial iterations of the chains are discarded because
of their dependence on starting states. Also, with SN-IRT models, presence of autocorrelations
between chain values is expected when latent variables are introduced (Chen et al. 2000). Due to
it, thin values up to 100 are recommended. Several criteria computed using the CODA package in

the WinBUGS program, including the ones proposed by Geweke (1992) was used for to
convergence analysis. An alternative to considerer is generate a great number of iterations and
uses large values of thin. For example, Jacmank (2004) consider for the PN model, run half a
million of iterations retain only every thoushandth iterations so as to produce an approximately
independent sequence of sampled values from the joint posterior density.

Also Chen et al. (2000) mentioned that when the sample size n is large, (n > 50) slow converge of
the Albert-Chib algorithm (data angmentation approach) may occur. Slow-converge of the chain
corresponding to the asymmetry parameter is detected. Some algorithms to improve converge of
the Gibbs sampler in the second data augmentation approach is suggested in Chen et al. (2001).
Here we consider a large number of iterations, a total of 204000 iterations. Starting with a bumn-in

of 4000 iteration and them using thin=100, a sample size of 2000 is obtained.
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52 tem P ter Estimation: leme -School ematics Test Example
In educational evaluation research it is typical to detect differences in scholar performance due to
social-economic status, As an example, in a study conducted in Peru, Baz4n et al. (2001) report
differences observed in a mathematical test for sixth grade students in favor of students with
higher social-economic status. Test scores show a negative asymmetric distribution since most of
the students with higher social-economic status tend to obtain higher scores in the test.
In this application, 14 items of the Peruvian Elementary School Mathematical Test (UMC, 2001)
were applied to 131 students of high social-economical status. Iter response vectors are available
from authors upon request. The distribution for the scores presents a mean of 10.84, a median of
11 and a standard deviation of 1.859. The skew and kurtosis indexes are estimated as -0.804 and
0.449, respectively. The test presents a regular reliability index given by Cronbach’s alpha of
' 0.48, and presents a mean proportion of items of 0.774, indication of being an easy test. It is
shown that the scores present negative asymmetry in the behavior of sixth grade students for the
mathe.matical test; hence item-test regression for different items does not present symmetric form.
Although an item-test regression is not a close approximation to an item characteristic curve (Lord
& Novick, 1968, p. 363), it may indicate a possible form for the true item characteristic curve.
This justifies exploring SN-IRT models for this data set. This data set has been analyzed in Bazan
et al., 2004 using a PN model.
To illustrate the utility of SN-IRT models, SPN and SPSN models are fit and compared with the
fitting of the PN model. The main goal is to show advantages of the proposed models that

consider a new item parameter, which is able to extract more information from the items.

Table 1.

Comparing of the PN, SPN and SPSN models using different criterion
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Criterion Probit-Normal ~ Skew-probit-  Skew-probit-
model Normal Skew normal
model model
Number of parameters 159 173 174
Posterior expected deviance 1446.17 1317.28 1321.83
Deviance of the posterior means 1358.13 1365.11 1363.35
Effective number of parameters 88.04 -47.83 415
DIC 1534.21 1269.44 1280.32
Expected AIC 1750.17 1663.28 1669.83
1942.21 .

Expected BIC 94 1881.85 1889.66
SSR posterior mean 1853 1362 1351

From the posterior expected deviance, DIC, EAIC, EBIC values shown in Table 1, we see that the

SPN model improves the corresponding symmetric PN model and asymmetric SPSN model. This

later model also presents better fit than that of the PN model. This result is also observed by

considering the sum-of-squared-error (SSR) of the latent residuals (see figure 4), which SPSN

model can be alternative for the SPN model for the data set. In summary, the SPN model presents

the best for the data set. Spiegelhalter et al. (2002) mentions that pp in the table can be negative

and an explication for this fact is that it can indicate conflicting information between prior and

data. This problem can be important in SN-IRT models when prior information is not available.

Informative prior elicitation using historical data, as proposed by Chen, et al. (2001) and model

sensitivity to choose of priors can be explored in subsequent studies.
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FIGURE 4. Sum-of-squared-latent residuals (SSR) for PN, SPN and SPSN models

Tables 2 and 3 illustrate the behavior of item parameter estimates for probit-normal and skew-
probit-normal models. Estimates of item discrimination and difficulty parameters for the two
models present similar behavior as are presented in the Table 2. The two types of parameters are
equally interpretable under both models. Item 11 is the most discriminative while item 9 is the
least. Also, item 11 is the easiest while item 12 is the most difficult. So, the skew probit-normal
model is a model that offers the same conclusions about difficulty and discrimination parameters
as the probit-normal model.

Table 3 shows estimated parameter values corresponding to the asymmetry parameter d; instead of
the penalty parameter 4. We prefer to present inference on d; because it offers the same
interpretation in simples scale. Figure 5 presents the histogram of the posterior distributions of
parameter d, which indicates the presence of asymmetrical and symmetrical densities.

It is important say that by considering the notion of effective sample size (ESS) as used in Sahu

(2002) we find that the a parameters have best convergence. Convergence for the b parameters

30



seems less precise, an indication that a larger chain is needed. This seems also to be the case with
parameters d and A although in a somewhat minor degree. There is indication that better
convergence follows with the d parametrization than with the A parametrization. In summary, for

the asymmetry parameter, it seems better to work with d parametrization, but big variability is

observed.
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FIGURE 5. Histograms of the posterior distribution for parameter d

In Table 3 it is presented differences between posterior mean for the g; and b; parameters in the
probit-normal and skew probit-normal models. As expected, the difficulty and discrimination
parameters in the probit-normal model and skew-probit-normal model are approximately equal

when the asymmetry parameter is close 10 zero. As an estimate of penalty parameter dj it scems
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more convenient to consider the posterior median instead of the posterior mean by reasons of
asymmetry.

Items 11, 4, and 7 are the ones that present penalty parameter estimates dj larger and negative
(negative asymmetry on the item characteristic function), while discrimination and difficulty
parameters differ in the two models. The posterior probability of negative values for the
asymmetry parameter was computed for items 11, 4, and 7, resulting in the following values:
0.732, 0.614 and 0,632, respectively, which seems to indicate that these parameters are not equal
to zero. Hence, the assumption of a skew symmetric ICC seems adequate.

In the special case of items 11, 4, and 7, the difference between models as consequence of the
asymmetry parameter affects the difficulty parameter. Also observe that items 3 and 6 present
positive penalty parameter estimates indicating that they present ICC with positive asymmetry but
their value are not significantly different from zero, and also that the other items can be modeled
correctly by considering a probit-normal model with symmetrical ICC.

Item 11 says: “Luisa, Dora and Mary bought some cloth. Luisa bought half of a meter, Dora
bought 75 centimeters and Mary bought fifty centimeters. Which ones did buy the same quantity
of cloth?”. Item 4 says: “Pepe divides a number by 17, obtaining a quotient of 9 and a residual of
2. Which is the number he used?”. We believe that these items penalize students with better
knowledge while rewarding those with less knowledge. Students with better knowledge have very
little differences on their probability of success for an item, but for students with less knowledge a
little change on the terms used on the text of the item can produce a significant change on the
probability of success. This type of analysis cannot be done with the probit-normal model and

show possible advantages on psychometric interpretation of the skew models proposed.
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As Albert & Ghosh (2000) mention, it can be hard to interpret the difficulty parameter b;
since it is not expressible on the probability scale. An alternative measure of difficulty is the

unconditional probability of correct response p, (see Appendix B), which is the probability that

a randomly chosen individual from the population obtains a comrect response to the jth question
and can be interpreted as the proportion of student in the population that will correctly answer the
jth item. Table 4 presents the unconditional probability of correct response under the PN and SPN
models and the observed proportion of students in the sample, which correctly answer the jth item.
The unconditional probability is obtained using the expression in the Appendix B and is estimated

using the posterior median for item parameters.

Table 4.

Comparison of the estimated proportion of correct response under PN and SPN with the observed

proportion in the sample

Proportion Proportion Estimated-Observed
Item d estimated Observed Estimated
— Under PN model Under SPN model Under PN model Under SPN model

I -0.084 0.794 0.786 0.789 0.0075 0.0052
2 -0.053 0.855 0.851 0.854 0.0042 0.0007

3 0.010 0519 0.510 0517 0.0092 0.0022
4 -0.175 0931 0918 0.923 0.0134 0.0078
5 -0.136 0.870 0.863 0.872 0.0075 -0.0014
6 0.027 0.366 0.361 0.361 0.0053 0.0055
7 -0.219 0.924 0914 0.921 0.0102 0.0026
8 -0.108 0.878 0.860 0.870 0.0175 0.0077

9 -0.031 0.786 0.782 0.786 0.0044 0.0004
10 -0.084 0.863 0.854 0.861 0.0091 0.0015
11 -0.495 0931 0914 0.929 0.0173 0.0021

12 0.007 0.351 0.347 0.349 0.0036 0.0024
13 -0.072 0.824 0.818 0.823 0.0066 0.0010
14 -0.134 0.947 0.943 0.948 0.0040 -0.0012
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The unconditional probability of comect responses under PN an SPN models can be considered as
the estimated population proportion of correct responses and can be compared with the proportion
observed proportion in the sample. The comparison of the differences (estimated-observed) with
the penalty parameter is shown in the Figure 6. The solid circle corresponds to differences under
the SPN model, and the transparent circle corresponds to differences under the PN model. Note
that the distance between the differences in the proportion of correct response under PN and SPN
models are higher when the penalty parameter is higher as is the case of item 11. Thus, there is

strong evidence that for some items of the data set, the SPN model is more appropriate.
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FIGURE 6. Difference comparisons (estimated-observed) under PN and SPN models Jor the
penalty parameter d

Discussion
This article proposes a new asymmetrical item response theory model, namely, the skew-normal

item response theory model (SN-IRT) which considers a new asymmetric item characteristic



curve by considering the cumulative distribution of the standard skew-mormal distribution
(Azzalini, 1985), but also considering the standard skew-normal model for the distribution of the
latent variable. This new IRT model is denominated SN-IRT model. This extends the work of
Albert (1992) to fit asymmetrical IRT models and includes the symmetric normal ogive or probit-
normal model as a special case. Two data augmentation approaches are proposed by
implementing a Bayesian estimation approach by using the MCMC methodology for simulating
from the posterior distribution of item parameters and latent variables. In the first, MCMC
methodology can be implemented by using the Metropolis-Hasting algorithm describes in Chib &
Grenberg (1995).

In the second data augmentation approach MCMC methodology can be implemented by using
simple Gibbs Sampling algorithms. Another contribution of this article is the investigation of
model comparisons procedures. Comparison of symmetrical and asymmetrical IRT models are
studied by using the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002), Expected
AIC and expected BIC (Carlin & Louis, 2000 and Brooks, 2002). We also introduce latent
residuals for the models and global discrepancy measures as the posterior sum of squares of the
latent residuals, which can be used for model comparisons.

Finally, we give some interpretation to the new item parameter proposed called penalization
parameter in the context of a data set from a mathematical test. It is also shown that the SPN
model seems to present the better fit for the observed data. Although the HPD intervals in Table 3
indicate that the penalization parameters are not different from zero, so that a PN mode! would be
more adequate to fit the data, we prefer to base our conclusion on which model to choose by using
criteria such as DIC, expected AIC and expected BIC for the comparison between estimated and

expected proportion of correct responses. This is due to the fact that the estimates of penalization
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parameters present large variances, perhaps consequences of too small sample size. Extensions to
consider 2 model SN-IRT multidimensional model, hierarchical SN-IRT model, SN-IRT
multinive]l model can be studied in future developments.

Furthermore, the new skew-probit link proposed in the paper, based on the cumulative distribution
of the standard skew-normal distribution (Azzalini, 1985), can be used in the context of binary
and binomial regression models and extensions. Adaptations of the algorithms proposed on the
paper for these cases are easy to be done. Other extensions of the skew probit link for ordinal

responses as in Johnson (2003) are also to be studied in future development.
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Table 2.

Posterior mean, standard deviation (sd) and 90 % HPD intervals for the common parameters under

the IRT Probit-normal and Skew-probit-normal models

Probit-Normal Model Skew Probit-Normal Model
HPD HPD HPD  HPD
mean sd  median  Lower Upper mean sd _ median Lower Upper
a; 0535 0228 0520  0.149 0.880 0491 0222 0469 0147 0.860
a; 0300 0181 0280  0.007 0.557 0269 0172 0245 0.001 0.499
a; 0552 0228 0531 0.197 0.912 0496 0209 0480 0.141 0809
ay 0915 0348 0889  0.332 1.462 0.856 0351 0824 0252 1375
as 0512 0249 0493 0.117 0.912 0465  0.231 0440 0093 0824
as 0314 0166 0299  0.026 0.551 0.284 0.154 0267 0040 0524
a; 0838 0341 0801 0.307 1.375 0.801 0341 0755 0251 1339
ag 0959 0350 0928  0.350 1.470 0.885 0331 0858 0341 1401
ay 0.199 0.140 0.171 0.001 0.393 0.180 0130 0158 0.000 0355
ap 0496 0237 0479 O0.MN12 0.879 0451 0233 0430 0053 0782
ay 1323 0394 1296  0.662 1.915 1.266 0435 1232 0559 1928
ap 0387 0196 0369  0.043 0.668 0357 0179 0340 0.047 0616
ass 0457 0225 0432 0.096 0.801 0405 0212 0379 0048 0726
ay 0445 0276 0411  0.000 0.825 0404 0257 0364 0002 0753
b, ©.900 0.153 -0.895 -1.124  -0.630 -0.780 0421 -0.817 -1449 -0.123
b -1.083 0.144 -1.080 -1.308 -0.840 0976 0426 -1.043 -1.613 0285
b3 0.026 0127 0028 -0.217 0.195 0.049 039 -0055 -0.691 0.567
by -1.902 0338 -1.861 -2.409 -1.374 -1.662 0.581 -1.701 -2591 -0.690
bs <1232 0178 -1218  -1.524 -0.852 -1.057 0458 -1.124 -1.798 -0.337
b 0373 0.121 0.37t 0.181 0.570 0.328 0392 0347 -0304 0933
124 <1779 0317 -1.746  -2.267 -1.278 -1.519 0561 -1.578 -2397 -0574
by -1.517 0294 -1476 -1.953 -1.045 -1.332 0512 -1.396 -2.060 -0417
by 0794 0131 -079%0 -1.010 -0.592 -0.731 0406 -0777 -1330 -0079
bro -1.179 0176 -1.166 -1.467 -0.898 -L051 0441 -1.112 -1709 -0321
by <2290 0440 2236 -3.025 -1.663 -1.829 0719 -1.862 -2945 -0.586
by 0424 0123 0418 0226 0.627 0388 038 0405 -0.199 1.021
bys -0.995 0156 -0988 -1.230  -0.740 0.884 0438 -0934 -1526 -0.174
bre -1.726 0239 -1.705 2111 -1.388 -1.522 0502 -1.612 -2306 -0.736
umean 0.045 0087 0.045 -0.105 0.1819 0036 0.087 0039 0109 0.178
usd 0933 0062 0933 0.872 1.039 0931 0060 0930 0828 1.027
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Table 3.

Posterior mean, sd and 90 % HPD intervals for the d parameters under the fitted skew probit-

normal model
Difference between PN
Posterior Statistics and SPN models
Lower Upper Mean Mean difference
mean sd median HPD HPD  differenceina inb

di -0.058 0.486 -0.084 -0.772 0.823 0.044 -0.120
az -0.021 0499 -0.053 -0.787 0.843 0.031 -0.108
d3 0.018 0.489 0.010 -0.802 0.781 0.056 0.023
d4 -0.110 0.525 -0.175 -0.892 0.788 0.059 -0.240
d5 -0.089 0.488 -0.136 -0.896 0.665 0.046 -0.175
d6 0.006 0.488 0.027 -0.849 0.730 0.030 0.044
d7 -0.145 0.516 -0.219 -0.975 0.640 0.037 0.260
ds 0.077 0.506 -0.108 -0.854 0.767 0.074 0.185
d9 -0.002 0.501 -0.031 -0.850 0.778 0.019 -0.064
d1o -0.048 0488 -0.084 -0.850 0.740 0.044 -0.128
d11 -0.334 0.554 -0.495 -1.000 0.571 0.057 -0.461
d12 -0.006 0484 0.007 -0.737 0.826 0.031 0.036
d13 -0.028 0510 0.072 -0.834 0.830 0.052 -0.111

di4 -0.074 0.505 -0.134 -0.864 0.741 0.042 -0.204




Appendix A

The skew-normal distribution
As considered in Azzalini (1985), a random variable X follows a skew-normal distribution with

location parameter y and scale parameter ¢, if the density function of X is given by

fx(x)=3.¢(x_'_/_‘}p(,1_x_—ﬁ),
c\ o G

where @(.) and @(.) denote, respectively, the density and distribution function of the standard

normal distribution, with the notation X ~ SN(u,&%, A) used in this paper. The density above is
denoted by @q, (x; 4,07, 4). Note that if A = 0, the density of X above reduces to the density of
the N(p,o’ ). In the special case of u = 0 and &° = 1, which we denote as X ~ SN(A), it is called

the standard skew-normal distribution.

The random variable Z = (X — p)/o is distributed according to the standard skew-normal
distribution with density function given by f,(z)=2¢(z)®(Az) represented by ¢sa(z; A). The

cumulative distribution function (cdf) of Z, denoted by @sp(z; ), is:
Dy (5A)= [Py (w: Ddu= [290)D(A)du =20, ((z0)7 0,0).

where straightforward algebraic manipulations yield the expression on the right with

d= L |d| <1 and @(.) denotes the distribution function of the bivariate standard normal

(+2)"*

i

distribution with mean vector 0=(0,0)T and correlation matrix Q:( 4

—d)
) \ For simplicity, we

denote 20, ((z,O)’ ,O,Q) by 2@, ((Z,O)' —~d ) This result indicates that the cdf of the skew-normal
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distribution evaluated at a point z can also be obtained by considering the bivariate standard
normal cumulative distribution with mean vector 0=(0,0)" and correlation coefficient —d
evaluated at the point (z, 0). This result is important since several computational algorithms are
available for computing integrals related to the cumulative distribution of the bivariate normal
distribution. Another algorithm for the cdf of skew-normal distribution based in the use Owen’s
function (Azzalini, 1985, Dalla Valle, 2004) is available for R and Matlab program in
http:/ftango.stat.unipd.it/SN/

Notz that if A=0, then @ g, (z;4)=0(z), the cdf of standard normal distribution. Some important

properties of the skew-normal distribution are the following (see Azzalini 1985, Henze,1986)

e [T S SR
1. X ~ SN(, o’,l),E(X)-/HJ;m and Var(X)—['—m”z}f ;

2. If Z ~ OSN(4), the asymmetry and kurtosis indexes- are given by

Ez]T"” E*z]T

1 . o o B
= 5(4 - ﬂ')slg(ﬂ.)[m_l and x = 2(7!' 3)[mj 5 1mplymg that

~0.9953<y <0.9953 and 0<x<0.8692 ;

3. If Z ~ SN(A), it follows that — Z is SN(-A) ;

4. The density of Z is strongly unimodal, i.e. Jogd(z; A) is a concave function of z;

5. 1= 0@~ =0(z; A and O(z; 1) = ¥*();

6. supzl O(2) — O(z;A)| = arctan Al /r,

7. An important stochastic representation (Henze, 1986) states that, if V ~ HN(0, 1) the standard
half normal distribution (see, Johnson et al. 1994) and W~N(0, 1) are independent random

d

variables then, the marginal distribution of Z = dV + (I — &)W, is SN(A), with A = .
1-d?
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8. Considering the stochastic representation in Property 7, the conditional distribution ZIV=v is a
normal distribution with mean dv and variance I ~&, i.e. ZIV=v ~ N(dv, 1 —d%). This represents
an important hierarchical representation of the skew-normal distribution similar to the one derived

for the Student-t distribution.

Remark 1. By applying the properties of the skew-normal distribution and using variable

transformation it follows that, if Z ~SN(p, o)), then Zs =aZ + b ~ SN(ap + b, ad, sign(a)A).
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Appendix B
Unconditional Probability of correct response under SN-IRT models
The following property of the SN-IRT family its a generalizations with respect to the usual
property for symmetric probit-normal models.
Property 1. Consider the skew-probit skew-normal (SPSN)-IRT model with item parameters
1;,=(a;,b;) and d, and denoting the conditional probability of correct response with a latent
variable u, as py = P(¥; =1lu,,7m,)= piu) , then, the unconditional probability of correct
response for the item j is

(l+a7 -d, ajx"ﬂ

p;= ,El’i(“)t"m(u;rr)du=4q>3 [ 01}[0): _d, : .
La&x 0 l+k’_J

J=1....1.

Proof. The proof uses the following property of the normal distribution given by Liseo &
Loperfido (2003) that is useful for computations with the skew-normal distribution. If Z ~ Ni(uy,

I), u is an m-dimensional vector and A a full rank matrix, with m<k, then,

E,[~:I>,.(u+AZ;;lz,Q)]=<IJ._(u;/12 —Ap,Q+ AZAT). In particular, if Z ~ N(O, 1), it follows

that E(®(hZ +k))= D( khz) (see Azzalini, 1985).

vy

Similar arguments as in the proof given in Albert (1992) to the case of the usual symmetric probit-

normal model can be used.
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Two special cases are of interest. If we consider asymmeuy only for the ICCs (x= 0), the model

becomes the skew-probit normal (SPN) IRT model, then,

0)(1+a> -d,Y -b, -d,
’ ! =¢SN ;0’17 2 s
0jl-d, 1} .‘/“'“2 Jl+a’+dl?

J

[(-b
p; = _[’_’p,-(u>¢s,,(u;x)du=2¢2{( o

j=1,...,1.
On the other hand, considering only asymmetry for the latent variable, (i.e d;= 0), the models

become the probit skew-normal (PSN) IRT model, and we obtain

_ 2
P;= [:Pj(")%u(“;ﬂd“:z‘sz :I}[gj tra; ax ]-I

2
| ax l+k ||

The two expressions above present generalizations with respect to the usual symmetric probit-

L, j=1,...,1.

normal model because if there is no asymmetry in the item characteristics curve and in the latent

variable we obtain that the conditional probability of obtaining a correct response for item j is

as presented in Albert (1992). This is the probability that a randomly chosen

-b. .
p4=¢ J
! [:i1+a12.

individual from the population obtains a correct response for theitem j i=1,...,D.
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