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ABSTRACT

A quantitative understanding of bremsstrahlung by electrons in the screened field of atomic nuclei has been developed by several researchers over the last 80 years.
However, some ranges of the possible parameters can still not be covered with good accuracy. Dirac partial-wave calculations are the best method developed to date,
while analytic calculations are the only viable solution at high impinging electron energies. Recent progresses on both fronts will be discussed. In particular, state of
the art partial wave results, including screening, allowed to test the Olsen-Maximon-Wergeland additivity rule discovered by analytic means. Closed expressions for
the next-to-leading order corrections to the Furry—-Sommerfeld-Maue wave functions are known. One next-to-next-to-leading order term is typically included in this
type of approach. The effect of this extra term on the angular dependence of the double differential cross sections for photon emission by 2.5MeV electrons is

compared in detail with partial wave calculations which are exact at all orders.

1. Introduction

The basic description of bremsstrahlung emission by an electron in
the Coulomb field of the atomic nucleus is known since more than 80
years ago, when the first non-relativistic calculation by Sommerfeld
(1931) and the first relativistic ones by Sauter (1934), Bethe and Heitler
(1934), Bethe (1934), and Racah (1934) were performed within the
first Born approximation. Bethe and Maximon (1954) discovered that
such a method is too crude for a process happening in a Coulomb field
by employing the Furry-Sommerfeld-Maue (FSM) wave functions
(Furry, 1934; Sommerfeld and Maue, 1935). They found that non-
vanishing corrections remain present even in the high energy limit. The
difficulties exposed by Bethe and Maximon have only been removed
with partial success over the following 60 years: they stem from two
main origins: i) the exact solution of the Dirac equation, even for a pure
point-like Coulomb field, is not known in closed analytic form and ii)
the field of the atomic nucleus is screened by the presence of the atomic
electrons and this has to be included in the calculations. A full solution
to both issues, that can be employed for all atomic numbers, impinging
electron energies, and photon emission angles is still missing nowadays.

Two main routes of approach to these difficulties have been fol-
lowed along the years: one heavily numeric based on the expansion of
the initial and final electron wave functions in terms of partial waves
and one analytic trying to include higher-order corrections to the FSM
wave functions. A review of the latter was published recently by
Mangiarotti and Martins (2017). Here we will discuss further progress
made on both fronts.
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2. Dirac partial-wave calculations

This method is based on partial wave expansions of the initial and
final electron wave functions, that are then inserted into the Fermi
Golden Rule to obtain a triple differential cross section (TDCS). By re-
presenting the photon field as a superposition of angular momentum
eigenstates, the angular integrals (i.e. the one over all directions in
space, appearing in the Fermi Golden Rule, and the one over the solid
angle of the final electron necessary to arrive at a double differential
cross section (DDCS)) can be evaluated analytically, leaving only radial
ones to be performed numerically (see e.g. the paper by Tseng and Pratt
(1971)). Because the continuum wave functions occurring in such in-
tegrals oscillate strongly, this step is the most serious difficulty that has
to be overcome to obtain reliable values of the cross section. The first
calculations with this Dirac partial-wave (DW) method were performed
by Tseng and Pratt (1971), who were able to produce an extensive set of
tables covering all elements and impinging electron energies E. up to
2MeV (Pratt et al., 1977, 1981). The main advantage of this approach
was already exploited by Tseng and Pratt: since the radial integrals
have anyhow to be performed numerically, the partial wave expansion
can be applied to realistic (numerical) wave functions for a radially
symmetric potential which includes the screening by the atomic elec-
trons (described accurately with the help of atomic structure calcula-
tions). However, in order to advance to higher values of E,, the number
of partial waves necessary for convergence increases dramatically. This
makes the computation extremely time-consuming. Only sparse at-
tempts were made by Tseng and Pratt (1979) to reach energies above
2MeV up to 10 MeV.
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An important progress over the work by Tseng and Pratt was made
by Yerokhin and Surzhykov (2010), who borrowed the complex-plane
rotation method (CRM) from nuclear physics to cope with the strongly
oscillating radial integrals of bremsstrahlung. This improves the quality
and stability of the results, but it is important to note that it does not
reduce the number of partial waves needed to achieve convergence for
a certain value of E.. Moreover, in particular at backward angles and
with increasing E., the TDCS starts to oscillate with the number of
partial waves which are included in the calculation. Yerokhin and
Surzhykov published results up to E. = 3 MeV. Jakubassa-Amundsen
(2016) extended the CRM to cover the case of nuclear finite-size po-
tentials. Refining the numerical code, it became possible to cover en-
ergies up to E. = 30 MeV for some selected geometries.

Mangiarotti and Jakubassa-Amundsen (2017) have noted recently
that the code by Jakubassa-Amundsen can be coupled with the Ol-
sen-Maximon-Wergeland (OMW) additivity rule (Olsen et al., 1957),
known analytically, to include screening in an exact calculation for a
pure nuclear field. The main advantage being that, for a potential that is
Coulomb-like at large distances, the solution of the Dirac equation for
scattering states possesses an asymptotic representation in terms of
Whittaker functions (Yerokhin and Surzhykov, 2010), allowing to speed
up the convergence of the radial integrals. The OMW prescription sti-
pulates that, at high energies, it is possible to determine the exact cross
section with screening by correcting the exact cross section without
screening by the difference between screening and no screening ob-
tained in the first Born approximation

2o screened 2o \© screening
(dkdﬂk) ~ (dkdﬂk)

exact exact
2o screened 2o \° screening
dk da Born dic e Born (1)

where k is the momentum of the photon and dQ its solid angle of
emission. It is important to remark, as noted by Olsen (1955), that such
an additivity rule can only be applied to single or double differential
cross sections but not to triple differential cross sections.

The use of Eq. (1) was validated by Mangiarotti and Jakubassa-
Amundsen (2017) employing DW calculations with screening from
Tseng and Pratt (1971). However, by using a realistic atomic potential
in the Salvat et al. (1995) code RADIAL for solving the Dirac equation,
and employing the Yerokhin and Surzhykov prescription of the CRM for
neutral potentials, it is possible to directly check the applicability of Eq.
(1), as done in Fig. 1. The red squares are the results for the DDCS from
a DW calculation for a pure point-like Coulomb field. The red dot-da-
shed line is obtained by interpolating these points with a spline and
including screening via Eq. (1) using the first Born approximation and
the atomic form factors by Hubbell et al. (1975, 1977). The blue solid
line is the spline interpolation to the DW calculations for a realistic
central potential (which takes into account finite nuclear sizes, even if
they are irrelevant for the calculations presented). The two lines are
very close, indicating the validity of the OMW additivity rule. The other
two curves in Fig. 1 represent analytic approaches and are discussed in
the next section. The agreement with the experimental data, for the
case shown here in Fig. 1 and the others shown in the paper by
Mangiarotti and Jakubassa-Amundsen (2017), demonstrates that, for E.
above 1 MeV and within current experimental accuracies, the inclusion
of higher-order corrections to the initial and final electron wave func-
tions, is, in principle, only necessary for the evaluation of the cross
section in a pure point-like Coulomb field, while the effect of screening
can be calculated to leading order within the first Born approximation.

For a small photon energy with respect to E., where screening ef-
fects are large, we have investigated the accuracy of the OMW ad-
ditivity rule for even smaller collision energies. As shown in Fig. 2, the
results from the screened DW calculations and from the OMW-corrected
unscreened DW calculations are in fairly good agreement, except at the
lowest energies. The differences are larger for Pb than for Sn, under the
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Fig. 1. Bremsstrahlung DDCS for 1.0 MeV electrons colliding with Sn and
emitting photons at an angle of 6, = 10° as a function of the photon energy w.
Legend: filled squares (red), unscreened DW; - (blue), screened DW;
————— (red), OMW-corrected unscreened DW; ------ (pink), screened LO;
————— (green), screened NNLO; circles with error bars, experiment (Rester
and Dance, 1967). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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Fig. 2. Bremsstrahlung DDCS for electrons colliding with Sn and Pb as a
function of the kinetic energy E. of the impinging electron for a photon emis-
sion angle of 6y = 10° and a photon energy w = 0.2 E,. Upper curves, Pb; lower
curves, Sn. Legend: - (blue), screened DW; —.—.— (red), OMW-cor-
rected unscreened DW; ------ (pink), screened LO; — — — — — (green), screened
NNLO. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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same conditions.

3. Analytic calculations

The Dirac equation, which is a linear first—order partial differential
equation (PDE), can be transformed into the iterated Dirac equation,
which is a linear second-order PDE, as suggested by Sommerfeld and
Maue (1935). The iterated Dirac equation, when only the terms of
leading order in o Z are kept (where a is the fine structure constant and
Z the nuclear charge), has the same structure as the Schrodinger
equation and can thus be solved exactly for a pure point-like Coulomb
field. The electron wave function in a pure point-like Coulomb field can
then be written as

Y=y,+@Z)h + @Z)PP, + -, &)

where the expansion point 1), is the mentioned exact solution of the
iterated Dirac equation to leading order. Sommerfeld and Maue also
obtained a closed form for the next-to-leading order (NLO) correction to
the wave function (for consistency, NLO terms have also to be added to
the iterated Dirac equation) arriving at the following approximation of
the initial and final electron wave functions

Wesm = ¥, + Py, 3

where 3, =, and ¢, = (a Z) 9,. The form suggested earlier by Furry
(1934) is actually less friendly to be manipulated than the one found by
Sommerfeld and Maue.

Because 3, already contains part of the interaction in a nonlinear
way, establishing a fixed order in a Z of the nuclear bremsstrahlung
matrix elements generated by Wgsy is not trivial. However, as proved by
Bethe and Maximon (1954), all the matrix elements of first order in o« Z
are considered in

Mpy = Myaga + Maa1w + Mo 1as 4)

where the subscripts indicate whether 1,, subscript (a), or ¥,, subscript
(b), are used for the initial, subscript (1), or final, subscript (2), states.
Elwert and Haug (1969) performed the first complete calculation of the
TDCS without any further approximation, beyond the use of the matrix
elements from Eq. (4).

Higher order corrections in the framework of the FSM wave func-
tions were considered by Roche et al. (1972) (a review of the attempts
to include higher-order corrections in the framework of the Born ap-
proximation was given by Mangiarotti and Martins (2017)). The diffi-
culties that have to be overcome are twofold. Firstly, the term of second
order in o Z in the expansion of Eq. (2) has no closed analytic form.
Roche et al. (1972) used an expression valid only in the high-energy
limit and thus adopted for the initial and final electron wave functions
the approximation

Yrpp = Yrsm + P = P, + P + Y. s (5)

where 1, = (¢ Z)?¢,. Secondly, the result by Bethe and Maximon
(1954) must be extended to establish all the matrix elements that have
to be included to get a correct result for the TDCS at the NLO. This is not
a trivial problem because it involves two degrees of freedom: one is o Z
and the other is the electron energy. In fact, because of the initial ap-
proximation made in 3, which can not be used at low energies, it does
not make sense to include matrix elements of the correct NLO order in
a Z which are unimportant in the high energy limit. Roche et al. (1972)
investigated this question and found that all the NLO matrix elements
relevant at high energies are

Mgop = Mpm + M. (6a)
M. = MZa,lc + MZc,la (6b)

and so, for example, the term My, 11, discarded by Bethe and Maximon
(1954), compare Egs. (4) and (6), continues to be omitted. Finally, one
last issue is present when the square modulus of Eq. (6a) is taken. The
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consistent result at the NLO is
IMgpp Rro = IMpmP? + 2 Re(Mgy M) @)

However, Roche et al. (1972) maintained an extra next-to-next-to-
leading order (NNLO) term originating from the square modulus of Eq.
(6a),

IMipp Rinco = IMpm? + 2 Re(Mghy M) + IM 2 ®

because they argue that it can be easily calculated and it improves the
agreement with low-energy data. This choice, to the best of our
knowledge, has since then been followed by all authors who employed
their results: Haug (2008), Mangiarotti and Martins (2016), Mangiarotti
and Martins (2017) and Mangiarotti and Jakubassa-Amundsen (2017).
However, it has to be clearly stressed that while Eq. (7) is a consistent
truncation scheme of the expansion of the TDCS in « Z at high energies,
since it includes all terms at the NLO important at high energies, Eq. (8)
is not a consistent expansion of the TDCS in a Z at high energies be-
cause other NNLO terms of the same order and most probably im-
portant at high energies are missing. The actual formulae for the TDCS
can be found in the mentioned references (Roche et al., 1972; Haug,
2008; Mangiarotti and Martins, 2016, 2017).

To compare this kind of calculations with data, one last step is
missing: the inclusion of screening, which is accomplished along the
lines described in the previous section employing the OMW additivity
rule, i.e. Eq. (1). This was actually suggested by Haug (2008) and then
has been employed to study the high-energy limit by Mangiarotti and
Martins (2016). The arguments given by Mangiarotti and Jakubassa-
Amundsen (2017) and strengthened in the previous section, justify this
approach for electron energies near and above = 0.5-1 MeV. Generally,
the measurements of DDCSs are well reproduced for low—Z elements at
all photon energies and also for intermediate-Z ones, if not too large
angles are involved (see Fig. 1 and the results presented in our earlier
works). For high-Z elements, a specific failure has been identified at
large angles or close to the high energy limit, even for small angles. As
shown by Mangiarotti and Jakubassa-Amundsen (2017), these defi-
ciencies are not present when the OMW additivity rule is applied to the
exact unscreened cross sections from the DW method and are hence not
due to the use of such a rule, but rather to the adoption of inconsistent
analytic calculations for the unscreened cross sections.

Here we want to investigate how much of this failure, in particular
for the DDCS at increasing photon emission angles, is due to the use of
just one NNLO extra term in Eq. (8). To this aim, we compare sys-
tematically the DDCSs obtained from Eq. (7) with the ones from Eq. (8)
for Cu at 2.5MeV in Fig. 3. When experimental data are missing, we use
as reference for the correct results the DW calculations obtained with
the use of the unscreened DDCSs for a pure point-like Coulomb field
(finite nuclear size effects are absent for Cu even at 2.5 MeV and for a
photon emission angle of 150°) and the OMW additivity rule. It is clear
that the LO calculations underestimate, at large angles, the DW results,
correct at all orders, while including the NLO terms consistently brings
a rather good agreement. Contrary to the previously widespread belief,
the NNLO term results in an overestimation of the cross section that
increases with angle. This problem was noticed already by Mangiarotti
and Jakubassa-Amundsen (2017), but there the adverse effect of this
single NNLO term was not sorted out separately from all the others. As
shown in that paper, the agreement for Al is already good at the LO for
all angles, here we have shown that when the NLO correction is applied,
Cu is also rather well reproduced. By comparing the red squares, that
are the DDCSs from a DW calculation for a pure point-like Coulomb
field, with the red solid curves, that are the corresponding DDCSs for
the atomic potential obtained by a spline interpolation and the OMW
additivity rule, it can be concluded that screening is irrelevant in all
cases except for Fig. 3a and below =~ 1.25 MeV. Thus, only the analytic
calculation for a pure point-like Coulomb field can be responsible for
the mentioned behaviour at large angles. It is possible to grasp
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Fig. 3. Bremsstrahlung DDCS for 2.5 MeV electrons colliding with Cu at photon emission angles of (a) 10°, (b) 30°, (c) 60°, (d) 90°, (e) 120°, and (f) 150° as a function of
the photon energy w. Legend: filled squares (red), unscreened DW; - (red), OMW-corrected unscreened DW; ------ (blue), screened LO; — — — — — (pink),
screened NLO; —-—-— (green), screened NNLO; circles with error bars, experiment (Rester and Dance, 1967).
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intuitively that both the NLO correction is more important at larger
angles and that screening is absent, because under such a condition the
momentum transfer is higher and semi-classically the photon is emitted
closer to the nucleus, where the initial and final electrons are poorly
approximated by a plane wave or the FSM expression and the effect of
the atomic electrons is small.

4. Conclusions

Current analytic models for bremsstrahlung double differential cross
sections have been tested by a comparison with the state-of-the-art
Dirac partial-wave theory. In particular, it has been found that the
OMW additivity rule, combined with the DW theory for unscreened
targets, gives very good results for collision energies above = 0.5-1
MeV, which proves the applicability of this prescription when screening
has to be taken into account. Moreover, it has been shown that the
distortion effects of the initial and final electron wave functions close to
the nucleus are reasonably well reproduced at all photon energies and
angles by the NLO prescription, for atomic numbers approximately up
to that of Cu, while the use of just one NNLO term, as conventionally
done in analytic bremsstrahlung models, leads to incorrect results at the
higher angles.
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