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Abstract
Many practical problems require the solution of large-scale constrained optimiza-
tion problems for which preserving feasibility is a key issue, and the evaluation of 
the objective function is very expensive. In these cases it is mandatory to start with 
a feasible approximation of the solution, the obtention of which should not require 
objective function evaluations. The necessity of solving this type of problems moti-
vated us to revisit the classical barrier approach for nonlinear optimization, provid-
ing a careful implementation of a modern version of this method. This is the main 
objective of the present paper. For completeness, we provide global convergence 
results and comparative numerical experiments with one of the state-of-the-art inte-
rior-point solvers for continuous optimization.
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1  Introduction

Algorithms for solving continuous constrained optimization problems are iterative. 
Very frequently a feasible initial point is not available so that we must start with 
an approximation x0 that is neither feasible nor optimal. Most algorithms compute 
successive iterations trying to achieve feasibility and optimality more or less simul-
taneously or, at least, without giving priority for one feature over another. Moreover, 
optimization algorithms usually compute both the objective function and the con-
straints (almost) at every iteration. When the objective function is very expensive 
and the evaluation of constraints is cheap, this may be a poor strategy. On the one 
hand, many times, what users really need is a feasible point with a reasonable objec-
tive function value. On the other hand, finding a feasible point may demand a non-
negligible number of iterations that could become very expensive if we are forced to 
evaluate the objective function simultaneously with the constraints.

These observations lead us to prefer algorithms that start at a feasible point and 
preserve feasibility at every iteration. Classical barrier methods, introduced by 
Frisch (1955) and Fiacco and McCormick (1968), are among the most attractive 
alternatives for solving constrained optimization problems with those characteristics.

In this paper, we address the case in which the constraints are linear. Namely, the 
problem considered here will be:

where x ∈ ℝ
n , f ∶ ℝ

n
→ ℝ is twice continuously differentiable, A ∈ ℝ

m×n 
�, u ∈ (ℝ ∪ {−∞,+∞})n , and m < n . Let F = {x ∈ ℝ

n ∣ Ax = b and � ≤ x ≤ u} be 
the feasible set for problem (1) and

be the set of points that strictly satisfy the box constraints of  (1), called the rela-
tive interior of F  . If an initial feasible approximation is not available, we assume 
that such approximation may be obtained at low cost by a suitable Linear Program-
ming solver or an specific method for solving affine feasibility problems. Moreover, 
we assume that, by means of an appropriate pre-processing scheme, we purify the 
matrix A in order to have linear independent rows.

Pioneered by Frisch (1955) for convex problems, and further analyzed by Fiacco 
and McCormick (1968) for general nonlinear programming problems, interior-point 
methods had a revival with the work of Karmarkar (1984) within the linear pro-
gramming context, specially after the equivalence with logarithmic barrier methods 
has been established by Gill et al. (1986). The renewed interest in logarithm barrier 
methods for the general nonlinear programming problem led to the development of 
the Ipopt algorithm, proposed by Wächter and Biegler (2006). This is one of the 
state-of-the-art solvers used nowadays in theoretical and practical problems.

The barrier method described in this work starts with an interior approximation 
such that � < x0 < u and Ax0 = b . Given an interior feasible xk , the new iterate xk+1 

(1)Minimize f (x) subject to Ax = b and � ≤ x ≤ u,

(2)F0 = {x ∈ ℝ
n ∣ Ax = b and � < x < u}
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is computed using matrix decompositions and manipulations by means of which 
instability due to extreme barrier parameters is avoided as much as possible and, 
additionally, possible sparsity is preserved. At each iteration, a linear system of 
equations is solved by means of which one computes new primal and dual approxi-
mate solutions. This system approximates KKT conditions for the minimization of a 
quadratic approximation of the function subject to the linear constraints, except for 
the fact that the primal n × n matrix, which represents the Hessian of the Lagran-
gian, might need to be modified in order to preserve positive definiteness onto the 
null-space of A. In other implementations of primal–dual methods (see, for example 
Wächter and Biegler 2006), an additional (primal) modification may be demanded 
to ensure that a solution of the KKT system exists. This modification is not needed 
at all in our approach due to the pre-processing scheme that guarantees full-rank 
of the matrix A. In linear constrained optimization, the primal modification may 
cause a temporary loss of feasibility of the next iterate, a feature that we want to 
avoid completely due to the characteristics of the problems that we have in mind, as 
stated above. We will show that the resulting method is globally convergent under 
mild assumptions, preserving feasibility of constraints along the iterations, therefore 
guaranteeing a feasible solution at the end of the optimization process. The proposed 
method has been implemented, and a comparative numerical study with Ipopt is 
provided.

Ipopt is a method for solving optimization problems with constraints of the form 
h(x) = 0 , � ≤ x ≤ u , where the function h is, in general, nonlinear. In the case in 
which h(x) ≡ Ax − b , assuming that the iterate xk is feasible and interior (that is, 
Axk = b and � < xk < u ), the Ipopt basic iteration may be described as follows. 
Assume that 𝜇 > 0 is a barrier parameter and that B(x,�) is the corresponding log-
arithmic barrier function, which is well defined whenever � < x < u and goes to 
infinity when x tends to the boundary. Consider the Newton iteration corresponding 
to the nonlinear system defined by the optimality conditions for the minimization of 
f (x) + B(x,�) subject to Ax = b . This leads to a linear system of equations whose 
matrix may not satisfy desired inertia conditions. In order to correct this inertia, the 
whole diagonal of the matrix may be modified. The solution of the corrected linear 
system leads to a trial point that may violate both the (interiority with respect to the) 
bound constraints � ≤ x ≤ u and the linear constraints Ax = b . This is because, after 
correction, the search direction may not belong to the null-space ofA. The lack of 
interiority with respect to the bound constraints is fixed by means of a restriction of 
the step size. This is not the case of the infeasibility with respect to Ax = b , which 
is fixed using the same restoration procedure that is used in the nonlinear case. The 
acceptance of the trial point obeys to a filter criterion that combines a measure of 
infeasibility and the objective function value. The main differences with respect to 
the method presented in this paper are: (i) the inertia correction does not involve 
the modification of whole matrix’s diagonal, as we assume that A is full-row rank, a 
feature that is guaranteed by a pre-processing scheme. As a consequence, feasibility 
is always preserved and restoration is never necessary; (ii) the acceptance of the trial 
point is related to sufficient descent for the merit function f (x) + B(x,�).
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The rest of this work is organized as follows. Section 2 introduces the proposed 
barrier method. Section  3 presents its theoretical convergence results. Section  4 
shows implementation details and exhibits numerical experiments. Conclusions are 
given in the last section.

Notation If v = (v1,… , vn)
T ∈ ℝ

n , diag(v) denotes the n × n diagonal matrix whose 
diagonal entries are given by v1,… , vn . If K = {k1, k2,…} ⊆ ℕ with kj < kj+1 for all j 
then we denote K ⊂

∞
ℕ.

2 � Proposed barrier method

Let us consider the problem

where

� is a positive parameter, I
�

def
= {i ∶ �i ≠ −∞} , and Iu

def
= {i ∶ ui ≠ +∞} . The 

Lagrange conditions for (3) are given by

e being the n-dimensional vector of all ones, the diagonal matrices L and U defined 
componentwise by

with pseudo-inverses L† and U† given by

Defining

we have

where Z� = diag(z
�
) and Zu = diag(zu) ; and, putting all together into (5), we obtain 

(3)Minimize��(x) subject to Ax = b,

(4)��(x)
def
= f (x) − �

∑
i∈I

�

log(xi − �i) − �
∑
i∈Iu

log(ui − xi),

(5)∇f (x) + AT� − �L†e + �U†e = 0

Ax − b = 0,

(6)Li,i =

{
xi − �i, if i ∈ I

�

0, otherwise
and Ui,i =

{
ui − xi, if i ∈ Iu

0, otherwise,

L
†

i,i
=

{ 1

xi − �i

, if i ∈ I
�

0, otherwise
and U

†

i,i
=

{ 1

ui − xi
, if i ∈ Iu

0, otherwise.

(7)[z
�
]i = �L

†

i,i
and [zu]i = �U

†

i,i
,

LZ�e − �e = 0

UZue − �e = 0,
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A natural approach for finding x∗ that approximately solves (3) consists in obtain-
ing (x∗, �∗, z∗

�
, z∗

u
) approximately satisfying (8). In practice, we do not use the defini-

tion (7) of z
�
 and zu , but we indeed find an approximate solution to (8). Since � in (3) 

is not defined for x ∉ (�, u) and goes to infinity as any component of x gets closer to 
� or u, necessarily � < x∗ < u . This fact, Eqs.  (8c) and (8d), and the positivity of � 
imply that [z∗

�
]i ≥ 0 , for all i ∈ I

�
 and [z∗

u
]i ≥ 0 , for all i ∈ Iu . Therefore, z∗

�
 and z∗

u
 are 

�-approximations to the Lagrange multipliers in the KKT conditions of problem (1).
These ideas give support to a method for solving problem (1) that consists in solv-

ing a sequence of subproblems of the form (3) by driving to zero the so-called bar-
rier parameter �k , positive for all k. Denoting the outer iterations by the index k, an 
approximate solution to (8) is computed by an iterative process indexed by j, the inner 
iterations.

To describe an inner iteration of the method, suppose we have (xk,j, �k,j, zk,j
�
, z

k,j
u ) , with 

j ≥ 0 , xk,j ∈ F0 , and positive vectors zk,j
�

 and zk,ju  . We consider a line search method to 
compute (xk,j+1, �k,j+1, zk,j+1

�
, z

k,j+1
u ) such that xk,j+1 ∈ F0 , [z

k,j+1

�
]i > 0 for each i ∈ I

�
 , 

and [zk,j+1u ]i > 0 for each i ∈ Iu . For defining the (j + 1) th inner approximation, a search 
direction (dk,jx , d

k,j

�
, d

k,j
z
�
, d

k,j
zu
) must be computed, with dk,jx  a descent direction for ��k

(⋅) 
from xk,j , and a step size �k,j satisfying a sufficient decrease condition.

The Newton’s direction to system (8) from (xk,j, �k,j, zk,j
�
, z

k,j
u ) is the solution to the 

(3n + m)-dimensional linear system given by

the well-known primal–dual system (Nocedal and Wright 2006). From the last two 
blocks of (9), we get 

(8a)∇f (x) + AT� − z
�
+ zu =0,

(8b)Ax − b =0,

(8c)Lz
�
− �e =0,

(8d)Uzu − �e =0.

(9)

⎛⎜⎜⎜⎝

∇2f (xk,j) AT − I I

A 0 0 0

Z�

k,j
0 Lk,j 0

−Zu
k,j

0 0 Uk,j

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝

d
k,j
x

d
k,j

�

d
k,j
z�

d
k,j
zu

⎞
⎟⎟⎟⎟⎠
= −

⎛
⎜⎜⎜⎜⎝

∇f (xk,j) + AT�k,j − z
k,j

�
+ z

k,j
u

0

Lk,jz
k,j

�
− �ke

Uk,jz
k,j
u − �ke

⎞
⎟⎟⎟⎟⎠
,

(10a)dk,j
z
�

= − z
k,j

�
+ �kL

†

k,j
e − L

†

k,j
Z�

k,j
dk,j
x

and

(10b)dk,j
zu

= − zk,j
u
+ �kU

†

k,j
e + U

†

k,j
Zu
k,j
dk,j
x
.
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 Using (10) into the first two blocks of (9), we obtain the (n + m)-dimensional linear 
system

where Hk,j = ∇2f (xk,j) + L
†

k,j
Z�

k,j
+ U

†

k,j
Zu
k,j

 . From Nocedal and Wright (2006, 
Thm.16.3), we have that

where W ∈ ℝ
n×(n−m) is a matrix whose columns form a basis to the kernel of A and 

inertia(M) is a triple that denotes the number of positive, negative, and null eigenval-
ues of the square symmetric matrix M, respectively. Therefore, the matrix of the lin-
ear system (11) is nonsingular if Hk,j is nonsingular in the kernel of A. Furthermore, 
we have the following result.

Lemma 1  Consider the linear system  (11). If the matrix Hk,j is positive definite 
in the kernel of A and the component dk,jx  of the solution is nonzero, then dk,jx  is a 
descent direction for ��k

(⋅) from xk,j.

Proof  The first block of equations in system (11) implies that

Since ∇��k
(xk,j) = ∇f (xk,j) − �kL

†

k,j
e + �kU

†

k,j
e , from (13),

The second block of equations in (11) implies that dk,jx  is in the kernel of A. So, pre-
multiplying (14) by −(dk,jx )T,

Thus, if Hk,j is positive definite in the kernel of A, then (dk,jx )THk,jd
k,j
x > 0 whenever 

d
k,j
x ≠ 0 , which, together with  (15), imply that dk,jx  is a descent direction for ��k

(⋅) 
from xk,j . 	�  ◻

To ensure that (i) the solution of (11) exists and (ii) dk,jx  is a descent direction 
for ��k

(⋅) from xk,j , relation (12) and Lemma 1 indicate that we need

(11)
(
Hk,j A

T

A 0

)(
d
k,j
x

d
k,j

�

)
= −

(
∇f (xk,j) + AT�k,j − �kL

†

k,j
e + �kU

†

k,j
e

0

)
,

(12)inertia

(
Hk,j A

T

A 0

)
= inertia(WTHk,jW) + (m,m, 0),

(13)Hk,jd
k,j
x
+ ATd

k,j

�
= −∇f (xk,j) − AT�k,j + �kL

†

k,j
e − �kU

†

k,j
e.

(14)Hk,jd
k,j
x
+ ATd� = −∇��k

(xk,j) − AT�k,j.

(15)∇��k
(xk,j)Tdk,j

x
= −(dk,j

x
)THk,jd

k,j
x
.

inertia

(
Hk,j A

T

A 0

)
= (n,m, 0).



1 3

On the solution of linearly constrained optimization problems…

According with (12), this can be accomplished by guaranteeing that Hk,j is positive 
definite in the kernel of A. For this reason, if the inertia of the matrix of the sys-
tem (11) is not equal to (n, m, 0), we search for a scalar 𝜉k,j > 0 such that the inertia 
of the matrix

is (n, m, 0) and then solve the following perturbed version of the system (11)

The subproblem iterates are stated as 

 in which �k,j, �
z
�

k,j
, �

zu
k,j

∈ (0, 1] determine the step sizes. Since � < xk,j < u , [zk,j
�
]i > 0 

for each i ∈ I
�
 , and [zk,ju ]i > 0 for each i ∈ Iu , we need to preserve these properties in 

the new iterate. Following Wächter and Biegler (2006), we use a fraction-to-the-
boundary parameter �k = max{�min, 1 − �k} , with �min ∈ (0, 1) . Moreover, we define 

the sets Dk,j
−

def
= {i ∶ [d

k,j
x ]i < 0} and Dk,j

+

def
= {i ∶ [d

k,j
x ]i > 0} , and compute

(
Hk,j + �k,jI AT

A 0

)

(16)
(
Hk,j + �k,jI AT

A 0

)(
d
k,j
x

d
k,j

�

)
= −

(
∇��k

(xk,j) + AT�k,j
0

)
.

(17a)xk,j+1 = xk,j + �k,jd
k,j
x
,

(17b)�k,j+1 =�k,j + d
k,j

�
,

(17c)z̄
k,j+1

�
= z

k,j

�
+ 𝛼

z
�

k,j
dk,j
z
�

,

(17d)z̄k,j+1
u

= zk,j
u
+ 𝛼

zu
k,j
dk,j
zu
,

��

k,j
= max

i∈I
�
∩Dk,j

−

{
� ∈ (0, 1] ∶ (x

k,j

i
+ �[dk,j

x
]i) − �i ≥ (1 − �k)(x

k,j

i
− �i)

}
,

�u
k,j

= max
i∈Iu∩D

k,j
+

{
� ∈ (0, 1] ∶ ui − (x

k,j

i
+ �[dk,j

x
]i) ≥ (1 − �k)(ui − x

k,j

i
)
}
,

�
z
�

k,j
= max

i∈I
�
∩D

k,j
+

{
� ∈ (0, 1] ∶ [z

k,j

�
]i + �[dk,j

z
�

]i ≥ (1 − �k)[z
k,j

�
]i

}
,

�
zu
k,j

= max
i∈Iu∩D

k,j
−

{
� ∈ (0, 1] ∶ [zk,j

u
]i + �[dk,j

zu
]i ≥ (1 − �k)[z

k,j
u
]i

}
.
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Notwithstanding, whenever dk,jx  is small enough, we take �z
�

k,j
= �

zu
k,j

= 1 , in order to 
not impair the global convergence of the method. A backtracking must be done to 
obtain �k,j ∈ (0, �max

k,j
] , with �max

k,j
= min{��

k,j
, �u

k,j
} , such that the sufficient decrease 

condition

is satisfied, for some � ∈ (0, 1).
Last, but not the least, we have to ensure that zk,j+1

�
 and zk,j+1u  approximately maintain 

the relationship with xk,j+1 established in (7). These equations guarantee that the north-
west matrix in system (11) is an approximation to the Hessian of the log-barrier func-
tion (4). Therefore, we consider

and

for i = 1,… , n and a constant �z ≥ 1 . Hence,

which means that  (7) will be satisfied with precision �z (see Wächter and Biegler 
2006).

We consider that a point (xk,j, �k,j, zk,j
�
, z

k,j
u ) is an approximate solution to subprob-

lem (3) whenever

where

��k

(
xk,j + �k,jd

k,j
x

)
≤ ��k

(xk,j) + ��k,j∇��k
(xk,j)Tdk,j

x

[z
k,j+1

�
]i =

⎧⎪⎨⎪⎩

max

�
min

�
[z̄

k,j+1

�
]i, 𝜅z

�
𝜇k

x
k,j+1

i
− �i

��
,
1

𝜅z

�
𝜇k

x
k,j+1

i
− �i

��
, if i ∈ I

�

0, otherwise

[zk,j+1
u

]i =

⎧⎪⎨⎪⎩

max

�
min

��
z̄k,j+1
u

�
i
, 𝜅z

�
𝜇k

ui − x
k,j+1

i

��
,
1

𝜅z

�
𝜇k

ui − x
k,j+1

i

��
, if i ∈ Iu

0, otherwise,

[z
k,j+1

�
]i ∈

[
1

�z

(
�k

x
k,j+1

i
− �i

)
, �z

(
�k

x
k,j+1

i
− �i

)]
, for i ∈ I

�
and

[z
k,j+1
u ]i ∈

[
1

�z

(
�k

ui − x
k,j+1

i

)
, �z

(
�k

ui − x
k,j+1

i

)]
, for i ∈ Iu,

(18)E�k
(xk,j, �k,j, z

k,j

�
, zk,j

u
) ≤ ���k,
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and 𝜅𝜀 > 0 . Thus, (18) implies that Eqs.  (8a), (8c), and (8d) are approximately 
satisfied, and by the definition of the method, Axk,j = b , so that (8b) holds. There-
fore, (xk,j, �k,j, zk,j

�
, z

k,j
u ) approximately satisfies the optimality conditions  (8) of 

subproblem (3).
After a subproblem is approximately solved, we compute a new barrier parameter

where �� ∈ (0, 1) and �� ∈ (1, 2) . With such an update, the barrier parameter may 
converge superlinearly to zero.

Algorithms 1, 2, and 3 below summarize the proposed method. Algorithm 1 cor-
responds to the outer algorithm, while Algorithm 2 corresponds to the inner algo-
rithm, that is used by Algorithm 1 for solving the subproblems. Algorithm 3, taken 
from Wächter and Biegler (2006, p 36) and reproduced here for completeness, cor-
responds to the inertia correction procedure. 

(19)E�(x, �, z� , zu)
def
=

�������

⎛
⎜⎜⎝

∇f (x) + AT� − z
�
+ zu

Lz
�
− �e

Uzu − �e

⎞
⎟⎟⎠

�������∞
,

�k+1 = min
{
���k,�

��

k

}
,
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3 � Global convergence

The convergence theory of the proposed method is given in this section. We first 
present well definiteness results for Algorithm 2.

Lemma 2  In Step 2.2 of Algorithm 2, there exists �k,j ≥ 0 large enough such that 
inertia(Mk,j) = (n,m, 0) , with Mk,j defined in (21).

Proof  Let H̃𝜉k,j
= ∇2f (xk,j) + L

†

k,j
ZL
k,j
+ U

†

k,j
ZU
k,j
+ 𝜉k,jI and W ∈ ℝ

n×n−m a matrix 
whose columns form a basis to the kernel of A. Notice that, if H̃𝜉k,j

 is positive defi-
nite, then WTH̃𝜉k,j

W is also positive definite. Thus, on the one hand, if H̃0 is positive 
definite, then WTH̃0W is positive definite as well, which together with (12) implies 
that inertia(Mk,j) = (n,m, 0) for �k,j = 0 . On the other hand, if H̃0 is not positive defi-
nite, let �1 ≤ �2 ≤ ⋯ ≤ �n be the eigenvalues of the matrix H̃0 , with �1 ≤ 0 . There-
fore, the eigenvalues of H̃|𝜆1|+𝜖 , for 𝜖 > 0 , are

which implies that H̃|𝜆1|+𝜖 is positive definite and, consequently, so it is WTH̃|𝜆1|+𝜖W . 
Hence, (12) yields inertia(Mk,j) = (n,m, 0) for �k,j ≥ |�1| + � . 	�  ◻

Next we show that, as long as xk,j is not stationary for problem (3), it is always 
possible to compute an adequate search direction in Algorithm 2.

Lemma 3  In  Step 2.3 of Algorithm 2, it is possible to compute the search directions 
d
k,j
x  and dk,j

�
 . Moreover, if dk,jx ≠ 0 , then dk,jx  is a descent direction for ��k

(⋅) from xk,j . 
So, Step 2.6 finishes in a finite number of iterations.

� ≤ �2 + |�1| + � ≤ ⋯ ≤ �n + |�1| + �,
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Proof  From Lemma  2, it is possible to find �k,j such that inertia(Mk,j) = (n,m, 0) . 
Therefore, Mk,j is a nonsingular matrix, and the linear system in Step 2.3 has a 
unique solution. Notice that, if dk,jx = 0 and dk,j

�
= 0 , the right-hand side of the linear 

system (22) yields the pair (xk,j, �k,j) to be primal–dual stationary for problem (3). 
In case dk,jx = 0 but dk,j

�
≠ 0 , also from  (22) we obtain the primal–dual stationary 

pair (xk,j, �k,j + d
k,j

�
) = (xk,j, �k+1,j) for problem  (3). Now, from Lemma  1, since 

inertia(Mk,j) = (n,m, 0) , we have that, whenever a direction dk,jx ≠ 0 is computed, it 
will be of descent for ��k

(⋅) from  xk,j . So, there exists �k,j such that the sufficient 
decrease condition at Step 2.6 is verified.	�  ◻

Lemmas 2 and 3 show that Algorithm 2 is well defined. The well definiteness 
of Algorithm 1 is subject to the global convergence of Algorithm 2, and this is 
established in the sequel. By global convergence, we mean that we analyze the 
properties of the infinite sequence generated by the method that emerges when 
the stopping criterion at Step 2.1 is removed from Algorithm 2. With some abuse 
of notation, we refer to this sequence as the infinite sequence generated by Algo-
rithm 2. Analyzing the properties of this infinite sequence, we prove that the stop-
ping criterion at Step 2.1 of Algorithm 2 is satisfied in finite time. Based on ideas 
from Chen and Goldfarb (2006), we present a global convergence analysis for the 
proposed algorithm, but in a more detailed fashion, and strongly connected with 
the structure of problem (1). The global convergence results rest upon the follow-
ing assumptions.

Assumption 1  The set F0 , defined in (2), is nonempty.

Assumption 2  The objective function f of problem  (1) is continuous and at least 
twice continuously differentiable.

Assumption 3  The sequence {xk,j} generated by Algorithm 2 is bounded, for all k.

Assumption 4  The matrices H̄k,j = Hk,j + 𝜉k,jI satisfy dTH̄k,jd ≥ 𝜎‖d‖2 , for all 
d ∈ ℝ

n , d ≠ 0 , such that Ad = 0 , for some 𝜎 > 0 and for all k and j.

Although Assumption  3 is a conjecture about the sequence generated by the 
method, which we have no control at a first glance, this is implicitly assured when 
(i) box constraints exist for every variable, i.e., when −∞ < �i ≤ ui < +∞ , for 
i = 1,… , n , or (ii) when the level set {x ∈ F ∣ f (x) ≤ f (x0)} is bounded, where 
x0 ∈ F0 . Assumption  4 establishes that the matrices {H̄k,j} must be uniformly 
positive definite in the kernel of matrix A. Compared with other requirements, 
as in the work by Chen and Goldfarb (2006, Condition (C-5)), our hypothesis is 
slightly weaker, since Lemma 2 guarantees the attainment of a scalar �k,j in Step 
2.2 of Algorithm  2 which properly adjusts the inertia of the matrix of the sys-
tem (22) . Thus, Assumption 4 may be accomplished by the numerical nature of 
the inertia correction method used.
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Lemma 4  Suppose that Assumptions 1, 2 and3 hold and consider that the sequence 
generated by Algorithm 2 is {xk,j+1, �k,j+1, zk,j+1

�
, z

k,j+1
u } . Then, there exists 𝛿 > 0 such 

that

	 I.	 for all j ∈ {0, 1, 2,…} , it holds

(a)	 �i + � ≤ x
k,j+1

i
 , for all i ∈ I

�
 and

(b)	 x
k,j+1

i
≤ ui − � , for all i ∈ Iu;

	 II.	 for all j ∈ {0, 1, 2,…} , it holds

(a)	 [z
k,j+1

�
]i ∈

�k

�

[
1

�z
, �z

]
 , for all i ∈ I

�
 and

(b)	 [zk,j+1
u

]i ∈
�k

�

[
1

�z
, �z

]
 , for all i ∈ Iu.

Proof  To show (I), suppose, by contradiction, that there exist an infinite set J ⊂
∞
ℕ , 

and 𝚤 ∈ I
�
 such that

By Step 2.1 of Algorithm  2, E𝜇k
(xk,j+1, 𝜆k,j+1, z

k,j+1

�
, z

k,j+1
u ) > 𝜅𝜀𝜇k , and by the line 

search of Step 2.6 of Algorithm 2,

Assumptions 2 and 3 imply that the sequences {f (xk,j+1)} , {xk,j+1
i

− �i} , for all i ∈ I
�
 , 

and {ui − x
k,j+1

i
} , for all i ∈ Iu , are bounded. Thus, by (25) and by the definition of 

the function ��(⋅) in (4),

which contradicts (26). An analogous reasoning applies in case there exist an infinite 
set J ⊂

∞
ℕ , and 𝚤 ∈ Iu such that {xk,j+1

𝚤
}j∈J → u𝚤.

Part (II) follows directly from the computations within Step 2.8 of Algorithm 2. 	
� ◻

In the following, auxiliary results ascertain the boundedness of the sequences 
generated by Algorithm 2, in preparation to the global convergence theorem.

Lemma 5  Suppose Assumptions 2 and 3 hold. Then, the sequence {H̄k,j} generated 
by Algorithm 2 is bounded.

Proof  Assumptions 2 and 3 imply that the sequence {∇2f (xk,j)} generated by Algo-
rithm  2 is bounded. Furthermore, Assumption  3 and Lemma  4(I) imply that the 

(25)lim
j∈J

x
k,j+1

𝚤
= �𝚤.

(26)��k
(xk,j+1) ≤ ��k

(xk,j) + ��k,j−1∇��k
(xk,j)Tdk,j

x
.

lim
j∈J

��k
(xk,j+1) = +∞,
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sequence {L†
k,j
,U

†

k,j
} generated by Algorithm 2 is bounded. In addition, Lemma 4(II) 

implies that the sequence {ZL
k,j
, ZU

k,j
} generated by Algorithm 2 is bounded. Finally, 

according with Lemma  2, �k,j ≥ |�1| + � is large enough to correct the inertia of 
matrix Mk,j , which gives an implicit upper bound in �k,j . Putting all these facts 
together, the result follows. 	�  ◻

Lemma 6  Suppose that Assumptions  1, 2, and3 hold. Then, the sequence 
{d

k,j
x , �k,j+1, z

k,j+1

�
, z

k,j+1
u } generated by Algorithm 2 is bounded.

Proof  According with Lemma 4(II), the sequence {zk,j+1
�

, z
k,j+1
u } is bounded. In order 

to get a contradiction, suppose there exists an infinite set J ⊂
∞
ℕ such that

Assumptions 2 and 3 and Lemma 4(I) imply that the sequence

is bounded. This fact, together with Lemmas 4(II) and 5, assure the existence of an 
infinite set Ĵ ⊂

∞
J  such that

Using (21), we can rewrite the system (16) in order to get

recalling that (29) implies that limj∈Ĵ Mk,j = Mk,∗.
By (28), we have that the right-hand side of the system (30) is bounded for j ∈ Ĵ  . 

Besides that, Step 2.2 of Algorithm 2 guarantees that Mk,j will be nonsingular for all 
j. Thus, from (30), it follows that

contradicting (27). 	�  ◻

Lemma 7  Consider that Assumptions 1, 2, 3, and 4 hold. Then, the sequence {dk,jx } 
generated by Algorithm 2 goes to zero as j tends to infinity.

(27)lim
j∈J

‖(dk,j
x
, �k,j + d

k,j

�
)‖ = +∞.

{
∇��k

(xk,j)
}
j∈J

=
{
∇f (xk,j) − �kL

†

k,j
e + �kU

†

k,j
e
}

j∈J

(28)lim
j∈Ĵ

∇𝜑𝜇k
(xk,j) = ∇𝜑𝜇k

(xk,∗),

(29)
lim
j∈Ĵ

(z
k,j

�
, zk,j

u
) = (zk,∗

�
, zk,∗

u
), and

lim
j∈Ĵ

H̄k,j = H̄k,∗.

(30)Mk,j

(
d
k,j
x

�k,j + d
k,j

�

)
= −

(
∇��k

(xk,j)

0

)
,

lim
j∈Ĵ

(
dk,j

𝜆k,j + d
k,j

𝜆

)
= lim

j∈Ĵ
−M−1

k,j

(
∇𝜑𝜇k

(xk,j)

0

)
= −M−1

k,∗

(
∇𝜑𝜇k

(xk,∗)

0

)
,
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Proof  Lemma 6 implies that the sequence {dk,jx } is bounded, therefore it admits some 
convergent subsequence. Let us consider, by contradiction, that there exists an infi-
nite subset J ⊂

∞
ℕ such that

Lemma 5, Assumption 3, and Lemma 6 imply that there exists an infinite set Ĵ ⊂
∞
J  

such that

Pre-multiplying the first block of equations from the system (16) by dk,jx  , which, by 
the second block of equations from the system (16), belongs to the kernel of A, we 
have that

Thus,

Taking the limit in (32) for j ∈ Ĵ  , it follows that

By Lemma  4(I), we have that �i + � ≤ x
k,j

i
 , for all i ∈ I

�
 and xk,j

i
≤ ui − � , for 

all i ∈ Iu , with 𝛿 > 0 . Taking the limit for j ∈ Ĵ  , it follows that �i < x
k,∗

i
 , for all 

i ∈ I
�
 and xk,∗

i
< ui , for all i ∈ Iu . Therefore, there exists 𝛼̂ ∈ (0, 1] such that, for all 

𝛼 ∈ (0, 𝛼̂],

Since dk,∗
x

≠ 0 and (33) implies that ∇𝜑𝜇k
(xk,∗)Tdk,∗

x
< 0 , then there exists 𝛼̃ ∈ (0, 𝛼̂] 

such that, for all 𝛼 ∈ (0, 𝛼̃] , (34) holds and

is verified, with 𝛾̄ ∈ (𝛾 , 1) . Notice that this is a sufficient decrease condition, which 
ensures the existence of 𝛼̃ . Nonetheless, this is a more rigorous condition than the 
one required in Step 2.6 of Algorithm 2, given that 𝛾̄ > 𝛾 . Since ��(⋅) is a continu-
ously differentiable function, from the strict fulfillment of the bound constraints (34), 
and the fact that dk,∗

x
 is a descent direction from xk,∗ , according with  (33), we can 

define

such that

(31)lim
j∈J

dk,j
x

= dk,∗
x

≠ 0.

lim
j∈Ĵ

H̄k,j = H̄k,∗ and lim
j∈Ĵ

(
xk,j, 𝜆k,j, z

k,j

�
, zk,j

u

)
=
(
xk,∗, 𝜆k,∗, z

k,∗

�
, zk,∗

u

)
.

(d
k,j
x )TH̄k,jd

k,j
x = − (d

k,j
x )T∇𝜑𝜇k

(xk,j)

≥ 𝜎‖dk,jx ‖2, by Assumption 4.

(32)∇��k
(xk,j)Tdk,j

x
≤ −�‖dk,j

x
‖2.

(33)∇��k
(xk,∗)Tdk,∗

x
≤ −�‖dk,∗

x
‖2.

(34)�i < x
k,∗

i
+ 𝛼[dk,∗

x
]i, for all i ∈ I

�
and x

k,∗

i
+ 𝛼[dk,∗

x
]i < ui, for all i ∈ Iu.

𝜑𝜇k
(xk,∗ + 𝛼dk,∗

x
) ≤ 𝜑𝜇k

(xk,∗) + 𝛾̄𝛼∇𝜑𝜇k
(xk,∗)Tdk,∗

x

�∗ = min {� ∈ {0, 1, 2,…}}
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and

for all j ∈ Ĵ  , j large enough. Then,

which implies that

contradicting Assumptions 2 and 3 . 	�  ◻

Theorem 1 establishes the global convergence result for Algorithm 2.

Theorem 1  Suppose that Assumptions 1, 2, 3, and 4 hold. Then, any limit point of 
the sequence {xk,j + �k,jd

k,j
x , �k,j + d

k,j

�
, z

k,j

�
+ �

z
�

k,j
d
k,j
z
�
, z

k,j
u + �

zu
k,j
d
k,j
zu
} generated by Algo-

rithm 2 satisfies the first-order optimality conditions (8) for problem (3).

Proof  Let (xk,∗, �k,∗, zk,∗
�
, zk,∗

u
) be any limit point of the sequence

namely the subsequence whose indexes belong to the infinite set J ⊂
∞
ℕ . Taking the 

limit in (16) for j ∈ J  , by Lemma 7 we have that

In other words,

Lemma 7 implies that, for j ∈ J  large enough, dk,jx  will be small enough and, for this 
reason, conditions (23) will be satisfied and �z

�

k,j
= �

zu
k,j

= 1 . Therefore, taking limits 
in (10) for j ∈ J  and considering (17c) and (17d), we have that

Thus, (36) and (37) together imply that

𝛼k,∗
def
= 𝛼̃

(
1

2

)𝜌∗

≤ 𝛼k,j

(35)��k
(xk,j + �k,∗d

k,j
x
) ≤ ��k

(xk,j) + ��k,∗∇��k
(xk,j)Tdk,j

x
,

��k
(xk,j+1) ≤ ��k

(xk,j) + ��k,j∇��k
(xk,j)Td

k,j
x

≤ ��k
(xk,j) − ��k,j�‖dk,jx ‖2, by (32)

≤ ��k
(xk,j) −

1

2
��k,j�‖dk,∗x ‖2, by (31)

≤ ��k
(xk,j) −

1

2
��k,∗�‖dk,∗x ‖2, for j large enough,

lim
j∈Ĵ

𝜑𝜇k
(xk,j) = −∞,

{
xk,j + �k,jd

k,j
x
, �k,j + d

k,j

�
, z

k,j

�
+ �

z
�

k,j
dk,j
z�
, zk,j

u
+ �

zu
k,j
dk,j
zu

}
,

AT�k,∗ = −∇��k
(xk,∗) = −∇f (xk,∗) + �kL

†

k,∗
e − �kU

†

k,∗
e.

(36)∇f (xk,∗) + AT�k,∗ − �kL
†

k,∗
e + �kU

†

k,∗
e = 0.

(37)z
k,∗

�
= �kL

†

k,∗
e e zk,∗

u
= �kU

†

k,∗
e.
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Therefore, since Axk,∗ = b , (38) gives us that (8) holds in (xk,∗, �k,∗, zk,∗
�
, zk,∗

u
) . 	�  ◻

Now, we are ready to show that Algorithm 1 is well defined. First, by Assump-
tion 1, it is always possible to find an initial point x0 ∈ F0 . Thus, to prove the well 
definiteness of Algorithm 1, it is enough to check that Step 1.2 is well defined, 
which is closely related to the well definiteness of Algorithm 2. The next result 
completes the analysis.

Lemma 8  Consider that Assumptions 1, 2, 3, and 4 hold. Then, for all k, it is pos-
sible to find (xk+1, �k+1, zk+1

�
, zk+1

u
) in finite time using Algorithm 2 such that

Proof  First, notice that 𝜇0 > 0 and, from Step 1.3, 𝜇k > 0 for all k. Thus, we have 
that 𝜅𝜀𝜇k > 0 for all k. On the other hand, for each k, Theorem 1 implies that, as 
j tends to infinity, the sequence generated by Algorithm  2 converges to a point 
(xk,∗, �k,∗, zk,∗

�
, zk,∗

u
) such that E�k

(xk,∗, �k,∗, zk,∗
�
, zk,∗

u
) = 0 (according with  (38)). 

Therefore, for j large enough, Algorithm  2 can find a point (xk,j, �k,j, zk,j
�
, z

k,j
u ) 

such that E�k
(xk,j, �k,j, z

k,j

�
, z

k,j
u ) ≤ ���k . Consequently, it is possible to find 

(xk+1, �k+1, zk+1
�

, zk+1
u

) = (xk,j, �k,j, z
k,j

�
, z

k,j
u ) in finite time with Algorithm 2. 	�  ◻

With the previous results, we can establish the global convergence of Algo-
rithm 1. Once again, with some abuse of notation, we refer to the infinite sequence 
generated by the method that emerges when the stopping criterion (Step 1.1) is 
removed from Algorithm 1 as “the infinite sequence generated by Algorithm 1”.

Theorem  2  Consider that Algorithm  1 generates an infinite sequence of iterates 
and that Assumptions 1, 2, 3, and 4 hold. If the sequence generated by Algorithm 1 
admits a limit point (x∗, �∗, z∗

�
, z∗

u
) , then

with E�(x, �, z� , zu) defined in (19).

Proof  Let K ⊂
∞
ℕ be an infinite set such that

Suppose that (39) does not hold. Then, 

(38)
∇f (xk,∗) + AT�k,∗ − z

k,∗

�
+ zk,∗

u
= 0,

Lk,∗z
k,∗

�
− �ke = 0,

Uk,∗z
k,∗
u

− �ke = 0.

E�k

(
xk+1, �k+1, zk+1

�
, zk+1

u

)
≤ ���k.

(39)E0

(
x∗, �∗, z∗

�
, z∗

u

)
= 0,

(40)lim
k∈K

(
xk+1, �k+1, zk+1

�
, zk+1

u

)
= (x∗, �∗, z∗

�
, z∗

u
).

(41a)‖∇f (x∗) + AT𝜆∗ − z∗
�
+ z∗

u
‖∞ >0 or
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 By Step 1.2 of Algorithm 1, we have that

for all k, which means that 

 for all k. Since K ⊂
∞
ℕ , we have, by Step 1.3 of Algorithm 1, that

From (40), (41b), and (42b), for all k large enough, we have that

which yields 0 < 𝜇k(𝜅𝜀 + 1) . It is a contradiction, since  (43) holds. Analogously, 
(40), (41c), and (42c) produce the same contradiction.

On the other hand, from (40), (41a), and (42a), for all k large enough,

which implies that 0 < 𝜅𝜀𝜇k , being also in contradiction with (43). Therefore, (41) 
cannot occur, implying that (39) holds. 	�  ◻

Theorem 2 assures that, given any sequence generated by Algorithm 1, if such a 
sequence admits a limit point, then this point satisfies the set of equations in (8) with 
� = 0 . Consequently, this limit point also satisfies the KKT conditions for the origi-
nal problem (1), since z∗

�
 and z∗

u
 are nonnegative and, by the definition of the method, 

they satisfy the complementarity relations in  (8c) and  (8d) with � = 0 . Therefore, 
the next result is obtained.

Corollary 1  Suppose Algorithm  1 generates an infinite sequence of iterates and 
that Assumptions  1, 2, 3, and 4 hold. If the sequence generated by Algorithm  1 
admits any limit point (x∗, �∗, z∗

�
, z∗

u
) , then this point satisfies the KKT conditions for 

problem (1).

(41b)‖L∗Z�

∗
e‖∞ >0 or

(41c)‖U∗Z
u
∗
e‖∞ >0.

E�k

(
xk+1, �k+1, zk+1

�
, zk+1

u

)
≤ ���k,

(42a)‖∇f (xk+1) + AT�k+1 − zk+1
�

+ zk+1
u

‖∞ ≤���k and

(42b)‖Lk+1Z�

k+1
e − �ke‖∞ ≤���k and

(42c)‖Uk+1Z
u
k+1

e − �ke‖∞ ≤���k,

(43)lim
k∈K

�k = 0.

0 < ‖Lk+1Z�

k+1
e‖∞ − 𝜇k ≤ 𝜅𝜀𝜇k,

0 < ‖∇f (xk+1) + AT𝜆k+1 − zk+1
�

+ zk+1
u

‖∞ ≤ 𝜅𝜀𝜇k,
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Additionally, the convex case yields the following result.

Corollary 2  Suppose Algorithm  1 generates an infinite sequence of iterates, that 
Assumptions 1, 2, 3, and 4 hold, and that, in addition, the objective function f is con-
vex. If the sequence generated by Algorithm 1 admits any limit point (x∗, �∗, z∗

�
, z∗

u
) , 

then this point is a global minimizer for problem (1).

Proof  The proof follows from Corollary 1 and the fact that, in the convex case, every 
KKT point is a global minimizer (see Nocedal and Wright 2006). 	�  ◻

4 � Implementation and numerical experiments

We now present numerical experiments to evaluate the performance of Algorithms 1 
and 2. We consider all the 200 problems from CUTEst collection (Gould et  al. 
2015) with linear equality and box constraints. Table 1 displays the distribution of 
the number of variables  n and the number of constraints  m in the considered set 
of problems. It should be noted that, in all the problems, a constraint of the form, 
�i ≤ xi ≤ ui with −1020 ≤ �i ≤ ui ≤ 1020 for i = 1,… , n is present; this being a suf-
ficient condition for the satisfaction of Assumption 3.

We implemented Algorithms 1, 2, and 3, referred as Lcmin from now on, in For-
tran 2008. The codes are freely available in the web.1 Tests were conducted in an 
Intel Core i7-8700 3.20GHz processor with 32 GB RAM, running Ubuntu 18.04.3 
LTS operating system. Codes were compiled using the GNU Compiler Collection 
version 7.4.0 with -O3 flag enabled.

In practice, we consider a scaled version of the stopping criterion (20) at Step 1.1 
of Algorithm 1 given by

where s = (sd, s� , su),

(44)Es
0
(xk, �k, zk

�
, zk

u
) ≤ �tol,

Table 1   Distribution of the number of variables n and the number of constraints m in the considered 200 
problems from the CUTEst collection

nmax mmax # Problems with n ≥ �nmax # Problems with m ≥ �mmax

� = 0.1 � = 0.01 � = 0.001 � = 0.1 � = 0.01 � = 0.001

251, 001 250, 498 55 123 147 6 100 132

1  https​://githu​b.com/johng​arden​ghi/lcmin​.

https://github.com/johngardenghi/lcmin
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smax ≥ 1 is a given constant, and

In theory, all iterates of Lcmin are feasible. However, in practice, numerical errors 
may lead to some loss of feasibility. For this reason, once the stopping criterion (44) 
has been satisfied, we check the value of ‖Axk − b‖∞ . We consider “the problem has 
been solved” (stopping criterion SC1) if

where 𝜀feas > 0 is a given constant. If

we say that “an acceptable feasible point was obtained” (stopping criterion SC2). 
Otherwise, we declare that “convergence to an infeasible point was obtained” (stop-
ping criterion SC3). In addition to (44), Lcmin also stops whenever 

SC4:	� ‖xk,j‖∞ ≥ �x , where �x is a large positive given value;
SC5:	� k ≥ kmax , where kmax > 0 is given; or
SC6:	� �k ≤ �tol∕10 and j ≥ jmax , where jmax > 0 is given.

In the experiments, following Wächter and Biegler (2006), we set �0 = 0.1 , 
�tol = 10−8 , �� = 10 , �� = 0.2 , �� = 1.5 , � = 10−4 , �min = 0.99 , �z = 1010 , 
�−
�

= 1∕3 , �+
�

= 8 e 𝜅̄+
𝜉

= 100 , �ini = 10−4 , �min = 10−20 , �max = 1020 , 
smax = 100 , �feas = 10−8 , �x = 1020 , kmax = 50 , and jmax = 200 . Three implementa-
tion features are in order. Routine HSL MA572 was used to solve the linear systems. 
Matrix A of the constraints of problem (1) may not have full row rank as required, 
and may even be such that m > n . Thus, routine HSL MC583 was used to check 
whether (i)  rank (A) = m ; (ii); rank (A) < m and rank (A) = rank (A|b) ; or 
(iii) rank (A) < m and rank (A) ≠ rank (A|b) . In the first case, A satisfies the full row-
rank assumption and there is nothing to be done. In the second case, constraints 
Ax = b are replaced by an equivalent set of constraints Āx = b̄ in which Ā satisfies 
the full row-rank assumption ( Ā is given by routine MC58 and b̄ can be easily com-
puted). In the third case, the problem is infeasible and there is nothing to be done. 

sd
def
= max

�
smax,

‖�‖1+‖z�‖1+‖zu‖1
m+2n

�
∕smax,

s
�

def
= max

�
smax,

‖z
�
‖1
n

�
∕smax,

su
def
= max

�
smax,

‖zu‖1
n

�
∕smax,

Es
�
(x, �, z

�
, zu)

def
= max

�‖∇f (x) + AT� − z
�
+ zu‖∞

sd
,
‖LZ�e − �e‖∞

s
�

,
‖UZue − �e‖∞

su

�
.

‖Ax − b‖∞ ≤ �feas,

‖Ax − b‖∞ ≤
√
�feas,

2  http://www.hsl.rl.ac.uk/catal​ogue/hsl_ma57.html.
3  Available at http://www.hsl.rl.ac.uk/catal​ogue/mc58.html.

http://www.hsl.rl.ac.uk/catalogue/hsl_ma57.html
http://www.hsl.rl.ac.uk/catalogue/mc58.html
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(Infeasibility was detected in 6 out of the 200 problems at this pre-processing stage.) 
Finally, an interior point x0 ∈ F0 is required to start Algorithm 1. For this reason, 
we tried to find such a point using a phase 1 procedure, that consists in approxi-
mately solving the feasibility problem

with

for i = 1,… , n , 𝜅1 > 0 , and �2 ∈ (0,
1

2
) . To approximately solve  (45), we apply 

Algencan (Andreani et  al. 2008; Birgin and Martínez (2014)) with the option 
Ignore-objective-function enabled. The phase  1 procedure starts from the given 
initial point, making it somehow useful in the computation of the initial interior 
point. (Infeasibility was detected in phase 1 for only 1 problem out of the remaining 
194 = 200 − 6 problems.)

We have applied Ipopt (Wächter and Biegler 2006), version 3.12.13, within the 
same computational environment, also using the HSL MA57 routine for solving the 
linear systems, taking into account the same time budget for each problem, and con-
sidering all its default parameters, except for honor_original_bounds no. 
Such a parameter, which does not affect the overall performance of Ipopt, inhibits 
this solver to project4 the final iterate onto the box defined by the bound constraints 
of problem (1), allowing us to measure the violation of the bounds at the final iter-
ate. Additional experiments with Ipopt considering the default choice honor_
original_bounds yes were also carried on; the comparison showed results 
qualitatively similar to those reported below.

Detailed output of both methods for each one of the 200 problems, as well as 
tables summarizing the results, with a CPU time budget of 10 minutes per prob-
lem, can be viewed at the same repository the code is located5. Since the meth-
ods under analysis have different stopping criteria, we consider that a problem 
p ∈ {1, 2,… , 200} is solved by a method M ∈ {Ipopt, Lcmin} if

(45)Ax = b plus �i + [�
�
]i ≤ xi ≤ ui − [�u]i for i = 1,… , n,

[
�
�

]
i
= min{�1 max{1, |�i|}, �2(ui − �i)},[

�u
]
i

= min{�1 max{1, |ui|}, �2(ui − �i)},

Table 2   Number of problems in which Ipopt and Lcmin found a point satisfying (47) with �feas = 10−8 
and (48) with �bnd ∈ {10−1, 10−2,… , 10−16, 0}

log10(�bnd) �bnd

−1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15 −16 0

Ipopt 154 153 151 150 143 141 137 126 65 65 65 65 65 64 64 64 64
Lcmin 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174

4  The bound constraints might be dynamically relaxed by Ipopt during the optimization process 
(Wächter and Biegler (2006), §3.5), starting from a relative relaxation factor whose initial value is 10−8.
5  https​://githu​b.com/johng​arden​ghi/lcmin​/tree/maste​r/paper​.

https://github.com/johngardenghi/lcmin/tree/master/paper
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where f p
min

= min{f
p

Ipopt
, f

p

Lcmin
} , and ftol ∈ [0, 1],

with �feas ≥ 0 , and

with �bnd ≥ 0 and (⋅)+ = max{⋅, 0}.
We first take a close look at the feasibility of the final iterate found by the meth-

ods. In Table 2, we show the number of problems in which each method found a point 
satisfying (47) with �feas = 10−8 and (48) with �bnd ∈ {10−1, 10−2,… , 10−16, 0} , no 
matter the objective function value. Since Lcmin preserves feasibility during all the 
optimization process, the amount of problems whose bound constraints are satisfied 
does not depend on �bnd . On the other hand, the number of problems whose bound 
constraints hold for Ipopt varies according to the tolerance �bnd . The 26 = 200 − 174 
failures in Lcmin correspond to (i) 7 problems detected as being infeasible, 6 in the 
pre-processing of the coefficients’ matrix A and 1 during phase 1; (ii) 7 problems in 
which Lcmin generated a final iterate whose feasibility does not satisfy  (47) with 
�feas = 10−8 ; and (iii) 12 problems in which Lcmin exceeded the 10 min established 
as CPU time budget. When �bnd = 0.1 , the 46 = 200 − 154 failures in Ipopt corre-
spond to (i) 10 problems in which Ipopt generated a final iterate that does not sat-
isfy  (47) with �feas = 10−8 ; (ii)  13 problems in which Ipopt exceeded the 10 min 
established as CPU time budget; and (iii) 23 problems to which Ipopt is not appli-
cable because of the degree of freedom of A in the constraints of the problem6. For 
other values of �bnd , the increasing number of failures is due to the bound constraints 
violation at the final iterate.

Lcmin detected the problem is infeasible at phase  1 in  7 problems; and it 
exceeded the CPU time limit of 10 min in 13 problems. In the remaining 180 prob-
lems, it stopped satisfying the stopping criteria SC1, SC2,… , SC6 in 168, 6, 0, 0, 3, 
and 3 problems, respectively. As a consequence, it found a feasible point (satisfy-
ing (47) with �feas = 10−8 and (48) with �bnd = 0 ) in 174 out of the 200 considered 

(46)f
p

M
≤ f

p

min
+ ftol max{1, |f p

min
|},

(47)‖Ax − b‖∞ ≤ �feas,

(48)max{‖(� − x)+‖∞, ‖(x − u)+‖∞} ≤ �bnd,

Table 3   Number of problems 
in which Ipopt and Lcmin 
found a point satisfying (47) 
with �feas = 10−8 , (48) with 
�bnd = 0 , and (46) with 
ftol ∈ {10−1, 10−2,… , 10−8, 0}

log10(ftol) ftol

−1 −2 −3 −4 −5 −6 −7 −8 0

Ipopt 61 60 58 58 58 57 57 56 42
Lcmin 58 58 58 58 58 58 55 52 29

6  It means that, in problem (1), A has more rows than columns. Lcmin eliminates redundant constraints, 
which makes A to have full row rank in most cases, except in those in which the feasible set is empty. 
Ipopt does not start optimization in these cases, stopping with the output Problem has too few 
degrees of freedom.
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problems. Considering these 174 problems, Lcmin performed, in average, 6.35 outer 
iterations (being 51 the maximum) and 30.54 inner iterations (being 610 the maxi-
mum) per problem. In 132 out of the 174, the inertia of the matrix of coefficients of 
the linear system (16) was never corrected, meaning that a single matrix factoriza-
tion per iteration was performed. In the remaining 42 problems, the average number 
of matrix factorizations per iteration was 1.26.

Now, we are interested in those problems in which both Ipopt and Lcmin con-
verged to a point satisfying (47) with �feas = 10−8 and (48) with �bnd = 0 . For this 
set, composed by 62 problems, Table 3 shows, for each solver, the number of prob-
lems in which (46) holds with ftol ∈ {10−1, 10−2,… , 10−8, 0}.

We now consider, on the one hand, the set of 57 problems in which both 
Lcmin and Ipopt found a final iterate satisfying  (46) with ftol = 0.1 , (47) with 
�feas = 10−8 , and  (48) with �bnd = 0 . Figure  1 depicts, for these problems, the 
performance profiles Dolan and Moré (2002) using as performance measure the 
number of functional evaluations, the number of iterations, and the CPU time 
consumed by each solver. Considering the remaining 143 = 200 − 57 problems, 
we have that: (i) in 24 problems, none of the methods found a point satisfy-
ing (47) with �feas = 10−8 and (48) with �bnd = 0 ; (ii) in 2 problems, Ipopt found 
a point satisfying  (47) with �feas = 10−8 and  (48) with �bnd = 0 , while Lcmin 
failed; (iii) in 112 problems, Lcmin found a point satisfying (47) with �feas = 10−8 

(a) (b)

(d)(c)

Fig. 1   Performance profiles comparing a the number of functional evaluations, b the number of itera-
tions, and c–d the CPU time of Lcmin and Ipopt in the subset of 57 problems in which both solvers found 
iterates satisfying (46) with ftol = 0.1 , (47) with �feas = 10−8 , and (48) with �bnd = 0 . In d the CPU time 
spent by Lcmin to find a feasible initial point has been ignored
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and (48) with �bnd = 0 , while Ipopt failed; (iv) in 5 problems both found a point 
satisfying  (47) with �feas = 10−8 and  (48) with �bnd = 0 , but the objective func-
tional value of one of them does not satisfy (46) with ftol = 0.1 ; (v) regarding the 
5 problems mentioned in (iv), the objective function found by Ipopt was smaller 
than the objective functional value find by Lcmin in 4 problems, while the oppo-
site situation occurred in 1 problem.

5 � Final remarks

In this work, a feasible line-search interior-point method for linearly constrained 
optimization has been described, implemented, and analyzed. The global conver-
gence theory is accompanied with numerical experiments, encompassing a clas-
sical test set from the literature. The performance of the proposed algorithm was 
put into perspective with Ipopt, a current state-of-the-art solver.

No winner emerged from the comparative results, which was somehow 
expected, since both methods have the interior-point strategy as the main princi-
ple. Nevertheless, we point out that feasibility may be an issue: while the general 
purpose solver Ipopt may relax bounds, Lcmin always guarantees a feasible final 
iterate, except when numerical difficulties may occur, as in the 7 cases of fail-
ure of Lcmin in the numerical experiments, which evidences that the problem is 
numerically difficult or even numerically infeasible. Therefore, Lcmin is recom-
mended for applications in which feasibility is a desired feature.

Acknowledgements  The authors are thankful to the anonymous reviewers for providing insightful 
suggestions which improved the presentation of this work.

References

Andreani R, Birgin EG, Martínez JM, Schuverdt ML (2008) On augmented Lagrangian methods with 
general lower-level constraints. SIAM J Optim 18(4):1286–1309

Birgin EG, Martínez JM (2014) Practical augmented Lagrangian methods for constrained optimiza-
tion. Society for Industrial and Applied Mathematics, Philadelphia

Chen L, Goldfarb D (2006) Interior-point �
2
-penalty methods for nonlinear programming with strong 

global convergence properties. Math Progr 108(1):1–36
Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math 

Progr 91(2):201–213
Fiacco AV, McCormick GP (1968) Nonlinear programming: sequential unconstrained minimization 

techniques. Wiley, New York (1968, Reprinted by SIAM Publications, 1990)
Frisch KR (1955) The logarithmic potential method of convex programming. Tech. rep., University 

Institute of Economics, Oslo, Norway
Gill PE, Murray W, Saunders MA, Tomlin JA, Wright MH (1986) On projected Newton barrier meth-

ods for linear programming and an equivalence to Karmarkar’s projective method. Math Progr 
36(2):183–209

Gould NIM, Orban D, Toint PL (2015) CUTEst: a constrained and unconstrained testing environment 
with safe threads for mathematical optimization. Comput Optim Appl 60(3):545–557



1 3

On the solution of linearly constrained optimization problems…

Karmarkar N (1984) A new polynomial-time algorithm for linear programming. In: Proceedings of 
the Sixteenth Annual ACM Symposium on theory of computing, STOC ’84, pp. 302–311. ACM, 
New York, NY, USA

Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, New York
Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for 

large-scale nonlinear programming. Math Progr 106(1):25–57

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	On the solution of linearly constrained optimization problems by means of barrier algorithms
	Abstract
	1 Introduction
	2 Proposed barrier method
	3 Global convergence
	4 Implementation and numerical experiments
	5 Final remarks
	Acknowledgements 
	References




