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Abstract

Many practical problems require the solution of large-scale constrained optimiza-
tion problems for which preserving feasibility is a key issue, and the evaluation of
the objective function is very expensive. In these cases it is mandatory to start with
a feasible approximation of the solution, the obtention of which should not require
objective function evaluations. The necessity of solving this type of problems moti-
vated us to revisit the classical barrier approach for nonlinear optimization, provid-
ing a careful implementation of a modern version of this method. This is the main
objective of the present paper. For completeness, we provide global convergence
results and comparative numerical experiments with one of the state-of-the-art inte-
rior-point solvers for continuous optimization.
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1 Introduction

Algorithms for solving continuous constrained optimization problems are iterative.
Very frequently a feasible initial point is not available so that we must start with
an approximation x° that is neither feasible nor optimal. Most algorithms compute
successive iterations trying to achieve feasibility and optimality more or less simul-
taneously or, at least, without giving priority for one feature over another. Moreover,
optimization algorithms usually compute both the objective function and the con-
straints (almost) at every iteration. When the objective function is very expensive
and the evaluation of constraints is cheap, this may be a poor strategy. On the one
hand, many times, what users really need is a feasible point with a reasonable objec-
tive function value. On the other hand, finding a feasible point may demand a non-
negligible number of iterations that could become very expensive if we are forced to
evaluate the objective function simultaneously with the constraints.

These observations lead us to prefer algorithms that start at a feasible point and
preserve feasibility at every iteration. Classical barrier methods, introduced by
Frisch (1955) and Fiacco and McCormick (1968), are among the most attractive
alternatives for solving constrained optimization problems with those characteristics.

In this paper, we address the case in which the constraints are linear. Namely, the
problem considered here will be:

Minimize f(x) subject to Ax =band £ <x < u, 1)

where x€R", f:R" >R is twice continuously differentiable, A € R™"
£, u€(RU{—oco,+0}),andm<n.Let F={x€R" |Ax=band Z < x <u} be
the feasible set for problem (1) and

Fo={xeR"|Ax=band ¢ < x < u} 2)

be the set of points that strictly satisfy the box constraints of (1), called the rela-
tive interior of JF. If an initial feasible approximation is not available, we assume
that such approximation may be obtained at low cost by a suitable Linear Program-
ming solver or an specific method for solving affine feasibility problems. Moreover,
we assume that, by means of an appropriate pre-processing scheme, we purify the
matrix A in order to have linear independent rows.

Pioneered by Frisch (1955) for convex problems, and further analyzed by Fiacco
and McCormick (1968) for general nonlinear programming problems, interior-point
methods had a revival with the work of Karmarkar (1984) within the linear pro-
gramming context, specially after the equivalence with logarithmic barrier methods
has been established by Gill et al. (1986). The renewed interest in logarithm barrier
methods for the general nonlinear programming problem led to the development of
the Ipopt algorithm, proposed by Wichter and Biegler (2006). This is one of the
state-of-the-art solvers used nowadays in theoretical and practical problems.

The barrier method described in this work starts with an interior approximation
such that # < x° < u and Ax° = b. Given an interior feasible x*, the new iterate x**!
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is computed using matrix decompositions and manipulations by means of which
instability due to extreme barrier parameters is avoided as much as possible and,
additionally, possible sparsity is preserved. At each iteration, a linear system of
equations is solved by means of which one computes new primal and dual approxi-
mate solutions. This system approximates KKT conditions for the minimization of a
quadratic approximation of the function subject to the linear constraints, except for
the fact that the primal n X n matrix, which represents the Hessian of the Lagran-
gian, might need to be modified in order to preserve positive definiteness onto the
null-space of A. In other implementations of primal-dual methods (see, for example
Wichter and Biegler 2006), an additional (primal) modification may be demanded
to ensure that a solution of the KKT system exists. This modification is not needed
at all in our approach due to the pre-processing scheme that guarantees full-rank
of the matrix A. In linear constrained optimization, the primal modification may
cause a temporary loss of feasibility of the next iterate, a feature that we want to
avoid completely due to the characteristics of the problems that we have in mind, as
stated above. We will show that the resulting method is globally convergent under
mild assumptions, preserving feasibility of constraints along the iterations, therefore
guaranteeing a feasible solution at the end of the optimization process. The proposed
method has been implemented, and a comparative numerical study with Ipopt is
provided.

Ipopt is a method for solving optimization problems with constraints of the form
h(x) =0, £ < x < u, where the function % is, in general, nonlinear. In the case in
which A(x) = Ax — b, assuming that the iterate x* is feasible and interior (that is,
Ax* = b and ¢ < x* < u), the Ipopt basic iteration may be described as follows.
Assume that g > 0 is a barrier parameter and that B(x, y) is the corresponding log-
arithmic barrier function, which is well defined whenever # < x < u and goes to
infinity when x tends to the boundary. Consider the Newton iteration corresponding
to the nonlinear system defined by the optimality conditions for the minimization of
f(x) + B(x, u) subject to Ax = b. This leads to a linear system of equations whose
matrix may not satisfy desired inertia conditions. In order to correct this inertia, the
whole diagonal of the matrix may be modified. The solution of the corrected linear
system leads to a trial point that may violate both the (interiority with respect to the)
bound constraints # < x < u and the linear constraints Ax = b. This is because, after
correction, the search direction may not belong to the null-space ofA. The lack of
interiority with respect to the bound constraints is fixed by means of a restriction of
the step size. This is not the case of the infeasibility with respect to Ax = b, which
is fixed using the same restoration procedure that is used in the nonlinear case. The
acceptance of the trial point obeys to a filter criterion that combines a measure of
infeasibility and the objective function value. The main differences with respect to
the method presented in this paper are: (i) the inertia correction does not involve
the modification of whole matrix’s diagonal, as we assume that A is full-row rank, a
feature that is guaranteed by a pre-processing scheme. As a consequence, feasibility
is always preserved and restoration is never necessary; (ii) the acceptance of the trial
point is related to sufficient descent for the merit function f(x) + B(x, u).
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The rest of this work is organized as follows. Section 2 introduces the proposed
barrier method. Section 3 presents its theoretical convergence results. Section 4
shows implementation details and exhibits numerical experiments. Conclusions are
given in the last section.

Notation If v = (v, ... ,vn)T € R", diag(v) denotes the n X n diagonal matrix whose
diagonal entries are given by vy, ..., v,. If K = {k;,k,, ...} € Nwith k; <k, for all j
then we denote /C C N.

oo

2 Proposed barrier method

Let us consider the problem

Minimize ¢, (x) subject to Ax = b, (3)
where
def
0.0 = f(0) = 1 Y log(x, — £) — u Y, log(u; — x), @)
i€, €T,

def def
u is a positive parameter, Z, = {i : ¢, #—o0}, and Z, = {i : u; #+o0}. The
Lagrange conditions for (3) are given by

V@) +ATA— uLfe+ uU'e =0 )
Ax—b =0,

e being the n-dimensional vector of all ones, the diagonal matrices L and U defined
componentwise by

[ x—t,ifiel, (u—x,ifie,
Li; _{ 0, otherwise and U, _{ 0, otherwise, ©)

with pseudo-inverses L' and U given by

1 . 1 .
,ifiel B —ifiel
Lfi =< x-¢ 1ESe and U/, =4 u,—x LS
’ 0, otherwise '

0, otherwise.

Defining
[z/]; = /,[LL. and  [z,]; = MUZ!” M
we have
LZ%e—pe =0
UZ'e - pe =0,

where Z7 = diag(z,) and Z" = diag(z,); and, putting all together into (5), we obtain
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Vi) +ATA -z, + 7, =0, (8a)
Ax — b =0, (8b)

Lz, — pe =0, (8¢c)

Uz, — pe =0. (8d)

A natural approach for finding x* that approximately solves (3) consists in obtain-
ing (x*, 4%, 27, z;,) approximately satisfying (8). In practice, we do not use the defini-
tion (7) of z, and z,,, but we indeed find an approximate solution to (8). Since @ in (3)
is not defined for x ¢ (¢, u) and goes to infinity as any component of x gets closer to
¢ or u, necessarily £ < x* < u. This fact, Egs. (8c) and (8d), and the positivity of u
imply that [z /)] 0, foralli € Z, and [} ]; > 0, for all i € Z,,. Therefore, z; y and 7' are
u-approximations to the Lagrange multlphers in the KKT conditions of problem (1)

These ideas give support to a method for solving problem (1) that consists in solv-
ing a sequence of subproblems of the form (3) by driving to zero the so-called bar-
rier parameter p,, positive for all k. Denoting the outer iterations by the index k, an
approximate solution to (8) is computed by an iterative process indexed by j, the inner
iterations.

To describe an inner iteration of the method suppose we have (x*7/, A/, I o zu*’) with
j>0,x% € F,, and positive vectors 27 and zu We consider a line search method to
compute (xK+1, Jki+1] zl;"“ 271 such that X+ € F,, [zk"“] > 0 for each i € Z,,
and [zk"+1] > O foreachi € Z,. For defining the (j + l)th inner approximation, a search
direction (dk*’, dl;", dﬁ", dk”) must be computed, with d'’ a descent direction for ?,, ()
from x*/, and a step size o ; j satisfying a sufficient decrease condltlon

The Newton’s direction to system (8) from (K, AR z S zu") is the solution to the
(3n + m)-dimensional linear system given by

V2GR AT —1 1 N\ dY VF(H) + AT — 2 4 2l
A 0 0 0 fav 0 o
4 = - k.j 0
Z, 0Ly 0 d{;f Ly = e ®)
~Zg; 00 U\ dY Uyjad’ = e

the well-known primal-dual system (Nocedal and Wright 2006). From the last two
blocks of (9), we get

A = — 2 4 il e — L] Z{ d¥ and (102)
d = =29 + Ul e+ U 74 d, (10b)
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Using (10) into the first two blocks of (9), we obtain the (n + m)-dimensional linear
system

A0 d 0

where H,; = V2f(Y) + LZ,/ZZ, + UZJZI‘(‘J From Nocedal and Wright (2006,
Thm.16.3), we have that

. . H; AT . . T
inertia AJ 0 )= inertia(W* H,, JW) + (m,m,0), (12)

where W € R"™®=™ ig a matrix whose columns form a basis to the kernel of A and
inertia(M) is a triple that denotes the number of positive, negative, and null eigenval-
ues of the square symmetric matrix M, respectively. Therefore, the matrix of the lin-
ear system (11) is nonsingular if H, ; is nonsingular in the kernel of A. Furthermore,
we have the following result.

Lemma 1 Consider the linear system (11) If the matrix Hy; is positive deﬁmte
in the kernel of A and the component d, ki of the solution is nonzero, then d, s a
descent direction for @ ”k( ) from x*J.

Proof The first block of equations in system (11) implies that
Hyd + ATdY = —Vf(e&) — AT + L e = mU, e (13)
Since V(pﬂk(ka) = VF(x) — ,ukLzJ.e + kalJe, from (13),
HydY +ATd, = -V, (M) - ATAY. (14)

The second block of equations in (11) implies that df‘i is in the kernel of A. So, pre-
multiplying (14) by —(d*%)T,

Vo, M)Td = () Hy jd. (15)
Thus, if H, ; is positive definite in the kernel of A then (dy')"H, ;d; */'> 0 whenever

d, ki # 0, which, together with (15), imply that d, *J is a descent direction for ®,, ()
from x*V. O

To ensure that (i) the solution of (11) exists and (ii) de is a descent direction
for (pm(') from x¥/, relation (12) and Lemma 1 indicate that we need

o H AT
mertla( A O)—(n,m,O).
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According with (12), this can be accomplished by guaranteeing that H, ; is positive
definite in the kernel of A. For this reason, if the inertia of the matrix of the sys-
tem (11) is not equal to (n, m, 0), we search for a scalar & ; > 0 such that the inertia
of the matrix

Hyj+ &1 AT
A 0

is (n, m, 0) and then solve the following perturbed version of the system (11)

, I AT kJj Y+ AT A, .
()
A

The subproblem iterates are stated as

X = gy d (17a)

AR = 4 g (17b)
2 = g dY, (17¢)
2 =g +ady, (17d)

aif}., ai:']. € (0, 1] determine the step sizes. Since £ < x5 < u, [zl;"]i >0

in which ay j,
for eachi € 7, and [zﬁ‘/]i > 0 for eachi € Z,, we need to preserve these properties in
the new iterate. Following Wichter and Biegler (2006), we use a fraction-to-the-

boundary parameter 7, = max{t;,, 1 — y; }, with 7.;, € (0, 1). Moreover, we define
def ; def ;
the sets D = {i : [d\']; < 0}and D = {i : [d\’], > 0}, and compute

o = max ,{a € 0,11 : & +aldV]) - £, > (1 — 7)™ — ﬂ)},
ki i€T,nDY ! x ! ! !
alL:,j = maxki {(l e 0,1] : u; — (xj‘:f + a[df‘i]i) >(1- Tk)(ui _xjf:i)},
i€Z,nD,’
Zp .ok kj kj
i = oy (e @1+ aldd) 2 (=i
o = A?aékv{a € (017 : [29] + ald], > (1 —Tk)[z’y],.}.
i€Z,nDY "
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Notwithstanding, whenever d’;‘j is small enough, we take af{j. = a]i:‘l. = 1, in order to
not impair the global convergence of the method. A backtracking must be done to
obtain a;, J € O, a}(‘"}?"‘], with a]'(’j]f”‘ = min{ai}., aZJ}, such that the sufficient decrease

condition
Py (ka + adef‘j) < (pﬂk(XkJ) + yakJVq)Mk(xk‘i)Tdf’j

is satisfied, for some y € (0, 1). _

Last, but not the least, we have to ensure that z];” *land zﬁ : approximately maintain
the relationship with x*/*! established in (7). These equations guarantee that the north-
west matrix in system (11) is an approximation to the Hessian of the log-barrier func-
tion (4). Therefore, we consider

. k1 Hy 1 Hy o
kj+1; _ ) max < minq [Z k| ————— sy —\ ——m ,ifieZ,
[Zf ]l_ — { { ¢ e xfﬁl _ fi K, xf”ﬂ _ fi

J+

0, otherwise
and
. —k,[+l /’lk 1 ”k f . z—
kj+lq _ max min [Z ]"Kz _— ,— | — i1 e u
[Zu ]i = u i U — fo+1 K. " — X:.(J-H
0, otherwise,
fori=1,...,nand aconstant x, > 1. Hence,
kj+1 1 H H .
[z, € |— T .+1k N _+1k , fori € Z, and
KA X" —¢, T — ¢
kj+l 1 My Hi .
[Zu ]i S . PR & K, [ , fori e Iu’
z\U; —X. u. —X.

i i i i

which means that (7) will be satisfied with precision x, (see Wichter and Biegler
2006).

We consider that a point (x*7/, 2K/, z];‘j, zly) is an approximate solution to subprob-
lem (3) whenever

o
E, (NN, 00 29 <xe g (18)

where
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def Vi) +ATA -z, + 2,
e
E,(x,4,2.,2,) = Lz, — pe ; (19)
Uz, — pe -

and k, > 0. Thus, (18) implies that Eqs. (8a), (8c), and (8d) are approximately
satisfied, and by the definition of the method, AxM = b, so that (8b) holds. There-
fore, (XK, A% ,z];;’, 247y approximately satisfies the optimality conditions (8) of
subproblem (3).

After a subproblem is approximately solved, we compute a new barrier parameter

. 0
My = min {K,,Mk, 7 },

where K, € (0,1) and 0” € (1,2). With such an update, the barrier parameter may
converge superlinearly to zero.

Algorithms 1, 2, and 3 below summarize the proposed method. Algorithm 1 cor-
responds to the outer algorithm, while Algorithm 2 corresponds to the inner algo-
rithm, that is used by Algorithm 1 for solving the subproblems. Algorithm 3, taken
from Wichter and Biegler (2006, p 36) and reproduced here for completeness, cor-
responds to the inertia correction procedure.

Algorithm 1: Feasible Interior-Point Method - Outer Iterations

Input. Let 2° € Fo, A° € R™, 2{ € R™, and 2 € R" such that [2)]; > 0 fori €
T, and [2)]; = 0 otherwise, and [20]; > 0 for i € Z,, and [2]; = 0 otherwise,
A € R™*™ a full row-rank matrix, and po > 0; constants eyo1 > 0, ke > 0,
kp €(0,1), 0, € (1,2), v € (0,1), Tmin > 0, and «, > 1. Initialize k < 0.

Step 1.1. If
Eo(x®, \F 28 2F) < eial (20)

then stop and return (z*, \*, 2F, 2F).

Step 1.2. Starting from z*, )\"’,zf. and z* and using Algorithm 2, compute

aF AR R and 2+ such that

Euk(mk+la/\k+1~,25+1~,25+1> < Kelti.
Step 1.3. Compute pp41 = min{mﬂuk,#i“}.

Step 1.4. Let k < k+ 1 and go to Step 1.1.
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Algorithm 2: Feasible Interior-Point Method - Inner Iterations

Input. Let 2%0 € Fy, \F0 € R™, zf’u € R”, and 250 € R™ such that [zf‘o]i >0
fori € Z, and [zf'n],', = 0 otherwise, and [2%0]; > 0 for i € Z,, and [2¥°]; =0
otherwise, A € R™*™ a full row-rank matrix, and py, > 0; constants r. > 0,
v €(0,1), Tmin > 0, and £, > 1. Initialize j < 0.

Step 2.1. If

E/tk (‘Tk’]v /\k'jv Z?]v Z:i’j) < Kellk,

kg Nk kI kg
then stop and return (x*7, A7, 27 287).

Step 2.2. Using Algorithm 3, compute & ; > 0 such that inertia(My ;) =
(n,m,0), where

M, V2f(@I) + L 28+ UL 2+ 6l AT 1)
’ A 0
Step 2.3. Compute d¥7 and di’j as the solution to the linear system
y ki Ve, (zF9) + AT AR
My, (d’“‘j> - ( i (5) > ' (22)
X
Step 2.4. Compute ) .
dbi = 2 +,ukL;,]e - LL]Z,VLy_I»dL‘;J and
did = —z89 4 U e+ UL 2 db.
Step 2.5. Compute 7, = max{Tmin, 1 — &},
(xﬁ)j = max {a€(0,1]: ([2%9]; + ald®7];) — € > (1 — ) ([2"7]; — £)},
i€z,nD*I
ap ;= max {a€(0,1]:u; — ([z"7]; + o[d¥);) > (1 - ) (u; — [259))},
> i€Z, Nk
and a!¥* = min{af;w aj ;1 1f both
[dhi], < & foralli e T,n D} and
[z07]: (23)
[d’;*f] > — l:‘ Jforalli e Z, N prI
? J
[zu?]s
then a’; = a3 = 1, otherwise,
ap; = max {a€(01]: =57 + aldiI); > (1 - m)[287];} and
zEI[ﬂD+'7 ) ) )
az] = max {a € (0,1]: [zﬁ’]],; +(x[di’}j]; >(1- Tk)[z,]fj],}
i€L,NDEY
Step 2.6. Let a < a}!%*. While
P (@ + adp?) > ¢ (") + yaVip, ()T dp (24)

set a %a. Then, set ag,; < a.
Step 2.7. Compute z*711 = gkd 4 Otk,]d];'] and A = AR 4 di’j-

Step 2.8. Compute Zf‘ﬁl = 21};’] + a;f]d’;f, Zhatl = phd 4 ait}d""’f

Zu !

671 = max{min{[ff‘jﬂ]hfcz ([Zk'jﬁk]l 7[1_)} 'Kiz ([mk.jﬁ»ulk]vl — fi)} >

for i € Z;, and

(b1 = me o { (257 (i ) o () -

fori € T,,.

Step 2.9. Set j < j + 1 and go to Step 2.1.
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Algorithm 3: Inertia correction

Input. Constants 0 < &min < Emax; 0 < Kg <1l< K;r < RZ, &ni > 0, and the
prior correction & j—1 (§k,j—1 = 0if k=5 =0).
Step 3.1. & < 0.

Step 3.2. If the inertia of the linear system (16) is (n,m,0), set {py1,—1 = &pj
and stop.

Step 3.3. If & j—1 = 0, then & j < &, else & j  max{&min, r;g{k,j,l}.

Step 3.4. If the inertia of the linear system (16) is (n,m,0), set {p1,—1 = &r.j
and stop.

Step 3.5. If &rj—1 =0, then &, ; <+ R?fk,j, else & j Hg’fk,j.

Step 3.6. If i ; > &max, then stop, because it was not possible to compute
a value for & ;. Else, go to Step 3.4.

3 Global convergence

The convergence theory of the proposed method is given in this section. We first
present well definiteness results for Algorithm 2.

Lemma 2 In Step 2.2 of Algorithm 2, there exists & ; > 0 large enough such that
inertia(M, ;) = (n,m, 0), with M ; defined in (21).

Proof Let I:Ié,“ = V2f(x}) +Lf ZL + U;JZlf’ +&,0 and W E~R"X”"" a matrix
whose columns form a basis to the kernel of A. Notice that, if H, &, is positive defi-
nite, then WTH %W is also positive definite. Thus, on the one hand, if 1’:1O is positive
definite, then W' H,W is positive definite as well, which together with (12) implies
that inertia(M, ,) = (n m,0) for &, = = 0. On the other hand, if H0 is not positive defi-
nite, let A, < A, < -+ < A, be the eigenvalues of the matrix H,, with A; < 0. There-
fore, the eigenvalues of Hlﬂl l+es for e > 0, are

€S/12+|/11|+€S"‘SA,1+|),1|+€,

which implies that 1:1| 1, +¢ 18 positive definite and, consequently, so it is WTH| al4eW-
Hence, (12) yields inertia(M, ;) = (n,m,0) for § ; > |4,| +e.

Next we show that, as long as x*/ is not stationary for problem (3), it is always
possible to compute an adequate search direction in Algorithm 2.

Lemma 3 In Step 2.3 ofAlgortthm 2, it is possible to compute the search directions

dk‘/ and d . Moreover, lfd # 0, then d;, *'is a descent direction for @, (-) from Xk,
So, Step 2 6 finishes in a finite number of iterations.
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Proof From Lemma 2, it is possible to find & ; such that inertia(Mk,) = (n,m,0).
Therefore, M, ; is a nonsmgular matrix, and the linear system in Step 2.3 has a
unique solutlon Notice that, if d ' = 0 and d, =0, the right-hand side of the linear
system (22) yields the palr (x~, /lkJ) to be prlmal —dual stationary for problem (3).
In case d, =0 but d # 0, also from (22) we obtain the primal—dual stationary
pair (%, ﬂkJ +d ") (ka A1) for problem (3). Now, from Lemma 1, since
inertia(M, ;) = (n m,0), we have that, whenever a direction d # 0 is computed, it
will be of descent for ¢, (-) from x4, So, there exists a;; such that the sufficient
decrease condition at Step 2.6 is verified. a

Lemmas 2 and 3 show that Algorithm 2 is well defined. The well definiteness
of Algorithm 1 is subject to the global convergence of Algorithm 2, and this is
established in the sequel. By global convergence, we mean that we analyze the
properties of the infinite sequence generated by the method that emerges when
the stopping criterion at Step 2.1 is removed from Algorithm 2. With some abuse
of notation, we refer to this sequence as the infinite sequence generated by Algo-
rithm 2. Analyzing the properties of this infinite sequence, we prove that the stop-
ping criterion at Step 2.1 of Algorithm 2 is satisfied in finite time. Based on ideas
from Chen and Goldfarb (2006), we present a global convergence analysis for the
proposed algorithm, but in a more detailed fashion, and strongly connected with
the structure of problem (1). The global convergence results rest upon the follow-
ing assumptions.

Assumption 1 The set F,, defined in (2), is nonempty.

Assumption 2 The objective function f of problem (1) is continuous and at least
twice continuously differentiable.

Assumption 3 The sequence {x*/} generated by Algorithm 2 is bounded, for all k.

Assumption 4 The matrices I:IkJ- =H,;+ &1 satisty JFI:Ide > o||d||?, for all
d € R", d # 0, such that Ad = 0, for some ¢ > 0 and for all k and j.

Although Assumption 3 is a conjecture about the sequence generated by the
method, which we have no control at a first glance, this is implicitly assured when
(i) box constraints exist for every variable, i.e., when —oo < ¢; < u; < +o0, for
i— 1,...,n, or (ii) when the level set {x € F|f(x) <f@%)} is bounded where
e ]—'0 Assumption 4 establishes that the matrices {H, ;1 must be uniformly
positive definite in the kernel of matrix A. Compared with other requirements,
as in the work by Chen and Goldfarb (2006, Condition (C-5)), our hypothesis is
slightly weaker, since Lemma 2 guarantees the attainment of a scalar &, ; in Step
2.2 of Algorithm 2 which properly adjusts the inertia of the matrix of the sys-
tem (22) . Thus, Assumption 4 may be accomplished by the numerical nature of
the inertia correction method used.
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Lemma 4 Suppose that Assumptions 1, 2 and3 hold and consider that the sequence

generated by Algorithm 2 is {x5*1, Akﬁl,z];jm , 27 Y Then, there exists § > 0 such
that

I. forall j€{0,1,2,...}, it holds

(@ ¢;+6< xf‘”l,for allie I,and
®) X7 < -6, foralli € I,;

II. forall je€ {0,1,2,...}, it holds

; H
@ I e~

l, Z],for alli e I,and
KZ

(b) [+, e &

’32, Z],for allie I,

Proof To show (I), suppose, by contradiction, that there exist an infinite set 7 C N,
oo
and i € Z, such that

i (25)

By Step 2.1 of Algorithm 2, E, (4! Ak+1 2 29%) 5 4 4y and by the line
search of Step 2.6 of Algorithm 2,

@, ) <@, M) +yey Vo, ()T (26)

Assumptions 2 and 3 imply that the sequences {f(x**1)}, {x k‘”l — ¢}, forallie 7,
and {u; — k"“} for all i € Z,, are bounded. Thus, by (25) and by the definition of
the functlon ®,(-)in (4),

lim g, (X)) = 400,
jej(p,,k( ) =+

which contradicts (26). An analogous reasoning applies in case there exist an infinite
setjCN and7 e, suchthat{x }]EJ—>M

Part (IT) follows directly from the computations within Step 2.8 of Algorithm 2.
O

In the following, auxiliary results ascertain the boundedness of the sequences
generated by Algorithm 2, in preparation to the global convergence theorem.

Lemma 5 Suppose Assumptions 2 and 3 hold. Then, the sequence {H, ;) generated
by Algorithm 2 is bounded.

Proof Assumptions 2 and 3 imply that the sequence { V2f(x/)} generated by Algo-
rithm 2 is bounded. Furthermore, Assumption 3 and Lemma 4(I) imply that the

@ Springer



E. G. Birgin et al.

sequence {L;;J., UZJ} generated by Algorithm 2 is bounded. In addition, Lemma 4(II)
implies that the sequence {Zlf ,Zlﬁ/ } generated by Algorithm 2 is bounded. Finally,
according with Lemma 2, & ; > |4,| + € is large enough to correct the inertia of
matrix M;;, which gives an implicit upper bound in & ;. Putting all these facts

together, the result follows. O

Lemma 6 Suppose that Assumptions 1, 2, and3 hold. Then, the sequence
{(d", Aki+1, Z’;"H I+ eenerated by Algorithm 2 is bounded.

Proof According with Lemma 4(II), the sequence {zk"+1, zﬁ"“ } is bounded. In order

to get a contradiction, suppose there exists an 1nﬁn1te set J C Nsuch that
: ki ki LTI
}le% (@, A% + d;)|| = +oo. 27)
Assumptions 2 and 3 and Lemma 4(I) imply that the sequence

{Vgom‘(XkJ)}je {Vf(xkd) —MkL e+/4kUTJe}_

jeJg

is bounded. This fact, together with Lemmas 4(II) and 5, assure the existence of an
infinite set 7 C 7 such that

lim Vo, (V) = Vo, (),

e (28)
kj ko

hm(zf,z )= (zf 52,0 )s and

o 29)

lim Hk‘] = Hk .

jer

Using (21), we can rewrite the system (16) in order to get

dy Vo, (&)
MkJ<AkJ+d,;J>=—< " : (30)

recalling that (29) implies that lim; M, ; = M ,.

By (28), we have that the right- hand side of the system (30) is bounded for j € J.
Besides that, Step 2.2 of Algorithm 2 guarantees that M, ; will be nonsingular for all
Jj. Thus, from (30), it follows that

dasi k.j
lim S gy ) =lim-M! Vo, & _ M V(pm(xk ) ’
jeg \ A +d? ) ey TR 0 ko

contradicting (27). O

Lemma 7 Consider that Assumptions 1, 2, 3, and 4 hold. Then, the sequence {d];‘j}
generated by Algorithm 2 goes to zero as j tends to infinity.
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Proof Lemma 6 implies that the sequence {df‘f} is bounded, therefore it admits some
convergent subsequence. Let us consider, by contradiction, that there exists an infi-
nite subset 7 C N such that

(o]

. k.j k.,
i, = # 0 61

Lemma 5, Assumption 3, and Lemma 6 imply that there exists an infinite set JcJ
o
such that

, S
limA,; =, and lim (x"",/l"",zf",z';"> (ahn, Ak 2, k).
jeJ jeT

Pre-multiplying the first block of equations from the system (16) by di“i, which, by
the second block of equations from the system (16), belongs to the kernel of A, we
have that

(d)TH, jdy?!

- @YV, (*)
|ld"’||2, by Assumption 4.

\%

Thus,

Vo, @NTdY < —o|ld|%. 32)
Taking the limit in (32) for j € 7, it follows that

Vo, (5Td < —olld* |, 33)

By Lemma 4(I), we have that £, + 6 <xk" for all i€ Z, and x I < u — 6, for
alieZ, w1th 6 > 0. Taking the limit for j€E J it follows that f <x; ko , for all
i €1, and x ;» for all i € Z,,. Therefore, there exists @ € (0, 1] such that for all
a € (0,al),

¢; <X+ a[d*],, foralli € T, and X" + a[d"*]; < u;, foralli € Z,. (34)

Since d** # 0 and (33) implies that Ve, (x**)7d%* < 0, then there exists & € (0, ]
such that, for all @ € (0, @], (34) holds and

k., k% £ = AT gk,*
@, (" +ad”) < qo”k(xk )+yaV(p”k(xk )d,

is verified, with ¥ € (y, 1). Notice that this is a sufficient decrease condition, which
ensures the existence of @ Nonetheless, this is a more rigorous condition than the
one required in Step 2.6 of Algorithm 2, given that 7 > y. Since ¢,,(-) is a continu-
ously differentiable function, from the strict fulfillment of the bound constraints (34),

and the fact that d’x"* is a descent direction from x**, according with (33), we can
define

p*=min{p € {0,1,2,...}}
such that
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def_/1\*"
U = 0‘(5) S @
and
@, 0N+ d) < @, (M) +yay Vo, (F)TdY, (35)
forall j € 7, jlarge enough. Then,

@, ) < @, M) +ya Vo, (M)

@, 65 = yay jolld’|1%, by (32)
@, (&) = Sya, old |12, by (31)
@, (M) = Eyaky*aﬂdi"*“z, for j large enough,

IANIA IAN DA

which implies that

lim ¢”k (ka) = —00,
JjET

contradicting Assumptions 2 and 3 . O
Theorem 1 establishes the global convergence result for Algorithm 2.

Theorem 1 Suppose that Assumptions 1, 2, 3, and 4 hold. Then, any limit point of
the sequence {x" + o, Jdl;‘/, A5+ dl;‘/, Z/;” + ai;df;/, zl,j" + a]i‘:jdf:’} generated by Algo-

rithm 2 satisfies the first-order optimality conditions (8) for problem (3).

Proof Let (x**, Ab*, z];’*, Z5*) be any limit point of the sequence

kyj kj ki ki kij 2 ki kj Tu gk.j
{x +“k,idx LA +d/1 12, +“dezf’Zu +ak‘].dzu ,

namely the subsequence whose indexes belong to the infinite set 7 C N. Taking the
limit in (16) for j € J, by Lemma 7 we have that
AT = Vo, (F) = =V + L) e — w U} e.
In other words,
VIR + AT — L) e+ m U] e =0. (36)

Lemma 7 implies that, for j € J large enough, d];‘j will be small enough and, for this
reason, conditions (23) will be satisfied and a]f‘i = alz(“j = 1. Therefore, taking limits

in (10) for j € J and considering (17¢) and (17d), we have that
Z/;’* = ”kl‘]t,*e € Zﬁy* = MkUZ,*e' (37

Thus, (36) and (37) together imply that
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Vi) + ATAR — 25 4 2k =0,
Lk,*zfs* - ﬂke = 0, (38)
Uk’*ZI;’* - Mke = O

Therefore, since Ax* = b, (38) gives us that (8) holds in (x**, 1*, 7 f*, k). m|

Now, we are ready to show that Algorithm 1 is well defined. First, by Assump-
tion 1, it is always possible to find an initial point x’ € . Thus, to prove the well
definiteness of Algorithm 1, it is enough to check that Step 1.2 is well defined,
which is closely related to the well definiteness of Algorithm 2. The next result
completes the analysis.

Lemma 8 Consider that Assumptions 1, 2, 3, and 4 hold. Then, for all k, it is pos-
sible to find (xX**1, A+, 25+ X4 in finite time using Algorithm 2 such that

E, (x ( kbl gkl ’;“,Zﬁ“) < K,y

Proof First, notice that y, > 0 and, from Step 1.3, y;, > O for all k. Thus, we have
that k_p; > O for all k. On the other hand, for each k, Theorem 1 implies that, as
j tends to mﬁmty, the sequence generated by Algorithm 2 converges to a point
(b, /lk*,zf ,2o*) such that E, (x**, ﬂ"*,zf*, &*)=0 (according with (38))
Therefore, for j large enou%h Algorlthm 2 can find a point (x%/, Ak A / ,zu)
such that E, (ka M,z Y < Kty Consequently, it is possible to find
(L) AR k+1, & = ka lk*/,zf ' Z7) in finite time with Algorithm 2. |

With the previous results, we can establish the global convergence of Algo-
rithm 1. Once again, with some abuse of notation, we refer to the infinite sequence
generated by the method that emerges when the stopping criterion (Step 1.1) is
removed from Algorithm 1 as “the infinite sequence generated by Algorithm 1”.

Theorem 2 Consider that Algorithm 1 generates an infinite sequence of iterates
and that Assumptions 1, 2, 3, and 4 hold. If the sequence generated by Algorithm 1
admits a limit point (x*, A*, z;‘,, zz), then

Eo(x*, 4%,25,25) =0, (39)
with E,(x, 4,2, z,) defined in (19).
Proof Let K C N be an infinite set such that
+1 k+l k+1 k+1\ _ % 9% _% _%
lim (x**1, 4 ) = (A5, 2, 7). (40)

Suppose that (39) does not hold. Then,

IVF*) + ATA* — 2+ 20|l >0 or (412)
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IL.Z e|l,, >0 or (41b)

U, Z el >0. (41c)
By Step 1.2 of Algorithm 1, we have that
Eﬂk (ka,/lkH,Z];H,ZﬁH) S Kg”k’

for all k, which means that

”Vf(xk+l) +AT/1k+l _ Z1;+1 + Zﬁ+l”oo SKEMk and (4221)
”Lk+IZ]f+1e - ﬂke”oo <K, MUy and (42b)
1Uk1Z5 € = meelloo <Kty (420)

for all k. Since K C N, we have, by Step 1.3 of Algorithm 1, that
e =0 43)
From (40), (41b), and (42b), for all k large enough, we have that
0 < 141 Z, ellos = My < Kbty

which yields 0 < p, (k. + 1). It is a contradiction, since (43) holds. Analogously,
(40), (41c), and (42c) produce the same contradiction.
On the other hand, from (40), (41a), and (42a), for all k large enough,

0 < [[VAEAT) 4 AT — 20 2 <y

which implies that 0 < k,_u,, being also in contradiction with (43). Therefore, (41)
cannot occur, implying that (39) holds. O

Theorem 2 assures that, given any sequence generated by Algorithm 1, if such a
sequence admits a limit point, then this point satisfies the set of equations in (8) with
u = 0. Consequently, this limit point also satisfies the KKT conditions for the origi-
nal problem (1), since z:; and 7z are nonnegative and, by the definition of the method,
they satisfy the complementarity relations in (8c) and (8d) with 4 = 0. Therefore,
the next result is obtained.

Corollary 1 Suppose Algorithm 1 generates an infinite sequence of iterates and
that Assumptions 1, 2, 3, and 4 hold. If the sequence generated by Algorithm 1
admits any limit point (x*, A%, z,, z,), then this point satisfies the KKT conditions for
problem (1).
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Table 1 Distribution of the number of variables n and the number of constraints m in the considered 200
problems from the CUTEst collection

Minax Mppax # Problems with n > wn,,, # Problems with m > wom,,,,
®=0.1 = 0.01 = 0.001 o =0.1 = 0.01 @ = 0.001
251, 001 250, 498 55 123 147 6 100 132

Additionally, the convex case yields the following result.

Corollary 2 Suppose Algorithm 1 generates an infinite sequence of iterates, that
Assumptions 1, 2, 3, and 4 hold, and that, in addition, the objective function fis con-
vex. If the sequence generated by Algorithm I admits any limit point (x*, A*,z},z;),
then this point is a global minimizer for problem (1).

Proof The proof follows from Corollary 1 and the fact that, in the convex case, every
KKT point is a global minimizer (see Nocedal and Wright 2006). O

4 Implementation and numerical experiments

We now present numerical experiments to evaluate the performance of Algorithms 1
and 2. We consider all the 200 problems from CUTEst collection (Gould et al.
2015) with linear equality and box constraints. Table 1 displays the distribution of
the number of variables n and the number of constraints m in the considered set
of problems. It should be noted that, in all the problems, a constraint of the form,
£; < x; <u, with—10% < £, <u; < 10%° fori = 1, ...,n is present; this being a suf-
ficient condition for the satisfaction of Assumption 3.

We implemented Algorithms 1, 2, and 3, referred as Lcmin from now on, in For-
tran 2008. The codes are freely available in the web.! Tests were conducted in an
Intel Core 17-8700 3.20GHz processor with 32 GB RAM, running Ubuntu 18.04.3
LTS operating system. Codes were compiled using the GNU Compiler Collection
version 7.4.0 with —03 flag enabled.

In practice, we consider a scaled version of the stopping criterion (20) at Step 1.1
of Algorithm 1 given by

E(*, A, 28,2 < el (44)

where s = (s, 54, 5,),

! https://github.com/johngardenghi/lcmin.
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et RTINS

d — Smax’ m+2n max?
def Iz,
— ALt

sf - max{smax’ n }/smax’
def ax RY

Su - Smax’ n smax?

Smax = 118 a given constant, and

E (%, 422 )dzefmax { IV/@) +ATA =z, + 2/l ILZ7e = pelly, I1UZ"e = pell, }
u\ Ko Aoy 2y ’ > .

Sq S¢ Su

In theory, all iterates of Lcmin are feasible. However, in practice, numerical errors
may lead to some loss of feasibility. For this reason, once the stopping criterion (44)
has been satisfied, we check the value of ||Ax* — b|| .. We consider “the problem has
been solved” (stopping criterion SC1) if

”Ax - b”oo < Efeas’

where ef,,4 > 0 is a given constant. If

lAx — bl < \/€feas:

we say that “an acceptable feasible point was obtained” (stopping criterion SC2).
Otherwise, we declare that “convergence to an infeasible point was obtained” (stop-
ping criterion SC3). In addition to (44), Lcmin also stops whenever

SC4: |4, > k,, where K is a large positive given value;
SCS: k> k,,,,, where k., > 0is given; or

‘max? max

SC6:  py < g491/10and j > j .., where j_ . > Ois given.

In the experiments, following Wichter and Biegler (2006), we set p, = 0.1,
o] = 1078, Kk, =10, k,=02, 6,=15, y= 1074, 7, =099, &, =10,
K, = 1/3, Kg' =8 e ik =100, & =107% &pip = 1072, &nax = 10%,
Smax = 100, Efpns = 1078, k. = 10%, k. = 50, and j,,,, = 200. Three implementa-
tion features are in order. Routine HSL MA57% was used to solve the linear systems.
Matrix A of the constraints of problem (1) may not have full row rank as required,
and may even be such that m > n. Thus, routine HSL MC58> was used to check
whether (i) rank(A) =m; (ii); rank(A) <m and rank(A) = rank (A|b); or
(iii) rank (A) < m and rank (A) # rank (A|b). In the first case, A satisfies the full row-
rank assumption and there is nothing to be done. In the second case, constraints
Ax = b are replaced by an equivalent set of constraints Ax = b in which A satisfies
the full row-rank assumption (A is given by routine MC58 and b can be easily com-
puted). In the third case, the problem is infeasible and there is nothing to be done.

2 http://www.hsl.rl.ac.uk/catalogue/hsl_ma57.html.
3 Available at http://www.hsl.rl.ac.uk/catalogue/mc58.html.
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Table 2 Number of problems in which Ipopt and Lemin found a point satisfying (47) with eg,,, = 1078
and (48) with g4, € {107!,1072,...,1071%,0}

log(€pna) €bnd

-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 —-11 —-12 =13 —-14 —-15 -16 O

Ipopt 154 153 151 150 143 141 137 126 65 65 65 65 65 64 64 64 64
Lemin 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174

(Infeasibility was detected in 6 out of the 200 problems at this pre-processing stage.)
Finally, an interior point x° € JF, is required to start Algorithm 1. For this reason,
we tried to find such a point using a phase I procedure, that consists in approxi-
mately solving the feasibility problem

Ax=bplusC;+[6,]; <x; <u;—[6,]; fori=1,...,n, (45)
with

[6f]i = min{x; max{1, ||}, k,(; = £},

6,], = min{x; max{1, |u;|}, xy(u; — £)}
fori=1,...,n, k;, >0, and k, € (0, %). To approximately solve (45), we apply
ALGENCAN (Andreani et al. 2008; Birgin and Martinez (2014)) with the option
IGNORE-OBJECTIVE-FUNCTION enabled. The phase 1 procedure starts from the given
initial point, making it somehow useful in the computation of the initial interior
point. (Infeasibility was detected in phase 1 for only 1 problem out of the remaining
194 = 200 — 6 problems.)

We have applied Ipopt (Wichter and Biegler 2006), version 3.12.13, within the
same computational environment, also using the HSL. M A57 routine for solving the
linear systems, taking into account the same time budget for each problem, and con-
sidering all its default parameters, except for honor original bounds no.
Such a parameter, which does not affect the overall performance of Ipopt, inhibits
this solver to project* the final iterate onto the box defined by the bound constraints
of problem (1), allowing us to measure the violation of the bounds at the final iter-
ate. Additional experiments with Ipopt considering the default choice honor
original bounds yes were also carried on; the comparison showed results
qualitatively similar to those reported below.

Detailed output of both methods for each one of the 200 problems, as well as
tables summarizing the results, with a CPU time budget of 10 minutes per prob-
lem, can be viewed at the same repository the code is located®. Since the meth-
ods under analysis have different stopping criteria, we consider that a problem
p € {1,2,...,200} is solved by a method M € {Ipopt, Lcmin} if

4 The bound constraints might be dynamically relaxed by Ipopt during the optimization process
(Wichter and Biegler (2006), §3.5), starting from a relative relaxation factor whose initial value is 1078,
5 https://github.com/johngardenghi/lcmin/tree/master/paper.
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Table 3 Number of problems

in which Ipopt and Lcmin 10210 (o) Joa
found a point satisfying (47) -1 -2 -3 -4 -5 -6 -7 -8 0
with g, = 1078, (48) with

€pna = 0, and (46) with Ipopt 61 60 58 58 58 57 57 56 42

fo €{107,1072,..,107%,0}  pomin 58 58 58 58 58 S8 55 52 29

f}{:[ Sfriin +f;ol maX{L lf:;inl }v (46)
where frfl . = min {; opt? fcmm}, and f,; € [0,1],
”Ax - b”oo < Efeass (47)
with gg, > 0, and
max{||(Z — %)l eos 1(x = Wi |0} < Epnas (48)

with £,,4 > 0 and (-), = max{-,0}.

We first take a close look at the feasibility of the final iterate found by the meth-
ods. In Table 2, we show the number of problems in which each method found a point
satisfying (47) with &;,,, = 1078 and (48) with £,,4 € {107!,1072,...,107!6,0}, no
matter the objective function value. Since Lcmin preserves feasibility during all the
optimization process, the amount of problems whose bound constraints are satisfied
does not depend on €, 4. On the other hand, the number of problems whose bound
constraints hold for Ipopt varies according to the tolerance €,4. The 26 = 200 — 174
failures in Lcmin correspond to (i) 7 problems detected as being infeasible, 6 in the
pre-processing of the coefficients’ matrix A and 1 during phase 1; (ii) 7 problems in
which Lcmin generated a final iterate whose feasibility does not satisfy (47) with
E50as = 1078; and (iii) 12 problems in which Lcmin exceeded the 10 min established
as CPU time budget. When €,,4 = 0.1, the 46 = 200 — 154 failures in Ipopt corre-
spond to (i) 10 problems in which Ipopt generated a final iterate that does not sat-
isfy (47) with &4,, = 107%; (ii) 13 problems in which Ipopt exceeded the 10 min
established as CPU time budget; and (iii) 23 problems to which Ipopt is not appli-
cable because of the degree of freedom of A in the constraints of the problem®. For
other values of g, 4, the increasing number of failures is due to the bound constraints
violation at the final iterate.

Lcmin detected the problem is infeasible at phase 1 in 7 problems; and it
exceeded the CPU time limit of 10 min in 13 problems. In the remaining 180 prob-
lems, it stopped satisfying the stopping criteria SC1,SC2, ...,SC6 in 168, 6, 0, 0, 3,
and 3 problems, respectively. As a consequence, it found a feasible point (satisfy-
ing (47) with &g, = 1078 and (48) with &,,; = 0) in 174 out of the 200 considered

% 1t means that, in problem (1), A has more rows than columns. Lemin eliminates redundant constraints,
which makes A to have full row rank in most cases, except in those in which the feasible set is empty.
Ipopt does not start optimization in these cases, stopping with the output Problem has too few
degrees of freedom.
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(a) Function evaluations (b) Total iterations
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Fig. 1 Performance profiles comparing a the number of functional evaluations, b the number of itera-
tions, and c—d the CPU time of Lcmin and Ipopt in the subset of 57 problems in which both solvers found
iterates satisfying (46) with £, = 0.1, (47) with &g, = 1078, and (48) with &,,4 = 0. In d the CPU time
spent by Lemin to find a feasible initial point has been ignored

problems. Considering these 174 problems, Lcmin performed, in average, 6.35 outer
iterations (being 51 the maximum) and 30.54 inner iterations (being 610 the maxi-
mum) per problem. In 132 out of the 174, the inertia of the matrix of coefficients of
the linear system (16) was never corrected, meaning that a single matrix factoriza-
tion per iteration was performed. In the remaining 42 problems, the average number
of matrix factorizations per iteration was 1.26.

Now, we are interested in those problems in which both Ipopt and Lcmin con-
verged to a point satisfying (47) with &g, = 107 and (48) with &,,,; = 0. For this
set, composed by 62 problems, Table 3 shows, for each solver, the number of prob-
lems in which (46) holds with f;, € {1071,1072,...,1078,0}.

We now consider, on the one hand, the set of 57 problems in which both
Lcmin and Ipopt found a final iterate satisfying (46) with f,; = 0.1, (47) with
Eoas = 1078, and (48) with g,,, = 0. Figure 1 depicts, for these problems, the
performance profiles Dolan and Moré (2002) using as performance measure the
number of functional evaluations, the number of iterations, and the CPU time
consumed by each solver. Considering the remaining 143 = 200 — 57 problems,
we have that: (i) in 24 problems, none of the methods found a point satisfy-
ing (47) with &g, = 1078 and (48) with &,,4 = 0; (ii) in 2 problems, Ipopt found
a point satisfying (47) with &, = 1078 and (48) with &,,; =0, while Lcmin
failed; (iii) in 112 problems, Lcmin found a point satisfying (47) with &g, = 1078
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and (48) with g,,4 = 0, while Ipopt failed; (iv) in 5 problems both found a point
satisfying (47) with g, = 107% and (48) with g,,4 = 0, but the objective func-
tional value of one of them does not satisfy (46) with f,,; = 0.1; (v) regarding the
5 problems mentioned in (iv), the objective function found by Ipopt was smaller
than the objective functional value find by Lcmin in 4 problems, while the oppo-
site situation occurred in 1 problem.

5 Final remarks

In this work, a feasible line-search interior-point method for linearly constrained
optimization has been described, implemented, and analyzed. The global conver-
gence theory is accompanied with numerical experiments, encompassing a clas-
sical test set from the literature. The performance of the proposed algorithm was
put into perspective with Ipopt, a current state-of-the-art solver.

No winner emerged from the comparative results, which was somehow
expected, since both methods have the interior-point strategy as the main princi-
ple. Nevertheless, we point out that feasibility may be an issue: while the general
purpose solver Ipopt may relax bounds, Lcmin always guarantees a feasible final
iterate, except when numerical difficulties may occur, as in the 7 cases of fail-
ure of Lecmin in the numerical experiments, which evidences that the problem is
numerically difficult or even numerically infeasible. Therefore, Lcmin is recom-
mended for applications in which feasibility is a desired feature.
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