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ABsTRACT: The performance of the ATLAS muon trigger system is evaluated with proton-proton
(pp) and heavy-ion (HI) collision data collected in Run 2 during 2015-2018 at the Large Hadron
Collider. It is primarily evaluated using events containing a pair of muons from the decay of
Z bosons to cover the intermediate momentum range between 26 GeV and 100 GeV. Overall, the
efficiency of the single-muon triggers is about 68% in the barrel region and 85% in the endcap
region. The py range for efficiency determination is extended by using muons from decays of
J /¥ mesons, W bosons, and top quarks. The performance in HI collision data is measured and
shows good agreement with the results obtained in pp collisions. The muon trigger shows uniform
and stable performance in good agreement with the prediction of a detailed simulation. Dedicated
multi-muon triggers with kinematic selections provide the backbone to beauty, quarkonia, and
low-mass physics studies. The design, evolution and performance of these triggers are discussed in
detail.
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1 Introduction

The presence of prompt muons in the final state is a distinctive signature for many physics processes
studied in collisions at the Large Hadron Collider (LHC). These studies include measurements of
properties of the Higgs boson and Standard Model processes, searches for new phenomena, and
a B-physics and Light States (BLS) programme. A high-performance muon trigger is crucial for
recording a high-quality data set serving the various physics analyses. In parallel, a good simulation
of the trigger performance is necessary.

The ATLAS muon trigger system identifies muons produced in proton-proton (pp) or heavy-ion
(HI) interactions. It is designed to do so with high efficiency and low muon transverse momentum
(pr) thresholds. The system employs a two-level, multi-pronged strategy with

1. fast custom trigger electronics at Level-1 (L.1);

2. dedicated algorithms to reconstruct muons and estimate their parameters at the High-Level
Trigger (HLT).

In order to address a wide variety of physics topologies, ATLAS has developed a suite of
triggers designed to select muons. A single-muon trigger with a py threshold of 26 GeV is used by
many physics analyses. In addition, muon triggers in combination with electrons, 7-leptons, jets
and missing transverse momentum, as well as multi-muon triggers with lower muon py thresholds,
increase the sensitivity for various physics phenomena which benefit from a lower p threshold. For
the BLS programme studying beauty, quarkonia, and low-mass physics, various low-py multi-muon
triggers are used with a special configuration that allows a high trigger efficiency for non-prompt
muons.!

During the LHC Run 2 (2015-2018), the ATLAS experiment collected pp collision data at a
centre-of-mass energy of 13 TeV with a maximum instantaneous luminosity of 2.1 X 10** em™2s7".
The average number of interactions occurring in the same bunch crossing, < u >, was 13 on average
in 2015 and increased during the data-taking period to 25 in 2016, 38 in 2017, and 36 in 2018.
Such interactions beyond the interaction of interest, as well as interactions from neighbouring bunch
crossings, are called pile-up interactions. To cope with such harsh conditions, several improvements,
on both the hardware side and software side, were deployed before the start of Run 2 and during
the data-taking campaign. In this paper, the performance of the ATLAS muon trigger is evaluated,
primarily using samples containing muon pairs from Z boson decays. The performance of the
low-pt muon triggers (pr < 10 GeV) is evaluated with samples containing a pair of muons from the
decay of J/y mesons. The performance of the high-pr muon triggers (pr 2 100 GeV) is evaluated
using events containing top quarks or W bosons, where a W boson decays into a muon and neutrino.

2 The ATLAS detector

The ATLAS experiment is a multipurpose particle detector with a forward-backward cylindrically
symmetric geometry and almost 47 coverage in solid angle,? and is composed of four major sub-

INon-prompt muons are muons which originate from the decay of a secondary particle and are displaced from the
primary interaction vertex.

2ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of
the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the



detectors: an inner tracking detector (ID), a calorimetry system subdivided into an electromagnetic
calorimeter and a hadronic calorimeter, and a muon spectrometer (MS). A detailed description of
the ATLAS detector can be found in ref. [1-3]. Muons are measured independently in the ID and
in the MS. The ID consists of a silicon pixel detector, a silicon microstrip detector and a transition
radiation straw tube tracker, and is embedded in a solenoid, providing a magnetic field of 2 T. The
ID measures charged-particle tracks up to || = 2.5.

TGC-FI—>-

6 TGC-El—>

Figure 1. A schematic picture showing a quarter-section of the muon system in a plane containing the beam
axis, with monitored drift tube (MDT) and cathode strip (CSC) chambers for momentum determination and
resistive plate (RPC) and thin gap (TGC) chambers for triggering. The Forward Inner and Endcap Inner
TGC chambers are marked as TGC-FI and TGC-EI, respectively. The Extended Endcap MDT chambers are
referred to as EE.

The MS is based on three large air-core superconducting toroidal magnet systems (two endcaps
and one barrel) with eight coils each, providing a field integral between 2.0 Tm and 6.0 Tm across
most of the detector acceptance. Figure 1 shows a quarter-section of the muon system in a plane
containing the beam axis. In the central region, the detectors compose a barrel that is arranged in
three concentric cylindrical shells around the beam axis. In the endcap region, the muon chambers
form large wheels, perpendicular to the z-axis. Several detector technologies are utilised to provide
both precision tracking and triggering. The deflection of the muon trajectory in the magnetic field
is detected using hits in three layers of precision monitored drift tube (MDT) chambers for || < 2.
In the region 2.0 < || < 2.7, two layers of MDT chambers in combination with one layer of cathode
strip chambers (CSC) are used. Three layers of resistive plate chambers (RPC) in the barrel region
(In] < 1.05), and three layers of thin gap chambers (TGC) in the endcap regions (1.05 < || < 2.4)
provide the L.1 muon trigger and the read-out of the coordinate in the r—¢ projection.

y-axis points upward. Cylindrical coordinates (r, ¢) are used in the transverse plane, ¢ being the azimuthal angle around
the beam pipe. The pseudorapidity is defined in terms of the polar angle 6 as 7 = —Intan(6/2). Angular distance is

measured in units of AR = \/(An)2 + (A¢)2.



3 Data and simulation samples

Several data samples collected by the ATLAS detector are used to measure the muon trigger
efficiency. In the following, the data samples used in the analysis are summarised. The data used
in the measurements to derive the pp collisions trigger performance rates and efficiencies were
collected during Run 2 in 2015-2018 with pp collisions at a centre-of-mass energy of 13 TeV,
amounting to a total integrated luminosity of 139 ' [4,5]. Only data recorded with stable beams
and with all relevant sub-detector systems fully operational are considered and accounted for in
the integrated luminosity calculation. The trigger performance measured in pp collision data is
compared with predictions of Monte Carlo (MC) simulation. Generated samples were processed
by the detector simulation of the ATLAS experiment based on GEANT4 [6].

The intermediate-p (low-pr) analysis uses Z — uu (J/y — up) samples for the performance
measurements. Samples of prompt J/y — pu decays were generated using Pythia 8.186 [7]
complemented with Photos++ (v3.52) [8, 9] to simulate the effects of final-state radiation. A
requirement on the minimum transverse momentum of each muon (pr > 4 GeV) was applied
at the generator level. The Pownec-Box vl MC generator [10-13] was used for the simulation
of the hard-scattering processes of Z boson production and decay in the muon channel. It was
interfaced to PytHia 8.186 for the modelling of the parton shower, hadronisation, and underlying
event, with parameter values set according to the AZNLO tune [14]. The CT10 parton distribution
function (PDF) set [15] was used for the hard-scattering processes, whereas the CTEQ6L1 PDF
set [16] was used for the parton shower. The effect of quantum electrodynamics final-state radiation
was simulated with Photos++ (v3.52). The EvrGen v1.2.0 program [17] was used to decay bottom
and charm hadrons.

The high-p; analysis focuses on two event topologies: events with muons from top-quark
pair production (#r), and events containing a leptonically decaying W boson and jets (W+ jets).
Events from V+jets production (V = W or Z) and diboson processes were simulated with the
SHERPA V2.2 [18] generator at next-to-leading order (NLO) in QCD. Samples were generated
using the NNPDF3.0NNLO PDF set [19], along with the dedicated set of tuned parton shower
parameters developed by the Suerpa authors. The production of 77 events was modelled using the
Powneg-Box v2 [20] generator at NLO in QCD. Background processes are also estimated from
simulation, using several generation set-ups depending on the process. Single-top production in
the s- and 7-channels was simulated with the same set-up using Powneg-Box v2 [21, 22] at NLO
in QCD. The Wt process was modelled using the Pownec-Box v2 [10-12, 23] generator at NLO
in QCD in the five-flavour scheme. The ¢Z process was modelled with MADGraPHS_aMC@NLO
at leading order in QCD. The production of tWZ, ttW, ttZ and tftf events was modelled using
the MADGRaPHS_aMC@NLO v2.3.3 [24] generator at NLO in QCD. All top-quark samples were
produced with the NNPDF3.0 PDF set and were interfaced with PyTHia 8 [25] using the A14
tune [26] and the NNPDF2.3LO PDF set [27].

In addition, the trigger efficiencies are also derived for data from low-pile-up pp collisions
with an average pile-up of 1.1 at a centre-of-mass energy of 5.02 TeV. This data set was collected
in November 2015, and amounts to a total integrated luminosity of 25 pb_l. The corresponding
sample of simulated Z — uu events was produced with a set-up similar to the one described above.

Trigger efficiency measurements for HI collisions described in this document are based on



the data collected during Run 2 for Pb+Pb and p+Pb collisions at centre-of-mass energies of
m = 5.02 TeV and m = 8.16 TeV per nucleon pair. The Pb+Pb data were collected in
November—December 2015 and at the end of Run 2, amounting to total integrated luminosities of
0.49nb™" and 1.42nb™", respectively. The p+Pb data were collected in November—December 2016,
amounting to a total integrated luminosity of 165 nb~!.

The p+Pb collisions were divided into two periods corresponding to different beam orientations
of the protons and lead nuclei. The two beam orientations are defined as follows:

* The ‘p+Pb’ configuration: protons circulate in beam 2 and lead ions circulate in beam 1;
protons go in the negative-n direction. The total integrated luminosity amounts to 56.8 nb !,

* The ‘Pb+p’ configuration: protons circulate in beam 1 and lead ions circulate in beam 2;
protons go in the positive-n direction. The total integrated luminosity amounts to 107.8 nb!.

4 Offline object reconstruction and identification

Reconstructed muons and jets are used to measure the muon trigger performance. The detailed
selections of the reconstructed objects differ depending on the measurement and are outlined in
section 8, while this section provides an overview of the object reconstruction itself.

Muons are reconstructed [28] from combined tracks in the MS and the ID. Their transverse
momentum is calibrated [28], and they are required to fulfil certain identification criteria [28]
which may vary between different measurements. To be selected as prompt muons, their tracks
must point to the primary vertex3 (PV), which is ensured by requiring that the track’s transverse
impact parameter significance, |d,/o(d,)|, is less than 3, and that the distance of closest approach
to the PV along the z-axis satisfies |z, sin(6)| < 0.5 mm. In order to suppress background from
non-prompt muons, an isolation criterion can be applied. The scalar sum of the py of tracks within
a variable-size cone around the muon (excluding its own track) must be less than 6% of the muon
pr- The track isolation cone size for muons, AR, is given by the smaller of AR = 10 GeV/p and
AR =0.3.

Jets are reconstructed from topological clusters of energy deposits in calorimeter cells [29] with
the anti-k, algorithm [30] with a radius parameter of 0.4. Jets are calibrated to the jet energy scale at
particle level [31] and are required to be within the fiducial volume || < 2.5. For jets with || < 2.4
and py < 60 GeV, pile-up contributions are suppressed by the use of the jet vertex tagger [32].
Jets containing b-hadrons are identified as ‘b-tagged’ using the MV2c10 algorithm, a multivariate
discriminant based on the track impact parameters and displaced vertices [33]. These b-tagged jets
are reconstructed in the region || < 2.5 and have p1 > 20 GeV. The b-tagging working point (WP)
with 77% efficiency for jets containing h-hadrons in simulated ¢ events provides rejection rates of
110 and 4.9 for light-flavour jets and jets containing c-hadrons, respectively.

The missing transverse momentum p™**, with magnitude Ef™™, is calculated as the negative
vectorial sum of the transverse momenta of all reconstructed objects and the soft term. The soft
term includes all tracks associated with the PV but not matched to any reconstructed physics object.

3The primary vertex is defined as the reconstructed vertex with the highest sum of the squared transverse momenta
of the associated tracks.



Tracks not associated with the PV are not considered in the Ef™* calculation, improving the Ex™

resolution by suppressing the effect of pile-up [34, 35].

5 The ATLAS muon trigger

The muon trigger system is a part of the ATLAS trigger system, allowing event triggering based
on muons in a wide muon momentum range with high efficiency. The ATLAS trigger, including
the muon trigger system, conceptually consists of two levels: the hardware-based L1 trigger and
the software-based HLT. The L1 decision is formed by a Central Trigger Processor [36], based
on information received from the calorimeters and muon trigger chambers. For select multi-
object triggers, the L1 topological trigger processor [37, 38], commissioned in 2016, combines
information about several objects into topological information. After the L1 trigger accepts the
event, it is processed by the HLT. If also accepted at the HLT level, the event is transferred to local
storage and exported to a Tier-0 facility at the CERN computing centre for offline reconstruction
and finally moved to permanent storage. Recorded events are gathered in data streams, depending
on their primary use case and their specific offline reconstruction needs. The event selection in the
HLT is referred to as a trigger, and the collection of all L1 and HLT triggers and their prescales*
is called the trigger menu. The trigger menu defines several types of triggers [39], but this paper
focuses on primary triggers which are used for physics measurements and typically have no prescale
applied.

In the L1 processing the degree of deviation from the hit pattern expected for a muon with
infinite momentum is used to estimate the py of the muon with six programmable thresholds. The
number of muon candidates passing each threshold is used in the conditions for the global L1
trigger. Following an L1 accept decision, the py thresholds and the corresponding detector regions,
called regions of interest (Rols), are sent to the HLT for further consideration [1, 40]. The typical
dimensions of the Rols are 0.1x0.1 (0.03x0.03) in AnpxXA¢ in the RPCs (TGCs) [1]. The geometric
coverage of the L1 trigger is #99% in the endcap regions and ~80% in the barrel region. The limited
geometric coverage in the barrel region is due to gaps around = 0 (to provide space for services of
the ID and calorimeters), the feet and rib support structures of the ATLAS detector, and two small
elevator shafts in the bottom part of the MS. The barrel region is equipped with three concentric
layers of RPCs. The L1 trigger decision in the barrel region is based on the coincidence of hits from
three (two) concentric RPC stations [41] for the three high-pt (low-pr) thresholds. During Run 2,
only the high-pr triggers were used for single-muon signatures, while the low-p triggers were
used in coincidence with other trigger objects to select multi-object signatures, including muon
pairs. During the shutdown of the LHC in 2013-2014, a fourth layer of RPC chambers was added
to the trigger system in the detector feet region (—2.16 < ¢ < —1.77 and —1.37 < ¢ < —0.98) to
cover holes in the geometrical acceptance caused by the ATLAS support structures. These RPC
chambers were installed during the construction of ATLAS but not equipped with trigger electronics
at that time. Figure 2 (left) shows the position of these chambers in the outer part of the muon
spectrometer. For these new RPC chambers a two-layer coincidence is used also for the highest
pr thresholds. This resulted in a 20% increase of acceptance in those ¢ regions. These additional

4The term prescale means that only one out of N events passing the trigger decision is accepted.



‘feet RPC’ chambers were commissioned during the data-taking in 2015 and enabled for physics in
2016. Figure 2 (right) shows the impact of the feet RPC chambers on the trigger efficiency in one of
the two ¢ regions. Additionally, new RPC detectors were installed in 2014 in the elevator regions
at ¢ ~ 1.57, || = 0.7. Part of these chambers use small-gap RPCs with a 1 mm gas gap, rather
than 2 mm as in standard ATLAS RPCs, similar to those that will be used for the High Luminosity
LHC upgrade.
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Figure 2. Left: sketch showing the position of the new RPC chambers (RPC4) in the feet sectors. The
muon trajectory depicted by the solid line is accepted by a two-layer coincidence (RPC3-RPC4) using the
new feet chambers. The dashed-line trajectory shows a muon accepted by the standard three-layer (RPC1-
RPC2-RPC3) high-py trigger. Right: L1 trigger efficiency as a function of the pseudorapidity of offline
reconstructed muon candidates in the barrel detector region for —2.16 < ¢ < —1.77 evaluated for a trigger
applying a 3-station coincidence requirement and a py threshold of 10 GeV (L1_MU11). The efficiency with
the newly installed RPC chambers is shown as the solid filled histogram, while the efficiency without these
chambers is overlaid as the hatched histogram. Muons are required to pass Medium quality requirements [28]
and have a transverse momentum of at least 15 GeV.

The L1 trigger decision in the endcap region (1.05 < || < 2.4) is based on the coincidence of
hits in the TGC stations of the middle layer, called the Big Wheel. Many upgrades were deployed
in Run 2 in order to reduce the L1 trigger rate while keeping the efficiency high. The main source
of trigger background in the L1 muon endcap system is low-momentum charged particles emerging
from the endcap toroid magnets and beam shielding. To suppress these backgrounds, a coincidence
requirement between the Big Wheel and TGC Forward Inner (TGC-FI) chambers was introduced
in 2015. The optimisation of this coincidence and a new coincidence between the Big Wheel and
TGC Endcap Inner (TGC-EI) chambers was performed in 2016. The effect of these coincidence
requirements is shown in figure 3. The asymmetry is due to the different acceptance of charged
fake muons given the magnetic field configuration of the MS.

A coincidence between TGC chambers and the tile hadronic calorimeter (TileCal) assists in
the rejection of fake muon triggers in the region 1.05 < || < 1.3. The coincidence mitigates
the effect of the limited ¢ coverage (~50%) of the inner layer of the muon detector due to the
toroidal magnets. Figure 4 (left) shows the pseudorapidity distribution of the single-muon trigger



220
200
180
160
140
120
100
80
60
40
20

a -
F ATLAS —¥— without El/FI-coincidence
— [ with El/FI-coincidence

£ Data 2016, Vs=13 TeV [ El/FI-coincidence region

dN / dn
c
=<
C
S

T T[T [T [T [T [TIT[TTT T
<

Figure 3. Pseudorapidity distributions of the L1 muon trigger with a p threshold of 20 GeV (L1_MU20) and
the rate reduction due to requiring a coincidence with TGCs consisting of Endcap Inner (EI) and Forward
Inner (FI) chambers are shown, using events taken by a lower-threshold L1 trigger (L1_MU11) in 2016.
The nROI distribution after the inclusion of the EI/FI-coincidence is shown as a solid black line. The nROI
distribution before the inclusion of the EI/FI-coincidence is also shown as a reference (blue triangles) to
examine the reduction of the L1_MU?20 trigger rate at 1.05 < |n| < 1.8, which is highlighted by the red
rectangles. No coincidence was required for |57] ~ 1.5 because the FI chambers in this region were inactive,
which explains the lack of rate reduction. Moreover, the coincidence around |n| ~ 1.2 was intentionally not
applied, to allow commissioning of a coincidence with the TileCal.

with pr requirement above 20 GeV (L1_MU?20). A rate reduction is observed in 1.05 < |p| < 1.3.
Figure 4 (right) shows the L1_MU?20 trigger rate as a function of instantaneous luminosity. A
reduction of 6% in the L1_MU20 trigger rate is observed for the entire coverage of the MS when
requiring the TileCal coincidence, at a cost of at most 2.5% inefficiency. This is compatible
with the geometrical gaps between TileCal modules. In 2016, the 2-station-strip coincidence
in the Big Wheel was changed to a 3-station-strip coincidence for the single-muon trigger with
pt requirement above 4 GeV (L1_MU4). A chamber-by-chamber Coincidence Window (CW)
optimisation procedure was introduced to take the detector alignment into account by varying the
pr depending on the bending magnitude. Originally the CWs were extracted from MC simulation
with perfect alignment. During the 2017 data-taking the CWs were optimised for most triggers
based on the data taken in 2015 and 2016. CW optimisations for lower-p triggers were performed
at the beginning of 2018. The rate reduction for the L1 trimuon trigger with a 4 GeV threshold is
shown in figure 5.

The HLT selects events in two stages, executing fast reconstruction algorithms first, followed by
muon algorithms similar to the ones used for offline muon reconstruction [28]. The Rol identified
by the L1 trigger enables the fast algorithms to select precisely the region of the detector in
which the interesting features reside, therefore reducing the amount of data to be transferred and
processed. The muon stand-alone (SA) algorithm constructs a track using the MDT hits within
the Rol, refining the L1 candidate. To achieve the needed resolution in sufficiently short time, the
pt of the SA muon is reconstructed with simple parameterised functions. Several changes were
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Figure 4. Left: pseudorapidity distribution of the L1 Rols (nROI) which fulfil the 20 GeV require-
ment (L1_MU?20) after the new TileCal coincidence in the L1 trigger decisions (solid black line). The
nROI distribution before the deployment of the TileCal coincidence is also shown as a reference (blue trian-
gles) to examine the reduction of the L1_MU?20 trigger rate at 1.05 < |5| < 1.3, which is highlighted by the
red rectangles. The reference histogram is normalised so that the entries out of the acceptance of the TileCal
coincidence (1.05 < |17R°I| < 1.3) are compatible between the two distributions for the comparison. The ratio
of after to before deployment of the TileCal coincidence is also shown. The error bars show the statistical
uncertainties only. Right: L1 trigger rate for the L1_MU?20 trigger as a function of instantaneous luminosity.
The black (red) points correspond to data recorded without (with) the TileCal coincidence requirement.
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deployed during Run 2 in order to improve the efficiency and py resolution of the SA algorithm.
The efficiency is optimised by refining the fitting algorithm such that noise hits in the MDTs are
removed. Further improvements in the p resolution are obtained in the regions 1.05 < || < 1.35
and 2.0 < || < 2.4 by including additional hit information from the Extended Endcap (EE)
and CSC chambers respectively. Figure 6 summarises the improvements in the efficiency (left)



and py resolution (right) which have been measured with the tag-and-probe method discussed in
section 8.3. The raise in efficiency at pr values below the threshold is caused by two effects: the
L1 trigger mis-reconstructs a low-pr muon as a high-pt object leading to a wrong reconstruction
by the fast reconstruction algorithms, and an overestimation of the muon py if it traverses regions
with a weak magnetic field, leading to an almost straight trajectory.
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Figure 6. Improvements of the fast reconstruction algorithms measured in pp collision data taken in 2015
evaluated in Z — pu events using a tag-and-probe approach outlined in section 8.3. The error bars show the
statistical uncertainties only. Left: efficiency of the fast SA reconstruction before (black circles) and after (red
squares) the modification of the noise hits requirement for a p threshold of 12 GeV. Right: p resolution
of the fast SA reconstruction obtained by including additional hit information from the EE chambers (red
squares) and not including (black circles) this information. The resolution is extracted by a Gaussian fit to
the distribution of the fractional residual of inverse-pr, (l /P -1) p%mme) / (l / p(T)mi"e).

Following the SA algorithm step, the MS-only muon track is combined with reconstructed
tracks in the ID. For this the muon track is back-extrapolated to the interaction point using the
offline track extrapolator and statistically combined with tracks reconstructed in the ID to form a
combined muon candidate with refined track parameter resolution.

The final step in the HLT selection is the precision stage, which can be operated in two modes:
the Rol-based mode and the full-scan (FS) mode. The first mode focuses on Rols defined by the L1
and fast reconstruction steps, while the second searches the full detector without using information
from any of the previous steps. Using the FS mode allows circumvention of the L1 inefficiencies,
but given the high CPU demand it cannot be executed for every event.

In the Rol-based method, muon candidates, called precision stand-alone muons, are first
formed by using the muon detectors, and are subsequently combined with ID tracks, by means of
a fit of the hits from both, leading to precision combined muons. If no combined muon is formed,
muon candidates are searched for by extrapolating ID tracks to the muon detectors. If there are
corresponding track segments, combined muons are formed. Additionally, the degree of isolation
for the combined muon is quantified by summing the p of ID tracks with ptTrk > 1 GeV found near
the combined muon candidate. The ‘near’ criterion is defined by a cut requiring Az < 6 mm, with
Az being the distance of the track from the primary vertex in the z-direction. This cut was found to be
slightly inefficient in events with high pile-up in 2017 and thus was tightened to Az < 2 mm, which
allowed the loosening of the isolation criterion for data-taking in 2018. The isolation criterion



is defined by a cut on the ratio of the summed transverse momentum of the additional nearby
tracks to the py of the muon candidate, Xz, <6(2)mm ptTrk / pf} < cut. Several cut values are defined,
corresponding to different WPs. Commonly, the Medium WP is used with a cut at 7%, while in
2015 a cut at 6% was applied. A second procedure extends the combined precision algorithm by
searching for muon candidates in the MS only. This can be used, for example, in searches for
long-lived particles leaving no signature in the ID.

The FS mode is used to find additional muons that are not found by the Rol-based method
mainly due to L1 inefficiencies. In the FS mode, muon candidates are first sought in all muon
detectors. Then, Rols are constructed around the found MS tracks and ID tracks are reconstructed
within these Rols. The same combination procedure described for the Rol-based method is used to
construct combined FS muons. Given the high CPU demand of the FS procedure, it is only executed
in multi-object triggers with at least one of the trigger objects found by an Rol-based algorithm.

6 Muon trigger menu

The trigger system is configured via the trigger menu, which defines the set of trigger selection
criteria used for data-taking or simulation. A sequence of reconstruction and selection steps for
specific muon objects in the trigger system is specified by a trigger chain which is often referred to
simply as a trigger. Due to changing LHC conditions and continuous improvements in the trigger
algorithms, the menu is subject to frequent changes. Details of the menu configuration for each
year of data-taking can be found in refs. [39, 42—-44]. In the following, the most common selections
used by the majority of physics analyses are summarised.

In 2015 and 2016, the six programmable py thresholds of the L1 trigger were set as L1_MU4,
L1_MU6,L1_MUI10,L1_MUI11, L1_MU15 and L1_MU?20. The numbers in the L1 trigger names
correspond to the pr threshold (in GeV), except for L1_MUT11, which applies a 10 GeV threshold,
but contrary to L1_MU10 a 3-station coincidence is required for the RPCs. After the deployment of
the additional RPC chambers in the feet region, L1_MU15 was replaced by an L1_MU?20 version
disabling those chambers to be used as backup in case of rate increases at high instantaneous
luminosities. The sequence of the single-muon trigger chains which ran without any prescale in
2016-2018 are shown in table 1. In 2015, lower thresholds were supported. Details of the trigger
menu in 2015 are documented in ref. [42].

The single-muon trigger chain HLT _mu26_ivarmedium is designed to select isolated muons
with pp > 26 GeV by requiring a relatively loose isolation criterion in order to control trigger
rates. The isolation criterion is chosen such that the efficiency for well-isolated muons from Z
boson decays is very close to 100%, while about half of the muons from heavy-flavour decays are
rejected. The HLT_muS50 trigger is designed to collect muons with large pr without efficiency
loss due to any isolation requirement. The HLT_mu60_Oetal05_msonly trigger decision is based
only on MS reconstruction, is active only in the barrel region, and is inactive in the endcap regions
due to the high rate. The HLT_mu26_ivarmedium, HLT_mu50, and HLT_mu60_0Oetal05_msonly
chains are called primary single-muon triggers. The single-muon triggers cover the needs of many
physics analyses. Physics analyses which benefit from muon triggers with lower p thresholds
use either dimuon triggers or muon triggers in combination with other triggers. The multi-muon
triggers are made either by requiring multiple muon candidates, each of which independently fires
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a single-muon trigger, or by finding multiple muons using the FS strategy after the leading muon
candidate has been confirmed by a single-muon trigger. The sequence of the main multi-muon
trigger chains which were used unprescaled in 2015-2018 are also summarised in table 1. The
HLT_2mul4 chain requires two or more muon candidates, each of which passes a single-muon
trigger HLT_mul4 chain. The HLT_mu22_mu8noL1 chain requires at least one muon candidate

Table 1. Sequence for the muon trigger chains at L1 and HLT for pp collision data. The py and isolation
cuts applied at each step of the chain are also shown. The isolation requirement was updated in 2018 by
tightening the Az selection on additional tracks to reduce inefficiencies observed in high-pile-up conditions
during data-taking in 2017. The threshold on the tri-muon trigger was increased from 4 GeV to 6 GeV
in 2018.

Trigger chain Level-1 HLT

Single-muon triggers

HLT_mu26_ivarmedium L1_MU20 > 1 CB muon with pp > 26 GeV and £, ¢ 2 mmp‘Trk /p < 0.07
HLT_mu50 L1_MU20 > 1 CB muon with p > 50 GeV

HLT_mu60_0Oetal05_msonly L1_MU20 > 1 SA muon with py > 60 GeV in 5| < 1.05
Multi-muon triggers

HLT 2mul4 L1_2MU10 > 2 CB muons with pr > 14 GeV
HLT_mu22_mu8noL1 L1_MU20 > 1 CB muon with py > 22 GeV (mu22 trigger)
and > 2 FS muons with pr > 22 and > 8 GeV
HLT_3mu4(6) L1_3MU4(6) > 3 CB muons with py > 4 (6) GeV
HLT_3mu6_msonly L1_3MU6 > 3 SA muons with pp > 6 GeV
HLT_mu20_2mu4nolL1 L1_MU20 > 1 CB muon with py > 20 GeV (mu20 trigger)

and > 1 FS muons with pr > 20 GeV and > 2 FS muons with py > 4 GeV

which passes a single-muon trigger HLT_mu22, and subsequently employs the FS algorithm to find
two or more muon candidates with py > 22 and 8 GeV for leading and subleading muons. The
choice of a leading py cut of 22 GeV is driven by computing resource limitations when invoking
the FS muon finding at the HLT level.

As mentioned in section 3, the LHC also provides HI collisions and pp collisions with low
pile-up. To achieve the optimal data-taking efficiency, the trigger menu is adapted accordingly.

For the low-pile-up pp collisions at a centre-of-mass energy /s = 5.02 TeV, the thresholds of
the muon triggers were relaxed due to the lower rates. The lowest unprescaled single-muon trigger
was operated at a pr threshold of 14 GeV. In the 2016 p+Pb run, only five programmable py
thresholds of the L1 trigger were used. These are the same as for pp collision data-taking, except
for L1_MU11. The primary trigger chain HLT_mul5_L1MU6 was designed to select muons with
pr > 15 GeV and was used in the analysis to select muons originating from Z or W boson decays.
For the Pb+Pb data-taking, the lowest unprescaled single-muon trigger was HLT_mu8. The primary
dimuon trigger chain in the menu was HLT_2mu4. Table 2 summarises the sequences of the muon
trigger chains that ran without any prescale during the low-pile-up pp and HI data-taking.

7 CPU timing studies

The total computation time used by triggers is important to monitor, as available resources for
running online are limited. The times for the fast reconstruction and precision algorithms are
evaluated by rerunning a representative trigger configuration on a single run using an environment
similar to the online HLT computing farm set-up and are shown in figure 7. In general, the fast and
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Table 2. Sequence for the muon trigger chains at L1 and HLT for HI and low-pile-up pp collision data. The
pr cut applied at each step of the chain is also shown.

Trigger chain Level-1 HLT Data-taking campaign

Single-muon triggers
HLT mul5_LIMU6 L1 _MU6 > 1CB muon with py>15GeV p+Pb

HLT_mul4 L1_MUIO 2> 1CB muon with py > 14 GeV  low-pile-up pp

HLT mug8 L1_MU6 > 1 CB muon with py > 8 GeV Pb+Pb

HLT_2mu4 L1_2MU4 > 2 CB muons with py >4 GeV  p+Pb; low-pile-up pp
HLT 2mu3 L1 _2MU4 > 2 CB muons with py >3 GeV  Pb+Pb

precision reconstruction algorithms described in section 5 take up about 30% of the total trigger
processing time, while the fast algorithms take a very small fraction of the time. The latter did
not undergo any particular CPU optimisation, but show a strong menu dependence which caused
changes during the data-taking campaign. During Run 2, several improvements in the software chain
were implemented to reduce the needed processing time. Notably, the CPU needs are significantly
reduced in 2016 relative to 2015 by introducing a caching algorithm deployed towards the end of
2015. Furthermore, the design of the most time-consuming chains were revisited. In 2016, an
additional speed-up was achieved by deploying the Eigen [45] library to perform the combined fit,
which is more efficient than the previously used MA27 [46] implementation. Before data-taking
in 2017 started, the call sequence of the algorithms was optimised to avoid running algorithms
multiple times in a single Rol. After the changes with significant impact on the average processing
time, the developments during 2017 and 2018 focused on the tail of the time distribution, addressing
special event topologies requiring a long processing time. Due to several reconfigurations of the
reconstruction algorithms, such as disabling precision steps not required by the trigger demands,
these contributions were strongly reduced.
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Figure 7. HLT processing time per Rol for the fast (left) and precision (right) algorithms for a representative
configuration of the muon trigger chains at the end of Run 2.
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8 Trigger performance measurements

8.1 Resolution studies

The tag-and-probe method applied to Z — uu events, described below, was used to evaluate the
quality of the pt, 17, and ¢ determination for muon tracks at the HLT compared with the offline
reconstruction. Online algorithms are almost identical to offline reconstruction algorithms, but
several simplifications are required in order to cope with the limitations of the trigger system.
Additionally, offline reconstruction can feature updated calibration and alignment corrections not
available at the time the data were taken. Therefore, finite differences are expected in the resolution.
The offline relative momentum resolution is measured to be 2.3% (2.9%) in the barrel (endcap)
region using Z — uu events [28]. The residual of the trigger-reconstructed py is defined relative
to the offline reconstructed value as 6, = (1 ptTrigger — 1/p§Miney /(1 /pSTine) * where ptTrigger and
p%fﬂme are the transverse momenta determined by the HLT and offline algorithm, respectively. The
resolution of the trigger reconstruction with respect to the offline reconstruction is defined as the
standard deviation of a Gaussian function fitted to the §,, distribution. Figure 8 shows the pr
resolution as a function of the offline muon pt for CB and SA HLT muons in the barrel and endcap
regions. The py resolution is about 1% (2%) and 3% (5%) in the barrel (endcap) region for CB and
SA muons, respectively.
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Figure 8. Resolution with respect to offline reconstruction of the inverse-pt residual as a function of offline
muon py for CB (red) and SA (black) muons in the barrel (circles) and endcap (triangles) regions.

The resolution with respect to offline reconstruction in the 7 and ¢ determination were examined
accordingly by defining the residual as the absolute value of the difference between the trigger and
offline reconstructed quantities. Figure 9 summarises the resolution of the 7 and ¢ residuals as a
function of the offline muon py. The angular residual resolutions are typically below 10~ and 1072
for CB and SA muons, respectively.

8.2 Rate measurements

The ATLAS data-taking conditions are archived with a time interval of about one minute, which
defines a luminosity block. In order to obtain the rate of a given trigger as a function of the
instantaneous luminosity [5], individual rate measurements on different luminosity blocks from all

13-



= S Eama T T T = E T L e e N e 3
3 L ATLAS 7 3 F ATLAS 3
g 10_1 L \(g =13 TeV, 70.0 fb'l —Lé«— stand-alone endcap - 'g —1; \E =13 TeV, 70.0 fb’l —Lé«— stand-alone endcap ;
E E pp data, Z - pp —§~ stand-alone barrel E 8‘ 10 g pp data, Z - pp —¢~ stand-alone barrel g
© o ﬁéﬁ combined endcap 7 ° L ﬁéﬁ combined endcap ]
5 ™ ~4~ combined barrel 7 s 1072 ;@-$ %~ combined barrel E
S 102k == combined barre - £ E combined barrel E
2 E o T E El g Y E
3 E 2, 3 2 E =% "——
14 L $$:6_:6::82: © 107 E
10°% E E E
E E se= ]
EA— ] 10745 s —
b o AT A A A A pe A—F E é§é‘676?67 SAAA s A A A3

Fo- -O—O——0—

—0—0~0~0~0~0~0~O~O~O~O- o - E — o
1074 ; PRI TS NS S ‘AC‘)? PRI B N w? 10—5 7\ e b b b b e b b |y ]
20 40 60 80 100 120 140 20 40 60 80 100 120 140

Muon P, [GeV] Muon P, [GeV]
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data collected in a given year are used. Any rate measurement for which the ratio of the trigger rate
to instantaneous luminosity varies by more than 20% from the average is discarded as an estimator
of the rate for that trigger. This avoids averaging rate measurements that fluctuate because of
unpredictable and temporary changes of LHC conditions.

8.3 Trigger efficiency measurement

The muon trigger efficiency, €, is measured with respect to muons reconstructed offline using the data
set collected during 2015-2018, and considering only periods of data-taking with all sub-detectors
functioning nominally. The measurement is based on a tag-and-probe method which selects muons
from known decays such as Z — uu. Anunbiased sample of probe muons is selected by a stringent
selection of a second tag muon. The trigger efficiency is defined as the ratio of the number of probe

muons matched to at least one trigger object, Ny, to the total number of probe muons, Ny,

_ N, match

N, probe

If both muons satisfy the selection criteria of the tag muon, the probe muons are considered
as tag candidates in turn. The efficiency is measured with respect to a specific offline selection of
reconstructed muons and may vary between different topologies. The efficiency measurements are
performed for a range of different topologies; J/y and Z boson candidates decaying into a dimuon
system are used to measure the trigger efficiencies of low-p and moderate-p muons, respectively.
For high-p; muons, two topologies targeting semileptonic 77 candidates and W+ jets events are
employed. Finally, a dedicated measurement is performed for HI collisions, again targeting J/y
and Z decays into dimuon systems. Except where stated otherwise, the effects of background are
negligible and thus no background subtraction is applied.

In each analysis, the event quality is checked to remove events which contain noise bursts
or coherent noise in the calorimeters. Further, at least one reconstructed pp interaction vertex is
required for each event, with the primary vertex defined as the vertex with the highest sum of
track p%.
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Trigger efficiencies for low-p; muons (py < 10 GeV) are evaluated using the tag-and-probe
method with J/y — " u~ events. Due to varying and non-negligible contributions of the back-
ground under the J/i signal mass peak across the muon kinematic range, a fit to the dimuon mass
distribution is used to extract the J/i yields. Pairs of oppositely charged muons successfully fitted
to a common vertex within the invariant mass range 2.7 GeV < m,,, < 3.5 GeV are selected as
offline Jiy — "y~ candidates. The quality of the vertex fit must satisfy )(2 < 20 for one degree
of freedom.

Events for which a trigger muon candidate and an HLT ID track have an invariant mass
compatible with the J/i mass are accepted; various trigger muon py thresholds are used. If one
of the two muons satisfies the Tight quality requirement [28] and has a py above the tag trigger
threshold, it is considered as a tag candidate. The other muon is then taken as a probe candidate.
The tag candidate is required to be within a cone of size AR = 0.01 around an HLT muon object that
fired the tag trigger. A probe muon is identified as triggered if it lies within a cone of size AR = 0.01
around an object that caused the trigger to fire. In order to avoid correlation effects between the tag
muons and the probe muons, events with AR(u",1”) < 0.2 are rejected from the study. Additionally,
both tag and probe candidates with pr < 10 GeV must satisfy a pp-dependent matching to the L1
Rol following the relation AR(L1 Rol,n) < —0.01 = p% + 0.18, while tag muons with pr > 10 GeV
are required to satisfy AR(L1 Rol,u) < 0.08. To ensure the tag and probe HLT triggers have
different L1 Rols, the angular distance between the two offline muons is required to be larger than
the sum of the angular distances between the L1 Rol and the offline muon that correspond to the
tag muon and the probe muon: AR(u",u”) > AR(L1 Rol, Hiag) + AR(L1 RoL o). To extract
the yield of J/i candidates for which the probe muon is triggered or not triggered, an extended
unbinned maximum-likelihood fit to the dimuon invariant mass spectrum is performed. In the fit,
the background probability density function is described with an exponential function, while the
signal is modelled with a sum of a Gaussian function and a Crystal Ball function with the parameters
of the latter fixed to the values obtained from a large sample of simulated events. A simultaneous
fit is performed on the candidates with the probe muon either triggered or not triggered. Common
parameters of the signal and background shapes are used in the simultaneous fit of triggered and
not triggered muons, while the signal and background yields are left to float independently.

A very clean sample of Z — uu events is selected to measure the trigger efficiency for muons
in the py range from ~10 to 100 GeV. A pair of oppositely charged muons consistent with the Z
boson mass, |my —m,,| < 10 GeV, with m, = 91.2 GeV, is selected. The two muons are required
to originate from the same interaction vertex by imposing impact parameter requirements. If one
of the two muons has pr > 28 GeV and satisfies the Loose isolation WP requirements [28], it is
considered as a tag muon. The other muon is then taken as a probe. The tag muon must further
have an angular distance of AR < 0.1 from an object that has fired the HLT_mu26_ivarmedium
trigger.> The probe muon must satisfy several impact parameter requirements and is subject to
selections applied in the offline identification corresponding to the identification WP of interest. A
probe muon is identified as triggered if it lies a distance AR < 0.1 from an object that caused the
trigger to fire. The trigger efficiency is measured with respect to several offline selection criteria as
defined in the identification WPs.

5In 2015, HLT_mu20_iloose_L.1MU15 was used as the lowest unprescaled single-muon trigger. See section 6 for
further details.
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In order to evaluate trigger efficiencies for high-p muons, namely muons with p 2 100 GeV,
the tag-and-probe method is used with 77 and W+ jets event topologies. The tag trigger used
in this study is a trigger based on selecting events with large missing transverse momentum,
ET S In addition to this, events need to contain exactly one muon with pr > 27 GeV and no
isolation requirement. Events are rejected if they contain an electron, and are required to have
E™ > 200 GeV. For W+ jets events, between one and four jets with pp > 25 GeV are required,
and events are rejected if they contain any b-jets. At least four jets with pp > 25 GeV are required
for 77 events, and at least one among them has to be a b-jet defined using the MV2¢10 77% WP. The
b-jet requirement ensures the orthogonality of the W+ jets and ¢f measurements.

In the HI analysis a similar selection is applied using Jiy — "y~ (Z — pp) events to evaluate
low-py (high-py) muon trigger performance, but adapting for the different conditions. A pair of
oppositely charged muons with an invariant mass 2.7 < m,, < 3.5 GeV (81 < m,, < 101 GeV)
is required for J/y (Z) events. In addition, both muons must be within the pseudorapidity range
7] < 2.5. Inthe Jjy — p"u analysis, the same matching criteria as mentioned above are applied
to the tag and probe muons. Different requirements are applied for the measurement using Z — uu
events in the p+Pb (Pb+Pb) analysis: both muons must be matched to the appropriate trigger object
within AR < 0.01 (AR < 0.1), the tag muon must have pr > 17 GeV (py > 24 GeV), and the probe
muon must have py > 4 GeV (pr > 8 GeV).

In order to improve the accuracy of the modelling of data, ATLAS physics analyses make use
of the ratio, called the scale factor (SF), of measured and simulated efficiencies to correct simulated
samples. Effects due to the choice of event selection for the efficiency measurement are assessed
by varying the requirements in the selection of both the tag and probe muon candidates and are
quantified as systematic uncertainties. Several sources of systematic uncertainty are considered,
which, for the Z — pu analysis, are:

* Pile-up dependence: estimated by splitting the data set into a low- and high-pile-up sample
at the approximate peak in the number of reconstructed vertices for each year, and computing
the trigger efficiency for events above and below this cut. The cut was set at 11 reconstructed
vertices for 2015 and 2016, and at 19 reconstructed vertices for 2017 and 2018 except for
data-taking periods in 2017 with exceptionally high pile-up, for which the cut was set at 25
reconstructed vertices.

* Correlation between the tag and probe muons: muon pairs from the Z — uu decay tend
to be back-to-back in ¢. Since the barrel and endcaps have 16-fold and 12-fold symmetry
respectively, this means that if the tag muon traverses a highly efficient region of the detector,
the probe muon is likely to do so also. To estimate this effect, the trigger efficiency is
calculated using an extra cut to remove back-to-back muons, A¢(f,e, Wprobe) < 7 —0.1, where
Ad(Wags Mprone) gives the azimuthal separation of the tag and probe muons.

* Background contribution: estimated by measuring the efficiency when the Z boson mass
window is enlarged by +5 GeV.

* Probe selection criteria: the effects of various probe selection cuts on the trigger efficiency
were investigated.
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— Charge: since the charge affects the behaviour of muons in the magnetic field present in
the MS, it could conceivably affect the muon trigger efficiency. This effect is evaluated
by calculating the trigger efficiency using only positively or negatively charged probe
muons.

— Impact parameter: estimated by calculating the efficiency without impact parameter
requirements.

— Isolation: estimated by applying different isolation WP requirements similar to the ones
described in ref. [28] to the probe muons and measuring the efficiency. The isolation
systematic uncertainty is taken as the largest of the resulting deviations from the nominal
(no isolation) case.

— pr: estimated by splitting the probe muons into two groups according to a pr cut.
The value of the cut depends on the py threshold of the trigger of interest; for trigger
thresholds of 26 GeV, the cut is 40 GeV, while for thresholds of 50 GeV, a cut at 70 GeV
is used. Trigger efficiency is then calculated using only the subset of probe muons with
pr above or below that cut.

Due to the different topology and selection in the W+ jets and # analysis, a different set of

systematic uncertainties is considered:

Muon quality WP: estimated by changing the muon quality WP from the Medium WP to the
high-pt WP.

E™S reconstruction: estimated by measuring the efficiency while changing the Ef™
level selection from 200 GeV to 150 GeV.

event-

Cuton jet p: estimated by measuring the efficiency while changing the object-level selection
for jets from 25 GeV to 30 GeV.

Identification of b-jets: estimated by measuring the trigger efficiency while changing the
object-level selection for b-jets. The selection requirement is tightened from the MV2c10
77% WP to the 70% WP for the 7 analysis, while for the W+ jets analysis the b-jet veto uses
the 85% WP instead of the 77% WP.

Muon isolation: estimated by applying different isolation WP requirements to the probe muon
and measuring the efficiency. The isolation systematic uncertainty is taken as the largest of
the resulting deviations from the nominal (no isolation) case.

All contributions are assumed to be independent and are added in quadrature to obtain the

total systematic uncertainties. The impact of the systematic uncertainties on the muon momentum

scale and resolution [28] is found to be negligible. For the low-p analysis with J/i events, only

statistical uncertainties are considered.

9 L1 muon trigger performance

The L1 muon trigger thresholds remained unchanged throughout the data-taking in Run 2, except

for the replacement of L1_MU15 in 2017 after the new RPC chambers in the feet region were
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commissioned. The typical maximum L1 rate is 90 kHz. Of this rate, the L1 seed of the single-
isolated-muon trigger HLT_mu?26_ivarmedium, which is L1_MU20, is fired at about 15 kHz for

271 Figure 10 shows the rates of the single-muon

an instantaneous luminosity of 1.7 X 10** cm™
and dimuon triggers as a function of the instantaneous luminosity. A clear linear dependence is
visible, with year-to-year slope changes due to the improvements discussed above. This indicates a

negligible contribution from effects not related to pp collisions.

= 20— = 25T
T £ 3 T C ]
X, 18;ATLAS Trigger Operations E X, [ ATLAS Trigger Operations ]
£ 16 Vs=13TeV,139.0fb* A5 3 £ oL {s=13Tev,139.0 ™ 7
14 C 7 o L ]
14— — L B

12 = 15 -

10 = L ]

8- L1_MU20 E 1- L1 _2MU10 -

6? v 2015 7; F v 2015 ]

aF & 2016 = 0.5 & 2016 ]

rC [ 2017 | [ 2017 ]

2F A 2018 E A 2018 i
0*\w\wuMHMHMHMHMHMHMHMHMHM’ O\\\\\\\\\\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\7

2 4 6 8 10 12 14 16 18 20 2 2 4 6 8 10 12 14 16 18 20 22
Instantaneous Luminosity [cm?s?] x 10° Instantaneous Luminosity [cm?s] x 10%

Figure 10. L1 trigger rates as a function of the instantaneous luminosity for the lowest unprescaled single-
muon and dimuon triggers, L1_MU?20 (left) and L1_2MU10 (right), in different years in Run 2.

The efficiencies for single-muon L1 triggers with different pr thresholds for each year of
data-taking during Run 2 are measured using the Z — uu tag-and-probe method described above.
Figures 11 and 12 summarise the efficiencies as a function of the offline muon py for the lowest
and highest threshold in the barrel and endcap regions, respectively. In the barrel region the plateau
efficiency is about 75% for the low-p trigger and 70% for the high-p trigger, the latter being lower
due to the applied 2-/3-station requirement. The steeper turn-on behaviour in the barrel region is
due to the better p resolution. In 2016, the coincidence requirements for the low-p triggers were
tightened, leading to an improved turn-on behaviour. A slightly increased plateau efficiency in
2016 was achieved by enabling the feet RPC chambers, while in 2017 the feet RPC thresholds had
to be tightened for rate reduction, causing a slight decrease of the plateau efficiency. The increase
in the efficiency in 2016 for the high-pt triggers is due to the inclusion of the feet RPC triggers.
Operation of the RPC chambers in 2017 and 2018 suffered from gas leaks in some chambers,
which could partially be mitigated but cause variations of the efficiency. The efficiencies in the
endcap are higher as they do not suffer from the reduced geometrical coverage affecting the barrel
triggers. For L1_MU4, the efficiency reaches 97%, while L1_MU20 reaches 90%, again caused
by the different requirements applied for low- and high-p L1 triggers. The additional coincidence
requirements deployed during Run 2 to mitigate rate increases due to higher luminosities cause a
small degradation of the plateau efficiency for the low-p triggers in the endcap region. For 2017
and 2018, a clear improvement in the turn-on region is observed for high-p L1 triggers due to the
CW optimisation discussed in section 5. A similar CW optimisation for low-pt L1 triggers was
implemented in 2018 that reduced the trigger rates but had a negligible impact on the turn-on.
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Figure 11. Trigger efficiencies of L1 single-muon triggers for a threshold of 4 GeV as a function of the
transverse momentum of the reconstructed muon in the barrel (left) and endcap (right) region in different
years in Run 2. The efficiency is measured using the tag-and-probe method in Z — uu events. The error
bars show the statistical uncertainties only.
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Figure 12. Efficiencies of L1 single-muon triggers for a threshold of 20 GeV as a function of the transverse
momentum of the reconstructed muon in the barrel (left) and endcap (right) region in different years in Run
2. The efficiency is measured using the tag-and-probe method in Z — pu events. The error bars show the
statistical uncertainties only.

10 Muon trigger efficiency in pp data-taking

10.1 Single-muon trigger efficiency

Requiring events to pass either of the lowest unprescaled single-muon triggers,
HLT_mu26_ivarmedium (HLT_mu20_iloose_L1MU15in2015) or HLT_mu50, serves as a general-
purpose single-muon trigger for many physics analyses. The rate reduction relative to L1 is about
two orders of magnitude, leading to a typical rate of 180 Hz for an instantaneous luminosity of
1.7 % 10** cm™2s™!, as shown in figure 13.

The efficiency of the primary single-muon triggers is evaluated using the Z — uu tag-and-
probe method. The following results are derived for Medium quality muons. Figure 14 shows the
efficiency of passing either the HLT_mu26_ivarmedium or the HLT_mu50 trigger in the barrel and
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Figure 13. HLT trigger rates as a function of the instantaneous luminosity for the lowest unprescaled single-
muon and dimuon triggers, HLT_mu26_ivarmedium (left) and HLT_2mul4 (right). The larger rate in 2015
for the single-muon trigger is due to HLT_mu20_iloose_L.1MU15 being the lowest unprescaled trigger.

endcap regions as a function of the probe muon pr. The smaller L1 efficiency in the barrel region
translates directly to the HLT efficiency, while the efficiency relative to L1 is close to unity. The
inefficiency observed in the turn-on region is due to the fact that no isolation criteria are applied to
the offline selected muon. A rise in efficiency at pt ~ 50 GeV is due to the fact that no isolation
criterion is applied in the HLT_mu50 trigger. The trigger efficiencies in simulation and data are not
in complete agreement, particularly in the barrel due to a different RPC efficiency in MC simulation,
which is accounted for in analyses by the SFs. Overall, the p dependence of the SFs is small. The
difference in the ratio between data and MC efliciencies is due to a constant L1 efficiency used in
the simulation.
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Figure 14. Efficiency of passing either the HLT_mu26_ivarmedium or the HLT_mu50 trigger in the barrel
(left) and endcaps (right) as a function of the muon py, computed using data taken in 2016-2018. The error
bars show the statistical uncertainties only.
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Figure 15 displays in the n—¢ plane the ratio of data to MC trigger efficiencies of passing either
the HLT_mu26_ivarmedium or the HLT_mu50 trigger in the barrel and endcap regions using only
2017 data. The variations between the ratios in neighbouring bins in the barrel region are due to the
gas leaks in some of the RPC chambers discussed above. To ensure that the probe muon lies in the
trigger efficiency plateau, it must have a py at least 5% above the py threshold of the trigger. The
binning is chosen to reflect the detector segmentation. The statistical uncertainties are consistently
at or below 5% in each bin, in both regions.
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Figure 15. Ratio of data to simulation efficiencies of passing either the HLT_mu26_ivarmedium or the
HLT_mu50 trigger in the barrel (left) and endcaps (right) in two-dimensional bins of muon r and ¢,
computed using data taken in 2017.

Figure 16 shows the efficiency of passing the HLT_mu26_ivarmedium trigger in the barrel
and endcap regions as a function of the average number of interactions per bunch crossing. An
improvement in trigger efficiency for 2018 data is observed at high average numbers of interactions
per bunch crossing, which is attributed to the modification of the Az selection criterion described
in section 5.
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Figure 16. Efficiency of passing the HLT_mu26_ivarmedium trigger in the barrel (left) and endcaps (right) as
a function of the average number of interactions per bunch crossing, computed using data taken in 2016-2018.
The error bars show the statistical uncertainties only.

Since the Z — pu tag-and-probe analysis is statistically limited at muon py above 100 GeV,

the same measurement is carried out using # and W+ jets events. Figure 17 shows the efficiency
of passing either the HLT_mu26_ivarmedium or the HLT_mu50 trigger in the barrel and endcap
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regions as a function of the probe muon pr, for #f and W+ jets events. Only statistical uncertainties
are shown. The SFs are derived using muons with pr > 100 GeV.
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Figure 17. Efficiency of passing either the HLT_mu26_ivarmedium or the HLT_mu50 trigger in the barrel
(left) and endcaps (right) for 7 (top) and W+ jets (bottom) events as a function of the muon pr, computed
using data taken in 2016-2018. The error bars show the statistical uncertainties only.

Table 3 summarises the single-muon trigger SFs derived from the different tag-and-probe
measurements. The inclusive SFs derived from the 7 and W+ jets selections are in good agreement
with the results derived for intermediate-p; muons. The largest contribution to the systematic

uncertainty in the high-p; measurement arises from the Ey’ 5 and muon quality WP variations.

10.2 Multi-muon trigger efficiency

While the primary single-muon triggers serve a wide variety of physics analyses, multi-object
triggers are important in many cases where lower thresholds benefit the analysis. The efficiency
of these triggers can be factorised as the product of the single-leg efficiencies. For analyses
focusing on low-momentum muons, such as in the B-physics and Light States programme, dimuon
and trimuon triggers with thresholds down to 4 GeV are frequently applied. The corresponding
single-leg efficiency is measured by applying the tag-and-probe method to J/iy events. Figure 18
shows the measured efficiency for the barrel and endcap regions as a function of the muon py for
Tight quality muons in 2015 and 2016, for the single-muon trigger HLT_mu4. These efficiency
measurements provide a crucial input for the BLS programme outlined in section 12. As observed
for the single-muon triggers, there are differences between the simulated trigger efficiency and the
trigger efficiency in data, particularly in the barrel, where the efficiency is ~10% lower in data than
in simulation. The pt dependence of the SFs in the plateau region is found to be small.
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Table 3. Summary of the high-pt muon trigger SF measurements for muons passing either the HLT_mu50
trigger or the HLT_mu26_ivarmedium trigger. The last two columns give the statistical and systematic
uncertainties that compose the total uncertainty.

Year Selection Region SF[%] Unc. [%] Stat. [%o] Syst. [%]

1t Barrel 90.5 1.2 0.9 0.8

W+ jets Barrel 90.7 1.1 0.8 0.8

2016 Z +jets Barrel 90.5 0.7 <0.1 0.7

it Endcap 96.7 2.6 0.9 2.5

W+ jets Endcap 98.2 0.9 0.5 0.7

Z +jets Endcap 98.6 0.3 <0.1 0.3

it Barrel 86.9 1.0 0.8 0.6

W+ jets Barrel 86.8 0.7 0.6 0.4

2017 Z +jets Barrel 86.8 0.4 <0.1 0.4

1t Endcap 96.7 1.1 0.8 0.7

W+ jets Endcap 96.6 1.1 0.5 1.0

Z +jets Endcap 98.6 0.5 <0.1 0.5

1t Barrel 88.3 1.7 0.7 1.6

W+ jets Barrel 86.9 1.2 0.5 1.1

2018 Z +jets Barrel 87.8 0.7 <0.1 0.7

it Endcap 95.8 1.7 0.7 1.5

W+ jets Endcap 95.5 0.8 0.4 0.7

Z +jets Endcap 96.2 0.3 <0.1 0.3
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Figure 18. Efficiency of the single-muon trigger HLT_mu4 in the barrel (left) and endcap (right) regions
as a function of the muon py for Tight quality muons, computed using data taken in 2015 and 2016. The
full markers correspond to data, while the empty markers represent MC. The error bars show the statistical
uncertainties only.
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Measurements of multi-muon trigger efficiencies targeting a higher p; regime than the previous

low-pt chains are performed by using the Z — puu event selection criteria described above to

measure the single-leg efficiencies. Figure 19 shows the efficiency of HLT_mu14 in the barrel and

endcap regions as a function of the muon py for each year of data-taking.
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Figure 19. Efficiency of the single-muon trigger HLT_mul4 in the barrel (left) and endcap (right) regions
measured in each year of data-taking as a function of the probe muon transverse momentum p. The error
bars show the statistical uncertainties only.

The efficiency of the FS trigger, HLT_mu8noL1, is also measured using the same technique
and presented for the barrel and endcap regions in figure 20. Compared to the Rol-based trigger
efficiency above, the FS efficiency is almost one in both the barrel and endcap regions, because the
L1 inefficiencies are circumvented.
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Figure 20. Efficiency of the FS single-muon trigger HLT_mu8noL1 in the barrel (left) and endcap (right)
regions measured in each year of data-taking as a function of the probe muon transverse momentum p. The
error bars show the statistical uncertainties only.

Figure 21 shows that the efficiency of the single-muon trigger HLT_mu14 has almost no pile-up
dependence. Since no isolation is applied, there is no change in efficiency for events with high
pile-up in 2017 and 2018.
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Figure 21. Efficiency of the single-muon trigger HLT_mul4 in the barrel (left) and endcap (right) regions
measured in each year of data-taking as a function of the average pile-up <u>. The error bars show the
statistical uncertainties only.

10.3 High-p muons in low-pile-up pp collisions

This section presents the studies of muon trigger efficiencies and SFs for data from low-pile-up pp
collisions at v/s = 5.02 TeV collected in November 2015. The efficiency of the lowest unprescaled
single-muon trigger in this data set, HLT_mul4, is determined using the tag-and-probe method in
Z — upu events, largely following the procedure described in section 8.3, but adapting the tag and
probe muon selections to the looser trigger thresholds. Additionally, the identification criterion of
the tag muon is tightened to the Medium WP. A subset of the systematic uncertainties described
in section 8 are considered and found to be either negligible or limited by statistical precision and
thus are neglected. The HLT_mul4 trigger efficiency for Z — pu simulation and measured in data
is presented in figure 22 as a function of probe muon py. The trigger efficiency for muons with pr
above 15 GeV is roughly constant, at about 75% in the barrel region and at about 90% in the endcap
region. In the endcap region, the simulated efficiency matches the efficiency measured in data, and
SFs are close to unity. However, as discussed above, the efficiency measured in the barrel region in
data is lower by 5-10% than in simulation.

11 Muon trigger efficiency in HI data-taking

This section presents single-muon trigger efficiency studies for Pb+Pb data at \/syy = 5.02 TeV
taken in 2015 and 2018. The trigger efficiency is studied using the tag-and-probe method on J/y
and Z — uu events described above, but adapting the tag and probe muon selections to the looser
trigger thresholds. A subset of the systematic uncertainties as mentioned above are considered and
found to be either negligible or limited by statistical precision. The performance of the HLT_mu4
trigger is estimated using the tag-and-probe method on J/i events described in section 8 with minor
changes. For this measurement the data taken in 2018 are analysed. HLT_mu8 is used as the tag
trigger, and the probe muons are required to satisfy the Tight quality WP. Figure 23 (left) shows the
trigger efficiencies for HLT_mu4 in the barrel and endcap regions, as a function of the probe muon
pt- In the barrel region the efficiencies are about 70% in the plateau region. Trigger efficiencies in
the endcap are visibly higher, with the plateau at about 90% and with a more sharply rising turn-on.
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Figure 22. Efficiency of the HLT_mul4 trigger measured as a function of probe muon p in the barrel (left)
and endcap (right) regions in low-pile-up pp data (full black circles) and Z — pu simulation (empty red
circles). The error bars show the statistical uncertainties only.

No significant difference in the measured efficiencies is observed between central and peripheral
collisions. The performance of the single-muon HLT_mu8 trigger is analysed using high-p muons,
which satisfy the Medium quality WP, from Z — uu events collected in 2015. The measurement
of the HLT_mus8 trigger efficiency as a function of the probe muon p is presented in figure 23
(right). The trigger efficiency is measured to be around 70% in the barrel region and around 85%
in the endcap region.
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Figure 23. Efficiency of the single-muon trigger HLT_mu4 (left) and HLT_mu8 (right) measured as a
function of muon py in the barrel region (full black circles) and in the endcap region (empty red circles) in
Pb+Pb collision data. The error bars show the statistical uncertainties only.

Trigger efficiency studies of low-pr and high-p; muon triggers are performed also for HI
collisions in p+Pb data taken during November-December 2016. Both the low- and high-py trigger
efficiencies are studied using the tag-and-probe method described above. The performance of the
low-py muon trigger, HLT_mu4, is analysed using Jjy — u'u~ samples, while for the high-p
muon trigger, HLT_mul5_L1MUG6, a Z — uu sample is used. Figure 24 (left) shows the efficiency
measurements for the HLT_mu4 trigger chain as a function of py for the barrel and endcap regions.
The maximum efficiency in the barrel region is ~80%, while in the endcaps it increases to 95%.
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Figure 24 (right) shows the efficiency for the high-p muon trigger as a function of p for the barrel
and endcap regions. Overall, the maximum efficiency in the barrel region is ~76%, while in the
endcap regions the efficiency reaches ~90%.
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Figure 24. Low-p; (left) and high-py (right) trigger efficiency as a function of the muon py in the barrel
region (full black circles) and in the endcap region (empty red circles) in p+Pb collision data. The error bars
show the statistical uncertainties only.

12 Muon triggers for B-physics and Light States programme

The ATLAS BLS programme relies on samples of low-py leptons, typically muons. Because of
the large instantaneous luminosities delivered by the LHC, both standard single-muon and dimuon
triggers are incapable of running with a threshold low enough to provide a sample of data useful for
BLS. To record an appropriately sized sample of data, a set of multi-muon triggers with invariant
mass and vertex requirements are used to reduce backgrounds to a level at which trigger rates are
low enough to run online.

The basic flow of a BLS chain is depicted in figure 25. After fast muon reconstruction, ID
tracks are reconstructed, and a first vertex reconstruction is performed with the ID tracks. If this
vertex passes the required XZ and mass constraints, the precision muon reconstruction proceeds,
and combined muons are used in a second vertex reconstruction algorithm. The trigger is then
passed if at least one vertex meets the required )(2 and mass constraints, which are generally tighter
than those in the first-stage vertex reconstruction.

12.1 BLS L1 topological trigger

The backbone of the ATLAS BLS programme is low-pt muons. This is reflected in heavy use
of dimuon triggers with the lowest possible threshold for both L1 and the HLT. To cope with the
conditions of Run 2 and to maintain low thresholds, the L1 topological trigger processor (L1Topo)
is heavily used. It was installed between 2013 and 2014, before the start of Run 2. L1Topo can
combine kinematic information from multiple calorimeter and muon trigger objects into topological
information about the event, leading to a reduction in rates while keeping the py thresholds low.
The L1Topo system was successfully commissioned during pp collisions in 2016 and has been used
to collect data since September 2016.
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Figure 25. General construction of a BLS trigger. After both fast muon reconstruction and precision
muon reconstruction, BLS vertex reconstruction algorithms and hypothesis testing run to see if the muons
parameters are consistent with a predefined topology.

The BLS L1Topo triggers make use of a dimuon invariant mass range cut, where the mass is
calculated as mfm = 2py pra(cosh A — cos Ag), and a cut on the angular distance AR, of the two
muons. The L1Topo items used in BLS chains are:

* LI_LFV-MUG6: requires two muons with pr > 6 GeV and AR, < L.5.

* L1_LFV-MU11: requires two muons with pp > 11 (6) GeV for the leading (subleading) muon
and ARMM < 1.5.

* L1_BPH-2M9-2MU4_BPH-0DR15-2MU4: requires two muons with pr > 4 GeV and
2 GeV < my, <9 GeV and two muons with pr > 4 GeV and AR, < L.5.

» L1_BPH-2M9-MU6MU4_BPH-2DR15-MU6MU4: requires two muons with p > 6 (4) GeV
for the leading (subleading) muon and 2 GeV < m,,, < 9 GeV and two muons with pp > 6

(4) GeV for the leading (subleading) muon and 0.2 < ARW < 1.5.

* L1_BPH-2M9-2MU6_BPH-2DR15-2MU6: requires two muons with pr > 6 GeV and
2GeV < my, <9 GeV and two muons with pr > 6 GeV and 0.2 < AR, < L.5.

* L1_BPH-8M15-MU6MU4_BPH-0DR22-MU6MU4-BO: requires two muons with p > 6
(4) GeV for the leading (subleading) muon and 8 GeV < My, < 15 GeV and two barrel-only
(BO) muons (|77M| < 1.05) with py > 6 (4) GeV for the leading (subleading) muon with
ARW <2.2.
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* L1_BPH-8M15-2MU6_BPH-0DR22-2MU6: requires two muons with p; > 6 GeV and
8 GeV < my, < 15 GeV and two muons with pp > 6 GeV and AR, < 2.2.

These L1Topo triggers all target dimuon topologies, and for triggers with two requirements, the
muon pair passing the first requirement is generally the same as the pair that passes the second. The
dimuon mass windows are optimised by taking into account the available L1 muon p thresholds.
The L1 rate reduction achieved by L1Topo is approximately a factor of four, as can be seen in
figure 26, where the comparison of 2MU6 with and without the L1Topo requirement is shown. The
L1 selection requirements result in an approximately 12% HLT efficiency reduction with respect to

offline.
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Figure 26. The rate of L1 triggers selecting two muons, each with transverse momentum above 6 GeV with
(blue) and without (red) the additional L1Topo requirement. The L.1Topo requirement is L.1 dimuon invariant

mass 2 GeV < m,,, <9 GeV, and an angular separation 0.2 < AR < 1.5 between the muons. The rate is

shown as a function of luminosity block, which on average correspond to a time interval of 60 s, in a run
taken in June 2017 with a peak luminosity of L = 0.79 x 10** cm s~ and an average pile-up of (u) =46.4.
The overall reduction of the rate due to the L1Topo requirement is approximately a factor of four.

12.2 BLS HLT algorithms

To further reduce the background and the rate of BLS muon trigger chains, several algorithms and
selections are applied at the HLT. Most of the chains start with a multi-track vertex reconstruction
algorithm in the fast reconstruction step, followed by vertex hypothesis testing. The same vertex
hypothesis testing algorithm is used in the precision reconstruction step for many BLS topologies.
The following algorithms are used:

* Multi-track vertex reconstruction: this algorithm takes two or more high-p tracks pro-
duced by the fast muon reconstruction and applies cuts on their pr, multiplicity, and sum of
charges. A mass hypothesis is set according to the selected topology and the tracks are passed
to a Kalman vertex fitter [47].

* Vertex hypothesis testing: this algorithm selects vertices passing predefined invariant mass
and vertex fit )(2 selections (see table 4).
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A more complicated topological selection happens at the precision step. Muons passing
the combined muon reconstruction and threshold requirements are used for vertex reconstruction.
Additionally, for chains that require ID tracks for vertex reconstruction, ID track reconstruction runs
in a (An X A¢) = (1.5 x 1.5) region centred around each reconstructed precision muon that passes
the required pr thresholds. The following BLS algorithms are used:

* Dimuon vertex reconstruction and hypothesis testing: these dimuon algorithms are used
for J/y /T /B — pu topologies, as shown in table 4. The reconstruction algorithm performs
vertex fits with pairs of oppositely charged muon tracks after the precision reconstruction
step. Corresponding hypothesis testing requires the reconstructed vertices to meet specified
invariant mass and )(2 requirements. Additionally, a subset of triggers place pointing require-

ments on the dimuon vertex by requiring L, > 0, where L, = (Axy - 2 Vil B
AXy is the transverse vector between the secondary vertex and the beam spot and py*" is

the vector sum of the transverse momenta of the muons forming the vertex.

* Multi-muon + track vertex reconstruction and hypothesis testing: these algorithms are
used for pu+X topologies, e.g., B — J/yK* (dimuon + one track) or BY — J /¢ (dimuon
+ two tracks). The vertex reconstruction algorithm is run in both inclusive modes, e.g.
B* — J/y /X, and exclusive modes, e.g. only B* — J/yK*. It starts by building a dimuon
candidate, which can be a non-resonant pp pair, that is then fitted using the Kalman vertex
fitter. ID tracks are then used to make all combinations for desired topologies, defined by
number of additional tracks and charge requirements. The secondary decay is then fitted by
combining the ID tracks with the dimuon system, with invariant mass and vertex )(2 cuts
applied to both the pp+X and intermediate X vertices.

* Multi-muon vertex reconstruction and hypothesis testing: these algorithms fit two to four
muons to a common vertex and apply invariant mass and vertex )(2 cuts. The algorithm is
used for 3- and 4-muon triggers as well as for dimuon triggers targeting 7 — 3 final states.

* Muon+track vertex reconstruction and hypothesis testing: the reconstruction algorithms
make combinations of one muon and one ID track above a given p threshold and fit them to
a common vertex. Hypothesis testing imposes an invariant mass requirement.

All vertex fits in the precision reconstruction step are performed using a Kalman vertex fitter.

Multi-track vertex reconstruction and multi-muon hypothesis algorithms are also used in BLS
Partial Event Building (PEB) triggers. These were developed in 2017 to provide a large sample of
low-p1 muons for offline muon calibration and a minimum-bias sample for quarkonia measurements.
The BLS PEB triggers selectively record raw detector information in a small region centred on muons
reconstructed at the precision stage that form J /¢ candidates with an ID track. Selected events are
sent to a special BphysPEB stream, described in the following section.

The BLS triggers did not use combined muons at the first fast stage because of efficiency
losses for closely spaced muons. The fast SA muon reconstruction sometimes reconstructs two
almost identical muon candidates for two closely spaced L1 Rols, and therefore the subsequent fast
combination step cannot resolve them as separate muons. In 2015, in order to avoid this potential
inefficiency the fast muon reconstruction steps were omitted completely and only the precision
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algorithms were used. The high CPU demand of this strategy made it unsuitable for the higher
instantaneous luminosities delivered by the LHC from 2016 onwards. Instead of removing the fast
reconstruction step, the pr requirements for fast SA muons were set to the lowest required threshold
per chain and the fast combination step was disabled. The multi-track vertex reconstruction,
following the fast muon reconstruction, then makes all checks using ID tracks only.

Table 4. BLS topologies selected at the HLT with their fast and precision hypotheses. The muon py
thresholds used with each topology depend on the rate of each selection, and varied throughout Run 2. For
topologies with only one listed cut, the same requirements are applied at both the fast and precision stages.

Description Fast reco cuts Precision reco cuts
2 X u, broad mass 1.5< my,, < 14 GeV, X2 <20
2 X W, low mass my,, < 6 GeV, /\(2 <50 0.1< my,, < 6 GeV, /\(2 <20
2x p, very low mass  my, < 2.7 GeV, x* < 50 0.1 <m,, <2.7GeV, x* <20
J/W — up 2.5 <m,, <43 GeV, y* <20
T — g 8 <m,, < 12GeV, y* <20
B — pp 4<my, <85GeV, x> <60  4<my, <8.5GeV, x* <20
B—-puu+X 0.1 <my, <6.5GeV, /\/2 <20 Depends on channel
3 2-u triggers: my,, < 2.7 GeV, )(2 <50

3-p triggers: my,,, < 2.7 GeV, )(2 <50
¢ — up 094 <my,, <1.1GeV, X2 <10

12.3 Rates and streaming strategy

Starting in mid-2016, triggers for dedicated measurements were saved to a stream separate from the
rest of the data for physics analyses. This enabled these raw events to be stored on tape and only
reconstructed at a later date, thus reducing the pressure on the Tier-0 system responsible for offline
reconstruction. The rate of this stream as a function of instantaneous luminosity is shown in figure 27
for a representative set of runs from each year. Averages over the full year are not shown, since the
composition of the stream changed during each year. As the luminosity decreased below predefined
thresholds (for 2018, instantaneous luminosities of 1.7 X 10% cm_zs_l, 1.5% 10** em™2s7™!
1.2x 10%* cm_zs_l), lower-threshold triggers were enabled. These lower-threshold triggers could
not be enabled at higher luminosities due to either L1 rate, HLT CPU usage, or HLT output rate
limitations, but were enabled as early as resources allowed.

, and

An additional PEB stream of events for low-pt muon calibration and efficiency studies was
commissioned in late 2017. The events in this stream are selected by triggers requiring a first-stage
SA low-pp muon and an ID track with a combined invariant mass 2.5 < m,,, < 4.3 GeV. Since
a large fraction of J/y are boosted, instead of recording the full event data, events in this stream
contain only the raw detector hits in the (A X A¢) = (1.5 x 1.5) region centred on the tag muon

without loss of J/i candidates. This reduces the average event size in the stream by a factor of
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Figure 27. Rate of the dedicated BLS stream from representative runs during 2016, 2017, and 2018 pp
13 TeV data taking. Enabling or lowering the prescale of lower-threshold triggers causes the jumps in the
rate at 0.7 x 10°* cm s~ and 0.9 x 10** cm™%s™! in 2016; 1.0 x 10% cm_zs_l, 1.2x 10°* cm_zs_l, and
1.5x10** ecm™s ™" in 2017; and 1.2 x 10** ecm™s™!, 1.5 x 10* em™s™!, and 1.7 x 10 ecm™s™" in 2018.

seven, allowing a high rate of calibration data to be recorded without requiring excessive offline
storage.

Table 5 shows the full integrated luminosities and the integrated luminosities collected by
triggers only enabled below specified instantaneous luminosities, the so-called ‘end-of-fill” strategy,
in2017 and 2018. During 2015, no end-of-fill strategy was needed due to the low peak instantaneous
luminosity. During 2016, the prescale and streaming strategy changed throughout the year due to
the rapidly changing data-taking conditions. Therefore, integrated luminosities for a single set of
instantaneous luminosity ranges are not shown. The low-pr muon calibration stream also used an
end-of-fill strategy.

Table S. Integrated luminosity collected in 2017 and 2018 by triggers that were enabled below specified
instantaneous luminosities.

Total £ [fb~']
Enabling L; 2017 2018
Full run 49 63
1.7 % 10** cm 257! - 53
1.5x10%em™2s™! 38 43
1.2x10** cm™2s7! 30 26
1.0 x 10** cm™2s7! 20 -

Figures 28 and 29 show the 2018 rates of dimuon J/¢ and BLS triggers as a function of the
instantaneous luminosity. The pure dimuon trigger rates are well described by a linear fit with an
approximately zero intercept. For L1 triggers, there is a clear non-linearity caused by an additional

dependence on the number of interactions per bunch crossing. The feature at L = 0.5% 10** cm™s7!
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is caused by LHC fills where only 600 proton bunches were colliding, but the collisions had a pile-up
multiplicity of approximately 60. This non-linearity is also present in HLT triggers with additional
track requirements. The effect of the end-of-fill strategy can be seen in triggers that have sharp
changes in their rates.
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Figure 28. LI trigger rates as a function of the instantaneous luminosity for the unprescaled dimuon
triggers used for the BLS programme. The left plot shows the lowest unprescaled non-L1Topo L1 trigger,
L1_MUI1_2MUG6 and two L1Topo triggers with a AR, < 1.5 requirement. The right plot shows L1Topo
triggers with both the AR, and m,,, requirements, targeting specific final states.
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Figure 29. HLT trigger rates as a function of the instantaneous luminosity for the lowest unprescaled dimuon
triggers targeting J /i (left) and b-hadron (right) final states.

12.4 Performance

Figure 30 shows the dimuon invariant mass spectrum for pairs of muons satisfying Tight offline
quality criteria [28]. They are fitted to a common vertex, using the ID track parameters, with a
X2 < 20 for one degree of freedom. Muons are also required to have an absolute pseudorapidity less
than 2.3, and have a transverse momentum greater than the trigger threshold. The dimuon triggers
require two muons at L1, passing either the low-p thresholds of 4 or 6 GeV or the high-p threshold
of 10 GeV (L1_MU11). These thresholds are subsequently confirmed at the HLT. Invariant mass
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requirements are applied to restrict events to the charmonium, b-hadron and bottomonium mass
ranges. The yields of events collected for each trigger are cumulative, where overlapping events
collected by multiple triggers are retained in the lowest-threshold histogram; hence the integral of
events from all histograms is the same as the total event yield. For certain data-taking periods,
trigger prescales were applied, reducing the effective yield of events collected by those triggers. The
inclusive dimuon trigger, which covers the full mass range of interest and is shown as the dashed
line in figure 30, was unprescaled throughout the data-taking period.
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Figure 30. Dimuon invariant mass for events passing a selection of BLS triggers. Triggers select specific
invariant mass regions at both L1 and the HLT, and, due to vastly differing rates, some thresholds collected
a smaller integrated luminosity. Smaller invariant mass regions allow lower-threshold triggers to run un-
prescaled at higher instantaneous luminosities, thus more signal events can be recorded than is possible with
only inclusive triggers. The dashed line represents the events collected by the lowest unprescaled dimuon
trigger that is inclusive of the full mass range of interest.

The efficiency of BLS dimuon triggers can be factorised into three terms:

- LSRN LD Hay iy |l ITESUD
€dimuon = €muon Tl9q e n l) X e-muon(p”[‘z’q ’- n 2) X C!.m(AR ’ Iy |)a
where €, are the efficiencies of single-muon triggers corresponding to the dimuon trigger legs,

C,,. 1s a correction accounting for the effects of the dimuon selection applied by the trigger and q"
is the muon electric charge. Single-muon trigger efficiencies for low-p muons are discussed in

section 10.2. The dimuon correction can be represented as a product of two components:
Cou(ARM [YM)) = ¢, (I"™]) X cpr(AR™, [y™]).

Both terms are measured in three regions of dimuon rapidity: barrel (|y**| < 1.0), barrel-endcap
overlap (1.0 < |y""| < 1.2), and endcap (1.2 < |y""| < 2.3), to account for the different values of
the correction in these regions. The invariant mass regions selected by each trigger are wide enough
such that offline selections are well within the window and there are no residual resolution effects.
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The asymptotic correction, c¢,, accounts for the effect of dimuon vertex and opposite-charge
requirements applied by BLS algorithms. The asymptotic correction values are determined using
the ratio of Jiy — u*u~ decay yields in events selected by the standard dimuon trigger to those
selected by a similar dimuon trigger without applying charge or dimuon vertex requirements. A
requirement of AR™ > 0.3 is imposed on all Jiy — u"u~ candidates used to determine the
asymptotic correction. Apart from that, the selection of J/iy — u'p~ candidates and extraction
of the yields follow the same procedure as described in section 8.3. The correction values are
found to be 0.983 +£0.001, 0.984 + 0.003, and 0.979 + 0.001 in barrel, overlap, and endcap regions,
respectively.

The second component, ¢, accounts for the inefficiency in resolving two overlapping muon
Rols by L1 dimuon triggers for closely spaced muons and hence is evaluated as a function of
dimuon angular separation, AR™, in the regions of |y"*|. Smaller effects, such as inefficiencies
for closely spaced muons in the HLT, are also accounted for in this correction. To evaluate this
correction, a sample of dimuon events collected with the single-muon plus track triggers as in
section 8.3 is used. The c,p is measured using the fraction, p,g, of Jiy — '~ events in this
sample that are also selected by dimuon triggers requiring each muon to have p; > 4 GeV. The J/i
candidates are selected as described in section 8.3 with an additional requirement for both muons
to have pr > 8 GeV to ensure that single-muon trigger efficiencies reach their plateau values.
Figure 31 shows values of p,r as a function of AR"™ in three regions of dimuon rapidity. The
higher efficiencies observed in the 2015 data are due to the absence of fast HLT reconstruction
algorithms in the trigger sequence, as described in section 12.2.

The distributions in figure 31 are fitted with a function composed of an error function describing
the shape of AR turn-on and a normalisation parameter. The fitted error function, which approaches
unity for AR > 0.3, corresponds to the c,z(AR™) correction in each region. The normalisation
may contain contributions from ¢, and from the single-muon trigger efficiencies, and is irrelevant
for the ¢y measurement. The overall dimuon correction, C,, (AR™, [y*"]), in each region of |y™*|
is given by a product of the error function extracted from the corresponding fit, and the asymptotic
correction value, ¢, (|y""]), measured in that region.

13 Conclusion

The ATLAS muon trigger has been successfully adapted to the challenging environment at the LHC
such that stable and highly efficient data-taking was achieved in Run 2. The transverse momentum
threshold for the single-muon trigger was set at 26 GeV for most of the proton-proton data-taking
campaign with a well-controlled trigger rate of typically 15 kHz at Level-1 and 180 Hz at the
High-Level Trigger for instantaneous luminosities of 1.7 X 10** ecm™2s!. The processing times
of the HLT muon trigger algorithms were continuously optimised and are sufficiently short to fit
within the computing resource limitations. The efficiencies are measured with proton-proton and
heavy-ion collision data over a wide p range (a few GeV to several hundred GeV) by using muons
from decays of Jiy mesons, Z and W bosons, and top-quark pairs, and show highly uniform and
stable performance. The single-muon trigger efficiency is evaluated to be about 68% and 85% in the
barrel and endcap region, respectively, considering a kinematic region of 26 < py < 100 GeV. For

lower-threshold multi-muon triggers, increased efficiencies of up to 75% and 87% in the barrel and

—35—



%1,47””‘””””‘”” 1 %1,47‘ T —
Q r ATLAS 7] Q r ATLAS 7]
12-{s=13TeV,36.1fb* - 1.2 {s=13TeV, 36.1 fb* -
1ipp data, I/ - py, ly(up) < 1.0 E lipp data, I/ —pp, 1.0 < y(up)| < 1.2 3
0.8; i 0.8j7<; % .
0.6 - 0.6F -
C —-2015 ] C —-2015 ]
0.4 -£-2016 — 0.4~ #2016 =
02} — Fit 2015 { 02} — Fit 2015 {
[ — Fit 2016 ] r — Fit 2016 ]
o] | | L | | — 0 N R R B AR
0.05 01 015 02 025 03 0.35 0.05 01 015 02 025 03 035
AR(pp) AR(HH)
¢ 14— —
3 r
e F ATLAS

1.2 {s=13TeV, 36.1fb*
[ pp data, J/P-py, 1.2 < |y(up)l < 2.3

i

0.8
0.6
L —-2015
0.4 2016
0.2 — Fit 2015
C — Fit 2016
0= | [ RN BN RN
0.05 0.1 0.15 0.2 0.25 0.3 0.35

AR(pp)

Figure 31. Ratio p,x of Ji — u*u~ yields in events collected by the dimuon triggers and single-muon plus
track triggers and by single-muon plus track triggers only, as a function of the dimuon angular separation
ARM™, in data collected in 2015 and 2016 for (top-left) barrel, (top-right) overlap, and (bottom) endcap regions
of dimuon rapidity. Fits with an error function are also shown.

encap region, respectively, are observed due to the loosened requirements at Level-1. Efficiencies
are also measured in heavy-ion collision data and show comparable results. Low-momentum muon
triggers are further combined with vertex and mass selections, providing the backbone of the B-
physics and Light States programme. The usage of the topological Level-1 trigger selection is
essential to provide well-controlled rates to cope with the conditions during Run 2. Efficiency
corrections in addition to the single-leg efficiencies are derived for signatures with closely spaced
muons.
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