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1 Introduction 

Two genuine probability distributions for counts a.re the Poisson and the binomial distribu­

tions. Depending on the type of data. they a.re used as a first step in the analysis usually. Real 

count data often exhibit overdispersion. When the the overdispersion is present the binomial 

or the Poisson model a.re not valid, so the successful modelling of count data requires non­

standard richer probability models. Such extended models a.re studied by many authors and 

overview of the previous research and related applications a.re given, for example, in Collett 

(1991), Hinde and Demetrio (1998), Luceii.o (1995), Winkelmann (1997). 

1n this pa.per we introduce the extended correlated binomial and the extended correlated 

Poisson distributions which a.re over-funder- dispersed according to the Poisson and binomial 

distributions, respectively. We follow the idea. of Fu and Sproule (1995) a.nd the the approach 

developed by Luceno (1995). 



The paper is organized as follows. In Section 2 we give two equivalent representatioru of the 

General binomial distribution and Correlated Poisson distribution, studied by Fu and Sproule 

(1995) a.nd Lucefio (1995), respectively. In Section 3 we define the Correlated general binomial 

and Correlated general Poisson distributions and in Section 4 we study the corresponding 

Extended partially correlated distributions. At the end several conclusions are summarized. 

2 Two Relationships 

In this section we show that the General binomial distribution studied by Fu and Sproule 

(1995) can be represented as a linear combination of the usual binomial distribution. Also, 

an equivalence between the Correlated Poisson distribution introduced by Lucefio (1995) a.nd 

the zero-inflated Poisson distribution is demonstrated. 

2.1 General Binomial Distribution 

Fu and Sproule (1995) present a new departure in the generalization of the binomial distribu­

tion by adopting the aBsumption that the underlying Bernoulli trials take on the values a or 

/3, a < /3, instead of the conventional values O or 1, while retaining the assumptions that the 

probability of success is the constant p E (0, 1) and the Bernoulli trials a.re independent. 

Let vk, k = 1, 2, ... , n be independent binary variables taking values 1 and O with proba­

bilities p and 1 - p, correspondingly. The random variable (r.v.) 

has the binomial distribution with parameters n and p, to be denoted V ~ Bi(n,p). 

Consider the r.v. 's 

(1) 

for a< /3 and k = 1,2, ... ,n. Then 
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are independent r.v.'s and their sum 

with probability p, 
with probability 1 - p 

was called by Fu and Sproule (1995) the General binomial distribution with parameters n,p, a 

an<l /3 . We will denote this by Z ~ GBi(n,p,a,/3). 

From (1) immediately follows that 

(2) 

for V ~ Bi(n,p). Thus, under the given notations we obtain the following simple 

Proposition 2.1. The linear combination (2) for V ~ Bi(n,p) , represents the General 

binomial distributed r.v. Z ~ GBi(n,p, a,/3) . 

Remark 2.1. Let us note that the r.v.'s Zk defined by (1) can be represented as 

(3+a (3-a 
Z., = - 2- + - 2- c:,., 

where 

{ 
1 with probability p, 

c1c = -1 with probability 1 - p 

are independent binary variables, k = 1, 2, ... , n. It is clear that for the discussed binary 

variables the following equivalence relations are fulfilled 

c1c={l,-l} {c::=} vk={l,0} -¢::::::? Z1c={(3,a} . 
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2.2 Correlated Binomial and Correlated Poisson Distributions 

The second distribution of interest in this section is the Correlated binomial distribution with 

parameters n,p and p, implicitly introduced by Tallis (1962), and later rediscovered and stud­

ied by Lucefio (1995) and Luceiio and Caba.llos (1995). A r.v. W following this distribution 

counts the number of successes in a sample of n subjects that give equicorrelated binary re­

sponses with correlation coefficient p, probability of success p, under the condition that its 

probability mass function must depend linearly on p. The r.v. W can be represented as 

where w.1:, k = 1, 2, ... , n, are equicorrelated binary variables taking values 1 and O with 

probabilities p and 1 - p, correspondingly, having mean and variance 

E(w.1:) = p and Var(w.1:) = p(l - p) 

The covariance is given by 

Cov(wk,wm)=pp(l-p) for k=f.m. 

We will use the notation W ~ CBi(n,p,p). The probability mass function of the r.v. W can 

be written in terms of the mixture 

P(W = w) = (1 - p)P(V = w) + pP(J = j(w)), (3) 

where V ~ Bi(n,p), J being rescaled binomial r.v. taking values O and n with j(w) = O,n 

for w = 0, 1, .. . , n. 

The probability generating function (PGF) of the C Bi(n,p, p) distribution is given by 

Pw(t) = p(l - p +pt")+ (1 - p)(l - p + pt)", JtJ $ 1. (4) 

Remark 2.2. Let us note, that (4) is a mixture of the PGF's of binomial r.v. and two 

degenerated at O and n r.v.'s, since the sum of the corresponding coefficients is equal to one. 
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This means that the PGF Pw(t) is decomposed (with corresponding probabilities) by the 

PGF of the binomial r.v. and two degenerated r.v. 's. 

Now, putting in (4) n ~ oo and p -+ 0 such that np = A = const, Luceii.o (1995) 

obtains the PGF of the Correlated Poisson distribution, given by 

P(t) = p + (1 - p)exp{A(t -1)}. (5) 

In order to show the second relationship, we need to introduce briefly the so-called zero­

inflated distributions, see Johnson et al. (1992), p. 312. Let X be an arbitrary nonnegative 

integer-valued r.v. with probability mass function 

00 

P(X = j) = Pi, j = 0, 1, · · ·, EP1 = 1 
J=O 

and let Gx(t) = E(tX) be its PGF. The probability mass function of the corresponding 

zero-inflated r.v. Y can be written as 

P(Y=0) = p+(l-p)Po, 

P(Y=j) (1-p)p;, j=l,2, · ··. 

The parameter p in last relations may take negative values provided that P(Y = 0) > 0, 

or equivalently 0 > p > -Po(l - p0 )-1 . This case corresponds to the negatively correlated 

binary variables w1,;, k = l, 2, ... , n. 

The inflated distributions are appropriate alternatives for modelling the clustered samples, 

for example when the population consists of two subpopulations, one containing only zeros 

while in other, counts from a discrete distribution may be observed. 

The PGF of the zero-inflated r.v. Y, associated with the r.v. Xis given by 

Gy(t) = p + (I - p)Gx(t). (6) 

Remark 2.3. For p > 0 from (6) one may obtain that the following inequality is fulfilled 

V ar(Y) V ar(X) 
E(Y) > E(X) 
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a.nd therefore the zero-inflated distributions lead to possible models for explaining overdisper­

sion. If p E (-~, 0) the inverse inequality for the variance mean ratios is valid and we have 

a model for underdispersion in this case. 

Now it is easy to see that if X ~ Po(>-.), i.e. if Px(t) = exp{>.(t -1)} in (6), then the PGF 

of the zero-inflated Poisson distribution coincides with the PGF of the Correlated Poisson 

distribution given by (5). Thus we proved the next 

Proposition 2.2. The zero-inflated Poisson distribution and the Correlated Poisson distri­

bution are identical. 

Remark 2.4. From Proposition 2.2 we may interpret the parameter p in the zero-inflated 

Poisson distribution as the correlation coefficient between binary responses in the Correlated 

binomial model, when p E (- 1~~:x, 1). 

3 Correlated General Binomial 
and Correlated General Poisson Distribution 

Let us define the r. v. 's 

for a < /3, where Wk are the defined in Section 2 equicorrelated binary variables, k = I, 2, ... , n. 

Then 

with mean and variance 

with probability p, 
with probability 1 - p 

The covariance and ihe correlation coefficient are given by 

(7) 

Cov(Xk, Xm) = pp(l - p)(/3 - a)2 a.nd Corr(Xk, Xm) = p for k =/:- m. (8) 
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Therefore X/s are equicorrelated binary variables taking values (J and a with probabilities p 

and 1 - p, respectively. 

Definition 3.1. We call the distribution of r .v.'s Xk defined by (7) the Correlated general 

Bernoulli distribution with parameters p, a, fJ and p. 

Definition 3.2. The sum 

represents a r.v. with a distribution which we will refer as the Correlated general binomial 

with parameters n, p, a, f3 and p, to be denoted CGBi(n,p,a,{3,p). 

Remark 3.1. If Xk's are independent, the General Bernoulli distribution introduced by 

Sproule (1992) is obtained, i.e. if p = 0 in (8), xk =d zk where the r.v.'s zk are defined by 

(1). In this case the r.v. Yn is General binomial distributed according Fu and Sproule (1995). 

Further, our considerations will be related with the r.v. 

n 

Yn - na = L(Xk - a). (9) 
k=l 

According Definition 3.2, Yn - na ~ CG Bi( n. p, 0, (J - a, p ). In order to reduce the parameter 

space, we will use in the following exposition the notation CGBi(n,p,/3- a,p) 

Remark 3.2. The quantity 
Yn-na 

/3-a 

gives the number of trials for which Xk = (J, k = 1, 2, ... , n. 

Following Luceiio (1995), by imposing that the probability function of a r.v. Y,. - na 

defined by (9) depends linearly on p (compare with the equation (3)), it is easy to show that 

the following relation is fulfilled 

P(Yn - na = y) == (1 - p)P(T = y) + pP(U = u(y)) 
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far y = 0,/3- a, ... , n(/3 - a) and u(y) = 0, n({J - a), where T ~ GBi(n,p,0,/3 - a), with 

E(T) = np(/3- a) and Var(T) = np(l - p)(/3- a)2, 

U ~ GBi(l,p,0,/3- a) being a rescaled General binomial r.v. taking values O and n(/1- a) 

and having mean and variance 

E(U) = np(/3- a) and Var(U) = n2p(I - p)(/3- a)2. 

Hence, 

E(Yn - na) = np(/3 - a) and Var(Yn - na) = np(l - p)[l + p(n - 1)](/3- a)2. 

Remark 3.3. Two particular cases of (10) are of interest: 

• if a = 0 and /3 = 1, the Correlated binomial model studied by Lucefio (1995) is obtained; 

• if p = 0, we have the Generalization of the binomial distribution introduced by Fu and 

Sproule (1995). 

For ftl -::; 1, from (10) we have the following PGF 

PYn-na(t):;:::; p[l - p + pt<i3-a)n] + (I - p)[l - p + pti3-a]". (11) 

If we substitute a= 0 and /3 = 1 in (11), the PGF of the CBi(n,p,p) distribution, given 

by (4) is obtained. 

Now, let n --t oo and p --t O such that np = A :;:::; const. After simple transformations 

we have the following limiting PGF 

Pq(t) = p + (1 - p)exp{>.(ti3-a - 1)}. (12) 

Definition 3,3. The expression (12) is the PGF of r.v. Q with distribution, which we call 

the Correlated general Poisson distribution with parameters A, p and /3 - a, to be denoted by 

Q ~ CGPo(>.,p,/3- a). 

Remark 3.4. From (12) the PGF of 
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• the usual Poisson distribution is obtained for (J = 1, a= 0 and p = O; 

• the Correlated Poisson distribution introduced by Lucefio (1995) is obtained for (J = 1 

and a = 0, compare with relation (5). 

4 Two Extended Partially Correlated Models 

Although the CGBi(n,p,/3 - a,p) model produces overdispersion for p > 0, it assumes im­

plicitly that each and every one of n subjects included in the sample belongs to one sole 

equicorrelated clump which, in general, is an unreasonable assumption. Some other unattrac­

tive properties of the model (which can be avoided by partially correlated models), are similar 

to those, discussed by Luceiio and Caballos (1995), p. 1642, for the CBi(n,p,p) model. 

Following the notations used by Lucefio (1995), assume that the events counted during the 

observation interval occur in independent clusters of size L and each item included in a cluster 

is randomly assigned to a clump according to a multinomial distribution with K equiprobable 

outcomes. Accordingly, ihe sizes of clumps form a random vector n = ( n1, ... , nK) that may 

be considered as a latent variable following multinomial distribution Mn( L, K- 1
, •.. , K- 1 

), 

I.e. 

with mean and variance 

E(n;) = LK-1 and Var(n;) = L(K - l)K-2 (13) 

under restriction n1 + n2 + · · · + nK = L. 

For given n, assume that the number of events 

y; = 0, /3- a, ... , n;(/3- a), provided by the clumps are independent r.v.'s and Yn, -n;a ~ 
CGBi(n;,p,(3- a,p), i = 1, ... , K, with conditional mean and conditional variance given by 

E (Yn, - n;aln;) = n;p(/3 - o) 
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and 

Var (Y,., - n;aln,) = n,p(l - p)[l + p(n; -1))(,8- a)2. (15) 

Definition 4.1. The total number of events 

K K 

L (Y,., - n,a) = LY..; - La 
i=l 

in each cluster, follows the Extended partially correlated binomial distribution with parameters 

L, p, ,8-a, p and K, to be denoted EPCBi(L,p,,8- a,p, K). 

The PGF of the defined r.v. is given by 

(16) 

where the expectation is taken with respect to the random vector n and Py,.; -n;a( t) is the 

PGF given by (11). 

The mean and the variance of the EPCBi(L,p,{3- a,p, K) distribution can be obtained 

after some algebra. by using expressions (13), (14), (15), the properties of the conditional 

expectation and conditional variance and a.re given by 

and 

Var (tv,.. -La) = p(l - p)L(l + p(L - l)K-1)({3- a)\ 

respectively. 

Let us find the limit of the PGF [G(t)]H, where G(t) is given by (16), N is the number of 

the independent clusters occurring during an observation interval, for N ~ oo and p ~ 0 

while N Lp = >. = con.st. The limiting PGF in this case is given by the following expression 

(17) 
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where 

Definition 4.2. We call the r.v. F with a PGF given by (17) Extended partially corre­

lated Poisson distributed with parameters L, )., /3 - a, p and K, to be denoted by F ~ 
EPCPo(L, >.,(3- o:,p, K). 

The mean and -the variance of the defined distribution are given by 

Remark 4.1. For /3 = 1 and a= 0 from (16) and (17) as particular cases can be obtained the 

Generalized partially correlated binomial and Poisson models introduced by Lucefio (1995). 

Let us denote them by GPCBi(L,p,p,K) and GPCPo(L,>.,p,K), respectively. 

Let F ~ EPCPo(L, >.,(3-a,p, K) and R ~ GPCPo(L,>.,p, K). Comparing their PGF's 

one can conclude that 

and therefore 

with 

and 

F = (/3- a)R 

P(F = f) = P (R = - 1- ), for J = 0, /3- a, 2(/3 - a), ... /3-o: 

[ 

min(r,L) ] 
P(R = r) = >.r-1 (1 - p)P(R = r - 1) + p ~ l§1P(R = r - l) , r = 1,2, ... , 

where the la.st expressions for the probabilities are obtained by Lucefio (1995). Hence, the 

exact distribution of the r.v. F ~ EPCPo(L, >., /3 - a, p, K) is the same, as given by Lucefi.o 
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(1995) for the r.v. R ~ GPCPo(L,>..,p,K), provided that the possible values of the r.v. F 

a.ref= O, /3- a, 2(/3 - a), .... 

A similar conclusion is valid in the binomial case: a E PC Bi( L, p, /3 - a, p, K) distributed 

r.v. takes values O, /3 - o, ... , L(/3- a) and its probability mass function coincides with the 

probability mass function of a GPCBi(L,p,p,K) distributed r.v. as given by Luceiio and 

Caballos (1995). 

Remark 4.2. The CGBi(n,p,/3- a,p) and CGPo(>..,{J- a,p) models studied in Section 3, 

can be obtained from their partially correlated analogues, if the number of clusters is N = 1, 

i.e. by substituting K = 1 and L = n in the corresponding formulas. 

5 Conclusions 

Several extensions of the binomial distribution discussed by Fu and Sproule ( 1995) and Luceiio 

and Caballos (1995) have been generalized to the Extended partially' correlated binomial distri­

bution. As a. limiting result, the Extended partially correlated Poisson distribution have been 

obtained. Presented results for the Extended partially correlated Poisson distribution may 

be used in a similar manner to extend the Generalized Erlang distribution studied by Luceiio 

(1996). The introdured distributions a.re candidates for modelling of under- or overdispersion, 

when the count data are heterogeneous and grouped in clusters. 

In this article we do not consider the tests for detecting extra-binomial and extra-Poisson 

variation, which may be described by the extended correlated binomial and Poisson models, 

correspondingly. Work on some score-tests for discovering possible extra-variation is currently 

in progress. 
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