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1. Introduction

In most detection systems there is a minimum time interval
between two pulses that allows for their identification as
separated events, which is associated with the time required to
record one count and called dead-time (Knoll, 2010; Jenkins et
al., 1995). Two pulses with overlapping dead-times generate a
single deformed pulse (pile up), which may give rise to a count
in the observed spectrum, but that does not fall in either of the
positions expected for the isolated pulses; hence, both pulses
are effectively lost, and one unwanted event is recorded
whenever the system cannot veto its acquisition. When
working at high counting-rates, the effects of dead-time and
pile-up are blended and introduce important distortions in
the energy spectrum, requiring a model for their correction
(Lindstrom & Fleming, 1995).
Counting rates of magnitude of 10° Hz in X-ray spectro-
scopy are achievable with silicon drift detectors (SDDs) (Gatti
& Rehak, 1984), which have good efficiency (Scholze &
R Procop, 2001; Barros et al, 2017) and high resolution. For
0 W & 6 & 10 12 & 16 18 these reasons, they have become the choice for most energy-
dispersive X-ray spectroscopy (EDS) measurements. This
work deals with the procedures for correcting the distortions
caused by dead-time and pile-up in X-ray spectra taken at high
counting rates with one of these detectors using a digital pulse
processor (DPP).
The approach taken here for the model development
0 200 400 600 800 1000 1200 1400 follows the classical lines detailed by Knoll (2010) and Jenkins
channel et al. (1995) and accounts for specificities of this type of
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al., 2008; Ciatto et al., 2004). These authors, however, dealt
mostly with experimental arrangements that worked with low
counting rates in the low-energy part of the spectrum and
neglected the pile-up effect, which is relevant when the
counting rate is high. Furthermore, it was noticed by Redus et
al. (2008), and verified in our work, that the dead-time tends to
vary in the low-energy region of the spectrum, implying that
standard models are not adequate when the counting rate in
this region is high. This problem is of interest in studies that
involve characteristic X-rays below or around 3 keV, where
dead-time variations may be important. The spectrum of Au
excited by 18.5 keV electrons, shown in Fig. 1, serves as an
example, with its M X-rays around 2.1 keV. One of the spectra
shown has less than 2% of the counts under 3 keV, while the
other has more than 50%. In this last spectrum, the usual
dead-time correction methods proved to be inaccurate.

We propose an analytical model that allows accurate
correction of the counting losses due to dead-time. It was
tested under two different conditions: when the counting rate
in the low-energy end of the spectrum is a large fraction of the
total, and when that counting rate is much smaller than the
total rate. In the experiment, described concisely in §2 and in
detail in the supporting information, the photon source was
provided by an electron beam hitting an Au target, yielding
X-ray spectra of constant shape at rates that can be varied
with the beam current. We found that the dead-time changes
quickly with energy in the low-energy region, as shown in
Fig. 2, where the ratio between a spectrum taken at a given
counting rate and a spectrum taken at about 1 kHz is shown
for several counting rates. Note that the spectra are not
affected uniformly, with losses below 3 keV being more
intense than at higher energies, particularly at higher counting
rates. This figure also illustrates that dead-time losses at
counting rates of tens of kiloHertz are a zeroth-order effect
and cannot be neglected.
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Figure 1

X-ray energy spectrum from the impact of 18.5 keV electrons at 4 kHz
input rate. The dispersion in energy is 13 eV per channel. The spectrum
plotted in the dotted line (black) has more than half of the counts below
3 keV. The spectrum in the continuous line (gray) was taken with an
attenuator, and less than 2% of the counts fall below 3 keV. These
spectral shapes will be referred to as ML and L, respectively, after the
dominating Au X-ray lines.
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Figure 2

From top to bottom the plots represent the Au spectra acquired at rates

of 3, 12, 19, 26, 42 and 56 kHz, normalized for charge and divided by

the spectrum acquired at 1kHz. Compressed spectra, dispersion

210 eV bin ™"

The equations developed in §3 allow the dead-time
dependence on energy to be accounted for and are based on
the works of Jenkins et al. (1995) and Redus et al. (2008).
§4 groups these formulas in a bunch of different models with
varying degrees of accuracy (and complexity), assigning
acronyms for reference in the next sections. Results obtained
with the different models are presented and discussed in §5,
along with a table that lists the simplest models that can
provide the demanded accuracy for a given experiment,
according to count rate and spectral shape. The supporting
information provided with this paper contains a detailed
account of the experiment and other application examples.
The closing remarks are in the Conclusion. A list of the
symbols used throughout the text is given in Appendix A.

2. Experiment
2.1. Experimental arrangement and procedure

The photon source consisted of the X-ray spectra produced
by 18.5 keV electrons hitting a thin Au film. The Sdo Paulo
Microtron electron accelerator (Instituto de Fisica, Universi-
dade de S@o Paulo, Brazil) beamline and vacuum chamber
described elsewhere (Vanin et al., 2017; Fernandez-Varea et al.,
2014; Barros et al., 2015) were employed.

The emitted photons were detected by a SDD with a DPP.
The SDD has a Si crystal of 0.5 mm thickness and 2.8 mm in
diameter, a 12.7 um-thick Be window and a internal collimator
of diameter 4.65 mm, made by Amptek (Bedford, USA). The
detector was placed under vacuum in the irradiation chamber,
and a magnet deflected the electrons scattered in the target
before reaching the detector.

The digital spectrometer peaking time and the flat top of the
slow channel were maintained at 1.6 ps and 0.2 ps, respec-
tively, assuring energy resolution better than 170 eV at the
Au Loy (9.71 keV) X-ray line in all spectra. The peaking time
of the fast channel was fixed at 100 ns.
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Low-energy X-rays from the irradiated target were atte-
nuated by a 25 um-thick kapton film placed in front of the
detector beryllium window to obtain the spectra with few
counts near the energy threshold. The beam current was
varied from 10 to 700 nA to take spectra with counting rates in
the range 1-56 kHz. Fig. 1 shows spectra obtained at 4 kHz for
both experimental conditions studied. The total charge inci-
dent on the target was measured in coincidence with the
multichannel analyser enable signal, and hence it is propor-
tional to the true input count rate.

2.2. Pile-up and dead-time in the spectrometer operation

The DPP has a single analog-to-digital converter (ADC),
and two signal processing channels, named ‘slow’ and ‘fast’.
With PUR (pile up rejection) turned on, the slow channel will
register a pulse if its peak amplitude is above the slow-
threshold setting and below full-scale, and the fast channel
does not detect two pulses within the conversion time of the
slow channel.

The acquisition system records quantities which can be used
to deduce the dead-time: the total numbers of counts above
the thresholds in the fast and slow signal processing channels,
i.e. Np, and Ny, respectively; and the spectrum acquisition
time interval, T,.,, which is the multichannel analyser enabled
time, and is therefore smaller than the elapsed time.
Neglecting pile-up both in the fast and in the slow channels,
the ratio of dead-time, T}, to acquisition time is given by

E ~ Nfast — Nslow (1)

which is reported to the DPP user by the acquisition system as
the dead-time fraction (Amptek A, undated), and provides an
estimate of the fractional loss of counts due to dead-time
effects.

3. Quantifying losses from dead-time and pile-up

Good reviews on the extensive literature are given by Knoll
(2010) and Jenkins et al. (1995). The model developed here
derives from the works of Jenkins et al. (1995) and Redus et al.
(2008), who have already noticed that the dead-time tends to
vary with energy in the low-energy region of the spectrum, and
was adapted to the specificities of X-ray energy-dispersive
spectroscopy with DPPs. Many of the details in this section,
particularly in §3.4 and §3.5, address the determination of the
model parameters from the experiment, some checks on
model consistency, and the evaluation of the accuracy of the
correction, which are not required when the model parameters
are known. The formulas of §3.1 to §3.3 with parameters taken
from DPP settings and the acquired spectrum can achieve the
necessary accuracy in most cases.

3.1. Dead-time

It is habitually assumed that the relation between the true
input rate, R,,, and the true output count rate, R ,,, when using

m> out?

a paralyzable system (Redus et al., 2008; Woicik et al., 2010),
like the setup examined here, is

Rout (Rin; TC) = Rin exp(_RintC)’ (2)

where 7 corresponds to the dead-time per pulse.

This formula requires changes to account for the increase in
losses at low energies, like those shown in Fig. 2. When dead-
time is energy dependent, the input and output rates will also
depend on energy (Jenkins et al., 1995), then

Rout(E7 Rin) = Rm(E) exp[_RinT(E)]v (3)

where R,,(E) is the input rate of photons of energy E, R, is
the total input rate, summed over all photon energies, and t(E)
is the dead-time per pulse corresponding to energy F, related
to the conversion time of the digitizer and its operation mode.

For the slow channel, the dead-time per pulse is a gener-
alization of the equation given by equation (1) of Redus et al.
(2008). In order to account for the PUR mode of the analyser,
we define d,;, which is 0 when this mode is turned ‘off’, and 1
if it is ‘on’. The dead-time for a pulse corresponding to energy
Eis

W(E; E;, T,) = (1+ arej)(l + Eg) T,, 4

where the meaning of E; will be explained below, and the
pulse-shape time constant 7, is defined by characteristics of
the DPP,

Ta = Tpeak + Tﬂat’ (5)

where T, and Tj, are the slow channel time-to-peak and
flat-top time intervals, respectively.

The term (E;/E)T, in equation (4) accounts for the time
required by the analyser to sense that the pulse peaked; hence,
E, is the equivalent in energy to the voltage drop in the slow-
channel pulse needed to identify that it has peaked, and we
will call this parameter the pulse peak-sensing threshold. In
Redus’ report (Redus et al., 2008), 7 of equation (2) is written
in a somewhat different notation, as

Tc = (1 + 6rej)(1 + F) Ta’ (6)

where F'is the average fraction of the pulse fall-time needed to
sense that it has peaked. Redus et al. (2008) state that, when
the pulses have equal rise and fall times, F can be estimated
by the ratio of the slow discriminator setting to the average
energy value in the observed spectrum; this requires setting
the slow threshold just above the noise level, as described in
§2.2. However, we suggest that when the fraction of events
recorded in the low-energy region is not small, it is better
evaluated as

F=E,(1/E), ™

where (1/E) is the weighted average of 1/E over the spectrum.

3.2. Pile-up events distribution function

The number of pile-up events p(£) in channel £ can be well
approximated by (Vanin et al., 2016)
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p&) =13 s(t —c+k)s(e), ®)

where k is the channel number corresponding to null photon
energy, and n is a constant parameter, related to the fast
digitizer time constants, as shown below.

In order to deduce the pile-up rate in the fast channel,
R ite fasi» from the dead-time per pulse in the fast channel, 7,
we substitute 7, for 7. in equation (2), expand the expo-
nential keeping only the first-order term, and rearrange the
resulting equation, obtaining

_ _ 2
Rpile,fasl — Rin - Rout.fast - Rin Thast> (9)

where the first identity is valid only when pile-up is not

rejected, as in the fast channel. This rate can be related to the
pile-up distribution in the slow channel by

) :Zﬁp(e) — nNs%ow
pile,fast T T .

acq acq

R

(10)

The deduction of this last identity requires summing the
distribution given in equation (8).

From equations (9) and (10) and using Ry, = Ny, /T,y the
parameter 1 can be related to DPP settings,

2
n= N fast Ttast
N, T..

slow acq

(11

wherein t;,, can be evaluated from the DPP settings, using
equation (6) with 4, ; = 0.

The equations given above assume that the pile-up rate is
relatively small, because s(£) includes the effects of pile-up. In
the present case, accounting for pile-up in s, s = [s({), £ =
channel number], in equation (8) represents a second-order
correction that was neglected. Also, equation (8) does not
account for triple pile-up, which is a small fraction of the
counts even at counting rates of 50 kHz, the exception being
strong transitions whose triple pile-ups would peak in a region
where the continuum component of the spectrum is small. This
is also not the case in the experiment performed, i.e. the triple
pile-ups of M X-rays fall in a region where they cannot stand
out of the continuum, hence they were neglected.

3.3. Net and compensated spectra

When a pile-up event is recorded in the spectrum the
distribution of these losses is given by

ploss(g) = 2nl\/slow S(E)v

where Ny, = >, s(k) is the total number of counts observed
in the spectrum. The factor of 2 comes from the fact that two
counts were lost in the measured spectrum for each count
recorded in the pile-up distribution of equation (8).

Correcting the observed spectrum for pile-up requires the
subtraction of pile-up events and the replacement of the
events that piled-up. Accordingly, the equation

n(€) = s(€) = p(£) + pioss(€) (13)

gives a better approximation that we will refer to as the
net spectrum. Using equation (3) to compensate for dead-time

(12)

losses, we arrive at the best approximation for the input event
distribution, which we call the compensated spectrum,

S(¢) = n(L) exp[Rmt(E)], (14)
with ©(£) = 7[E(£)].
3.4. Evaluation of the total output rate
The observed counting rate is usually evaluated as
Rou = Noow/ Ticq: (15)

with Ng,, and T, defined in §2.2. However, the spectrum
acquired through the slow channel contains pile-up events that
were not rejected because they piled up in the fast channel;
this effect was taken into account when the net spectrum was
evaluated in §3.3, and here we show the corresponding
correction in the total output rate. When pile-up went unde-
tected, two photons entered the detector but were recorded as
one. Thus, the corrected counting rate can be estimated with

Rout = Rout + Rpile,fast' (16)
This relation can be obtained also from the ratio between
the total number of counts in the net spectrum given by
equation (13) and T,,.

3.5. External evaluation of the input rate

In this experiment, the X-rays were produced by electron
impact on a particular target, therefore the rate R,, is directly
proportional to the beam current (Woicik et al., 2010), and
the shape of the input spectra, R,,(E), is independent of the
current. Since the experimental quantities observed are the
charge collected during the spectrum measurement, C, and the
spectrum acquisition time, T,.,, the total input rate is

C

R, =R,(C.T,: P) =P 7= Pl 17)

acq?
acq

where P is a constant to be determined from the observed
spectra. Many graphs in §5 will display quantities as functions
of I, since it is directly proportional to the input rate R;,
and is not affected by photon detection effects. When a run at
low counting rate can be made, and the number of events
counted in the fast channel, Ny, g, is available, a very good
approximation for P is

P = Nfast,LR/CLRs (18)
where C;p is the collected charge at low-counting rate. A
possible although not recommended alternative to Ny ;¢ in
this formula is the total number of counts in a spectrum taken
at a very low rate.

The relation between the observed counting rate R, equa-
tion (15), and the true input rate is obtained substituting f(om
and R, of equations (16) and (17) for the respective quantities
in equation (2), which gives
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- C C
Roul(C7 Tacq; P, TC) =P T_exp —P T_ Tc) — Rpile,fasl’
acq acq
(19)

with 7. given by equation (6).

4. Data analysis

The procedures for compensation of dead-time losses that
will be used in the subsequent sections are presented here.
Whenever the dead-time per pulse can be considered energy
independent, the concept of dead-time fraction can be used
to correct for the losses. The compensated spectrum is then
estimated by

n

S = , 20
e (20)
where the fractional loss, ¢, depends on the adopted dead-time
loss model, and will be given below.

4.1. The standard model (SM)

The first-order correction for dead-time losses consists of
adopting equation (2) with the output rate R, given by
equation (15), therefore neglecting pile-up in the fast channel.
The simplest version uses the dead-time per pulse, 7., calcu-
lated using formula (6) with the digitizer time constants taken
from DPP settings; this is the standard model with manu-
facturer parameters, SM,. Notice that R;, in SM, is the solu-
tion of equation (2) using Ry, = [} ;5(¢)]/ T, Which is a
simple numerical procedure, described in connection with the
energy-dependent model, in §4.3.1.

When spectra at different acquisition rates are obtained, it
is possible to fit 7 of expression (2) to the experimental data
by a least-squares procedure, where R;, is estimated from P
according to equation (17), hence the fitting parameters are 7
and P. This is the standard model with fitted parameters, SM;.

In the scope of the SM, the concept of measurement dead-
time is meaningful, and the fraction of lost events is the ratio
between dead-time and acquisition time, that can be evaluated
by equation (1). Therefore, the fractional loss is predicted as a
function of the input rate by

p=1- exp(—RmIC). (21)

4.2. The standard model with pile-up correction (SMP)

This correction model is characterized by replacing the raw
spectrum with the net spectrum n given by formula (13). The
corrected output is the compensated spectrum of equation
(14).

The simplest approach is to determine 7 and 7, from DPP
settings, and adopt formula (11) to evaluate 7, required for the
pile-up distribution that went undetected in the fast channel,
we call it SMP,,.

A procedure that allows the accuracy of the values
extracted from DPP settings to be checked is to fit the para-

meters to the spectra taken at different rates. First, the para-
meter 1 of the pile-up distribution given by equation (8) is
fitted to a region of the experimental spectrum dominated by
pile-up events, and then both P and . of equation (19) are
fitted to all available data in a single step, which is performed
by a linear least-squares procedure isolating the term

and taking logarithms of both sides of the resulting equation.
We named this procedure SMP;.

In this case, the concept of measurement dead-time is
meaningful only if pile-up effects are taken into account,
hence equation (1) cannot be used directly. The best estimate
is given by equation (21) with R;, from relation (17) and
adopting the fitted values of 7. and P.

4.3. The energy-dependent model with pile-up correction
(EDP)

This model relates output and input rates by equation (3)
with the energy-dependent dead-time per pulse, 7(E), given by
equation (4). It requires one additional parameter, the pulse
peak-sensing threshold, E,4. In the EDP model, the concept of
acquisition dead-time is not useful, since the correction factor
depends on the photon energy. It is the compensated distri-
bution of equation (14) that should be used to estimate the
photon spectrum.

In the next item, we show how to correct the spectra when
all parameters are known, then we describe separately two
different approaches to determine their values from experi-
mental spectra taken at different counting rates.

4.3.1. Routine method. The EDP model with known E, and
T,, equation (4), can be solved for R,,. The continuous line in
the plot of Fig. 3 shows the quantity

R, = 2 S(e) (22)

0 i (| 1 1 1 1
0 100 200 300 400 500 600 700
Rin (kHZ)

Figure 3 A
The continuous line shows the quantity R;, of equation (22), when the
compensated spectra S(¢) are evaluated for R,, (in the abscissa) using
formula (14), for the run without X-ray attenuator at 56 kHz. Its
intersection with the dashed line representing R;, = R;, that is nearest to
the origin is the solution of equation (22).
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evaluated from S(£) of equation (14), with the fitted values of
E, and T,, as a function of R, (like most fitting procedures, we
forget for a while that this quantity has a ‘true’ value), for a
large range of R,,, in order to explain the numerical procedure.

The dashed line is just the line i?in = R,,; therefore the inter-
section nearer to the origin is the R;, sought, and the other
intersection is a spurious solution. This procedure, using E,
and 7, from the DPP settings, corresponds to the EDP, model.
The same one works with SMy: once 7 is known, the input
rate R;, can be determined from the observed output rate by
solving the non-linear equation (2). The plot of R, exp(R;,T¢)
versus R, in SM, is very similar to that of Fig. 3.

4.3.2. Low rate spectrum as reference. In this approach,
each net spectrum is normalized by the corresponding incident
charge and divided by the reference spectrum, also normalized
by the respective charge. This reduced spectrum at rate Ry, ;,
where the integer index i numbers the irradiation runs,
1 < i < m,is given by

o) = ME) G

- nr(E) C @)

and corresponds to the ratio R, (E)/R,,(E) of equation (3).
Therefore the parameters E; and 7, of the function
exp[—Ry, oT(E; E4, T,)] with ©(E; E4, T,) given by equation
(4) can be fitted simultaneously to all reduced spectra z;(E),
2 < i < m, adopting the reference spectrum as n;g(E) =
n,(E). The model function can be linearized taking its loga-
rithm, and its parameters are fitted to the data by a linear
least-squares procedure. This is EDP;, fitting individual
spectra.

4.3.3. Fitting the reference spectrum. In the experiment
described in §2.1 the shape of the energy spectrum is
proportional to R,,[E(£)]; therefore it is independent of the
counting rate, and a common shape v(¢) can be fitted to all
observed spectra. To this end, equation (3) is rewritten

n;(€) = C; v(f) exp{—Rinr[E(ﬁ); E,, Ta]}. (24)

Taking logarithms of both sides, Inn;(¢) becomes a linear
function on

a= ({lnv(®),£=1,...,N},ET,, T,),

where the compact notation a for the set of parameters was
introduced for the sake of convenience in the next formulas
and N is the number of channels in the region of interest;
notice that E; does not appear isolated but in the product
E,T,, in a way similar to 7. in the SM. Despite the large
number of adjustable values, it is a robust procedure. This is
the model EDP,, from the global fit of the data.

The least-squares procedure requires the minimization of
the merit function (Eadie et al., 1971)

O(o;y) =(y — Xa)' V' (y — Xa),

where the superscript t means transposition. The elements of
the vector y are the logarithms of the spectral data normalized
by the charge of the runs at different counting rates R, ;
arranged in a single column vector

(25)

1 n,(£)
. = In
Ye+i-1)N C

i

i=1,...,m,

V is the corresponding variance matrix and X is the design
matrix. This matrix is sparse and the elements that are not null

are given by the bands
Xerieve =1, i=1,...,m,

and two columns

R
2—=L i=1,....m, k=1,...,N,
E(k)

Xk+(i—1)N,N+1 = -

Xiri-yvng2 = 2Ry, i=1,....m,

The covariance matrix of the estimated parameters is

V() = (X'V'X) (26)

5. Results and discussion

All available spectra were included in the parameter fitting
procedures of the adopted models. Some of the runs are used
as examples here, other can be found in the supporting
information.

The two experimental conditions used here, which lead to a
number of counts in the low-energy end of the spectrum that
is a large (>50%) or small (<2%) fraction of the total, are
named ‘ML’ and ‘L’, respectively, after the Au X-ray lines that
dominate the spectra of Fig. 1, even though the differences
in dead-time are due to the fraction of events at low energy,
independent of the discrete or continuous character of the
photon energy distribution.

We will discuss first simpler models and then EDP to assess
quantitatively this improvement and find the experimental
conditions that demand its application. After this evaluation,
we point out the possible causes of the remaining discre-
pancies between experiment and EDP, followed by a discus-
sion on the precision of the methods, which includes a table
that allows selection of the simplest model to achieve a
specified accuracy according to the experimental conditions.

5.1. Performance of the standard model

The parameters P and 7. were fitted to the experimental
data in the framework of SMP; of §4.2. The plots in Fig. 4 are
the output rates evaluated with these values as a function of
the electron beam current, in experiments with and without
the X-ray attenuator. The apparent agreement between
experimental data and calculated values proves that SMP; can
estimate the total output rate precisely. However, it does not
mean that the spectral shape is corrected properly, as Fig. 5
shows, where ML and L spectra corrected according to SMP;
are plotted as z-distributions. This model adjusts the L spectra
reasonably, as well as the ML spectra at counting rates below
20 kHz, but the energy spectra are strongly distorted in the
low-energy region and a slight slope of the lines that represent
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the corrected spectra from 3 to 18 keV can be observed. It is
worth mentioning that similar results are found when P is
estimated from equation (18).

N W kA NN
T
\
N\

With x—ray attenuator

-== Without x—ray attenuator

0 2 4 6 8 10 12 14

charge/acquisition time (1077 A)

counts/acquisition time (104 counts/s)

Figure 4

The points are the experimental values of R, versus beam current,
C/ T,y for all ML and L spectra. The lines are given by SMPy, equation
(19), calculated using the parameters fitted to the ML (blue dashed line)
and L (red continuous line) spectra.

The fractional count losses were evaluated by equation (21)
according to both SM,, and SMP; and displayed in Fig. 6 along
with the fractional loss estimated as the dead-time fraction
given by the DPP, equation (1). The input rate was calculated
using the fitted value of P in equation (17). It can be seen that
the fractional loss from the DPP information is similar to that
found using the SM,, and SMP; models for L spectra taken at
all counting rates, but not for ML spectra, where the differ-
ences are perceptible at low rates and increase with counting
rate.

Fig. 7 shows the z-distributions, equation (23), of the
highest-rate (56 kHz) ML spectrum corrected for dead-time
using the fractional count losses given by these models. The
comparison between these results shows that, at high rate,

Input rate (kHz)
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Figure 6

Estimated fractional loss of the input count rate in the ML (blue lines)
and L spectra (red lines), evaluated using: the DPP information, equation
(1), circles; SM,, dotted and dot-dashed lines; and SMP;, dashed and full
lines, equation (21).
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Ratio of a few spectra normalized by the incident charge and corrected
for dead-time losses in the SMP; framework, to the spectrum acquired at
the lowest rate, also normalized by the charge, equation (23). The spectra
were compressed, and each bin corresponds to 210 eV. (a) ML spectra
and (b) L spectra.
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Ratio of the ML spectrum at 56 kHz corrected for dead-time losses to the
spectrum acquired at the lowest rate, normalized by their respective
charges. The dotted line (in black) was calculated with the SMP;, the
continuous line (in gray) with the SM,, and the dashed line (in blue) with
the value provided by the DPP. The spectra were compressed, and each
bin corresponds to 210 eV.
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Table 1
Dead-time parameters in the SMP; framework, from DPP settings using
equation (6), and in the EDP model.

Columns 2 and 3 correspond to 7, while for EDP the shaping-time constant,
T,, and pulse peak-sensing threshold, E, fitted to the spectra by two different
procedures are quoted. The values listed for (EDP;) are the averages of the
values fitted for each spectrum

Spectral ~ SMP; fit DPP EDP, fit EDP‘ fit -

shape Tc(us) e (us) T, (us)  Eg(eV) T,(us) Ey(eV)
ML 423(2) 387 175(2) 572(26) 180(2) 676 (26)
L 380 (1) 387 179 (3) 429 (78) 179 (4) 455 (26)

SMP; and SM, give more satisfactory results than using the
dead-time fraction provided by DPP. SMP; compensates the
underestimation in the low-energy region, responsible for half
of the counts, with the overestimation of the rest of the
spectrum, while SM, underestimates the correction at all
energies.

The weighted averages of these z-distributions corrected for
dead-time, and their respective standard deviations repre-
sented as uncertainty bars, are plotted in Fig. 8, as a function of
the output count rate, for all runs and using all models, along
with the same quantities obtained with the SM, and SM;
models. It can be noticed that fitting 7. in SMP; gives an
effective value that improves the accuracy at high counting
rate.
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Figure 8

Weighted average of the ratio between the compensated spectrum to the
reference spectrum for each run, normalized by charge, using SM,, SM¢,
SMP;, EDP,, and EDP, procedures, represented, respectively, by circles,
crosses, squares, diamonds and triangles for (a¢) ML and (b) L runs.

Table 1 gives the SMP; parameter values fitted to the
experimental data, in the runs without and with the photon
attenuator, compared with the respective values obtained
from equation (8) using DPP settings and the energy-averaged
value of the energy-dependent term, F, for all spectra. The
dead-time parameters fitted to the L spectra agree with the
DPP settings reasonably well, but not when fitted to the ML
spectra, since a constant factor F for all photon energies
cannot provide an accurate correction for every measurement
condition. Additionally, the threshold of the slow channel
is not a good estimate for E; at high rates, leading to the
observed differences in the 7. parameter.

5.2. Performance of the energy-dependent model

Fig. 9 is similar to Fig. 5 described in the previous section,
but corrected for dead-time losses according to the EDP,
framework and replacing the reference spectrum n; x(E) by v
in formula (23). It shows that EDP-corrected spectra present a
dispersion that is much bigger below 3 keV than above it. This
fuzzy behavior at low energy is assigned to distortions in the
spectral shape from resolution change and peak wing growth
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Figure 9

Ratio of a few spectra normalized by the incident charge and corrected
for dead-time losses in the EDP, framework, to the estimated reference
spectrum v(€). The spectra were compressed, and each bin corresponds to
210 eV. (a) ML spectra and (b) L spectra.
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with rate, as will be discussed in §5.3. Notwithstanding this
blur, the correction is adequate on average down to a few
hundred electronvolts above the energy threshold. In Fig. 8
the averages of these distributions are plotted as a function of
the counting rate revealing that EDP, gives results as accurate
as those found with EDP, at acquisition rates up to about
20 kHz. When the acquisition rate increases, the model loses
accuracy, although for the L runs it remains below 0.5% even
for the highest rate explored in this work, whereas for the ML
runs the accuracy worsens to about 2.0% for the highest rate.
Note that in this model, where T, and E; are fixed, there is no
need for an extra experiment to estimate the input rate R, (or
the dead-time).

Table 1 brings the T, and E, values fitted to the ML and L
spectra into the EDP, and EDP; frameworks; in the last case,
the averages of the values fitted separately to each spectra are
shown. The uncertainties of the values fitted by EDP, are
crude estimates, since the model does not pass a x* test, owing
to the significant distortions due to noise and resolution loss of
the Au M X-rays. Is is found that the EDP; and EDP, models
give compatible estimates when working with L spectra, while
the agreement is only reasonable when fitted to ML spectra.
Moreover, the value of T, fitted to L spectra is compatible
with that evaluated from equation (5) using the DPP settings,
of 1.8 ps. Whenever fitting E; to the individual z; distributions,
we found that its estimate is quite sensitive to the number of
counts near the energy threshold. When the counting rate is
low in this region, the fitted value can even be negative, in
which case a reasonable procedure is to set this parameter to
the energy corresponding to the maximum energy of noise
events. When all the spectra are used simultaneously in the fit
(§4.3.3), this problem disappears, due to the increased
counting statistics.

5.3. Distortions due to pile-up and resolution loss

Fig. 10 compares the experimental ML and L spectra at the
highest rate with the corresponding pile-up distributions p
formed from the raw spectra according to equation (8), using
values of 7 fitted to the the energy region of the spectrum
situated above the bremsstrahlung tip, dominated by this
effect.

The points in Fig. 11 correspond to 7, obtained from
equation (11) using the fitted values of 1 as a function of the
input rate, R,,, deduced from equation (17) with the value of
P fitted in SMP;. The lines correspond to the values of 7,
estimated by equation (6), with §,; = 0 and F calculated
according to equation (7) for both experimental situations
using T, r, = 0.1 ps and the value chosen for the fast discri-
minator, Ej . = 1.1 keV. It is seen that the calculated values
of 1, are in reasonable agreement with the value deduced
from DPP settings only for L spectra. This is consistent with
the adoption of an energy-independent model for pile-up in
the fast channel and fitting the parameter 1 of equation (8) to
the number of events above the maximum photon energy (the
bremsstrahlung tip), where the pile-up events are due mostly
to the Au L lines, with relatively high energies. Hence,
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Figure 10

Experimental spectra (broken line, in gray) and pile-up model (smooth
line, in black) according to equation (8), (a) without an X-ray attenuator
at 56 kHz and (b) with an the X-ray attenuator at 42 kHz. The scale is
chosen to highlight the pile-up events; the experimental spectrum was
clipped below 19 keV. The energy dispersion is 13 eV channel . Notice
that the beam energy is 18.5 keV.
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Figure 11
Estimate of dead-time per pulse associated with the fast channel, 7, . The
points were determined from equations (17), (10) and (9), and the lines
from equation (6). Circles and continuous line (blue) correspond to ML
spectra, while squares and dashed line (black) to L spectra.
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accounting for the increased dead-time at low energies is
necessary and is likely the most important improvement to
EDP. Two approaches seem feasible. The first one is to find the
appropriate dependence on energy of the pulse pair resolution
time function in the Statham model (Statham, 2006). The
other is to follow the new approach given by Sabbatucci &
Fernandez (2017), that build a differential equation from the
pulse shape. We were unable to find an explanation for the
discrepancy observed with the value of t;,, fitted to the ML
spectrum at the lowest rate.

Ratios of ML spectra corrected by any model (examples in
Figs. 5 and 9) exhibit a peak around channel 192 (at about
2.5keV), which can be explained by resolution loss of the
detector with increased acquisition rate, more severe at low
energies. Note that the increased fluctuation near the
threshold region in the ratios of the L spectra, Fig. 9(b), has
another origin: it is caused by the small number of counts per
channel in this region, which leads to important relative
statistical fluctuation. However, this low counting statistic
follows from the use of the attenuator, in which case this
region of the spectrum is usually of no interest.

The peak shape also changes with rate due to the increase
in its wings, whose proportion to the peak area rises with
counting rate. Considering that this effect is more pronounced
in the regions of the spectrum with high-counting-statistics
peaks, which in the ML spectra were also more influenced by
the loss of resolution, the dead-time correction by EDP is not
able to provide results in the low-energy end as accurate as in
the rest of the spectrum. Notice that resolution loss and wing
formation do not affect the peak areas, although they
complicate their extraction from the spectra. Therefore, the
accurate measurement of the intensity of discrete photon
transitions at low energies requires the EDP model for dead-
time losses and accounting for the changes in peak shape with
counting rate.

5.4. Precision of the corrections using the different models

The comparison between the spectra corrected by EDP,,
Fig. 9, and by SMP;, Fig. 5, favors EDP,, radically for ML
spectra at high rates and with reduced importance at lower
rates and for the L spectra. Table 2 provides a model selection
key, according to counting rate, spectral shape and demanded
accuracy, this last characteristic evaluated somewhat conser-
vatively. Since dead-time scales according to the pulse-shape
time constant 7, the limits for a given precision were already
reduced from this factor, meaning that the entries in the first
column must be divided by T, in ps, to yield the rate in kHz;
for example, in this experiment, where T, = 1.8 pus, SM, should
be adopted only below 30/1.8 >~ 17 kHz.

The accuracy of the correction provided by the different
models relates to the difference between the z-distribution
corrected for dead-time and unity. The average values of these
differences along the complete energy spectra, plotted in Fig. 8,
can be used to evaluate the improvement in the correction
provided by EDP when compared with SM. The uncertainty
bars reflect the dispersion of these differences, and are useful

Table 2
Model selection chart of the corrections needed to interpret the data
according to the count rate.

The acquisition rate R, from equation (15) was scaled for the pulse-shape
time constant 7; therefore it must be divided by the adopted 7, to find the
rate in kHz.

Acquisition rate

(kHz T,/ps) L spectra ML spectra

<30 SM, DPP SM, DPP
30-60 EDP, DPP EDP, SM,
60-120 EDP SM EDPY EDP,t
Accuracy 0.5%% 1.0% 1.0% 2.0%

+ This accuracy, however, is only achieved for the spectral region above ~3 keV.

to assess the significance of the observed averages when
applying the different models; in almost all cases they are
sufficiently small to discriminate between the correction
procedures. Note that when SM, and SMP; were applied, the
spectra counted at different rates were divided by the spec-
trum taken at the lowest counting rate, which has statistical
fluctuations greater than the fitted reference spectrum, v(¢),
used as normalization for the results obtained with EDP, and
EDP,, hence the uncertainty bars are smaller using EDP.

Since the accuracies given in Fig. 8 are averages for the
whole spectrum, they do not reflect the rate-dependent
deformations of the spectrum shape shown in Fig. 2. In
particular, the use of a single value for correcting the number
of counts in all channels of the spectrum in the SM framework
underestimates the true spectrum in the low-energy end and
overestimates it at the high-energy end. Therefore, the
average of the z-distribution corrected for dead-time is an
acceptable measurement of the accuracy only when this bias is
small, hence we will adopt it as the single indicator only at low
rates for SM models, while for EDP models it is unbiased and
can be used at higher rates. In the case of L spectra, with few
counts in the low-energy region (Fig. 9b), the statistical fluc-
tuation of the ratio is very important, but it is difficult to be
sure that the differences arise from the incompleteness of the
model, as discussed in §5.3.

It should be emphasized that, although neglecting pile-up
at low counting rates does not affect the overall dead-time
correction, the pile-up spectrum must be evaluated, especially
when weak lines are of interest, since a particular line can
change much more than the general spectral shape.

Table 2 was constructed assuming that the experimenter
knows the parameters necessary for the correction of the
dead-time, t- and E,, either because the manufacturer’s
manual can be trusted or they were fitted to experimental
data. While the manufacturers do not provide the pulse peak-
sensing threshold E,, for the spectra at the highest rate the
accuracy listed in the table can be reached only when Ej; is
experimentally determined and, for ML spectra, EDP, may
not provide the listed accuracy below ~3 keV. Finally, at high
rates, spectra rich at the low-energy end show rate-related
distortions in this region that are due to effects not taken into
account by this dead-time model; therefore the accuracy listed
in the table cannot be achieved in this energy region and
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further studies are required to improve the quality of the
correction. In the supporting information, a comparison of the
shapes of the spectra corrected according to Table 2 can be
examined.

6. Conclusion

We evaluated different models for dead-time counting losses
in X-ray spectra taken with a DPP for two different experi-
mental conditions, when the number of counts in the low-
energy region is a small or a large fraction of the spectrum,
named L and ML spectra, respectively, for input count rates
up to 80 kHz. The results show that the standard model (SM),
even taking into account pile-up (SMP), does not give accu-
rate results for the ML spectra. The energy-dependent model
with pile-up (EDP) proposed here corrects adequately both L
and ML spectra with an average accuracy of about 0.5% and
better than 1.0%, respectively.

Most of the parameters of the EDP model can be obtained
from the DPP settings, but not the pulse peak-sensing
threshold, E,4, which has to be fitted to spectra taken specially
for this procedure. It would be welcome by the experi-
mentalists if manufacturers include this specification in the
X-ray spectrometer data sheet, avoiding this task, which
requires special radiation sources, not always available in the
laboratories.

Procedures easier to implement than the EDP proposed
here can be adequate for the analysis in certain specific
combinations of counting rates, spectral shape and required
accuracy of an experiment. A selection chart of the simplest
correction model for a given specification of the measurement
(rate, spectral shape and accuracy) is provided in Table 2.

The energy-dependent dead-time model proposed in this
paper provides an accurate correction. Nevertheless, it is still
incomplete, requiring at least to take into account the energy-
dependence of pile-up in the fast channel. Moreover, the
spectral distortion at low energies, assigned to resolution loss
and pile-up with noise, was not taken into account, and is
required when analysing discrete spectra to achieve accurate
results. We plan to undertake new experiments to investigate
possible models for these effects.

7. Related literature

The following references, not cited in the main body of
the paper, have been cited in the supporting information:
Nascimento et al. (2011); Radeka (1972).

APPENDIX A
Definition of symbols

A list of the symbols used throughout the paper are given in
Table 3.

Table 3

List of the symbols used throughout the text.

Ty Dead-time

Toeq Acquisition time

Ngows Nrast Numbers of counts above the fast and the slow threshold

R, Ry True input and output rates, respectively

e Dead-time per pulse

E Photon energy

Rin(E) True input rate of photons of energy E

(E) Dead-time per pulse of energy E

E, Pulse peak-sensing threshold

T, Pulse-shape time constant

F Average time to sense that a pulse has peaked, in units of T,

s(¢), p(€) Numbers of counts and pile-up events, respectively, in
channel £

Ryt fast Pile-up rate in the fast channel

out,fast Output count-rate in the fast channel

Thast Fast-channel pulse-shape time constant

n Fraction of pile-up events per count

S(¢) Number of events in channel £ corrected for dead-time and
pile-up

C Charge collected, proportional to total number of counts

i, LR One of the acquisition runs and the lowest rate run,

respectively (often subscript)

Licam Electron beam current
Number of counts per unity charge
® Dead-time fraction of the acquisition time
z ratio Of the net spectra normalized by the collected charge
V(L) Number of counts in channel £ per unit charge
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