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A componente simetrica, nao rotacional da de­
formacao, a qual abrange a distorcao de forma
(comumente chamada de strain), pode ser obtida atra­
ves do calculo de diversos tipos de tensores de defor­
maciio descritos na bibliografia.

Utiliza-se aqui os tensores de extensiio (strech) .
Dada uma matriz F, assimetrica, representando uma
deformacao geral, esta pode ser decomposta como

F=V.R
onde V e uma matriz de transformacao 3 X 3

simetrica positiva, denominada tensor de extensiio
esquerdo (V), e Re uma matriz de transformacao 3 X
3 assimetrica denotando uma rotacao de corpo rfgidO./
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deF.

E de forma compacta: x=FxX
Com os sfrnbolos em negrito representando

matrizes. A matriz F, charnada matriz de transforma­
~ao, representa a deformacao, e sera no caso generico
assimetrica.

A variacao de volume e igual ao deterrninante

2. ANALISE TENSORIAL' DE DEFOR­
MACAO

A deformaciio fin ita e definida pela compara­
~ao da forma geometrica dos corpos em dois estados:
urn inicial, antes da deformacao, e outro final, ap6s a
deformacao. Uma deformacao generica pode ser de­
composta em termos de quatro componentes:
translaciio de corpo rigido, rotaciio de corpo rigido,
distorciio de forma e variaciio de volume.

A deformacao pode ser analisada pela varia­
~ao da posicao dos pontos que compoem urn corpo
entre os estados inicial e final . Pode-se discriminar as
posicoes finais (X1,X2'X3) dos pontos que compoem 0

continuum dos corpos em funcao de suas posicoes ini­
ciais (XI'X2,X). Na deformacao homogene a, essas
funcoes serao equacoes lineares, na forma geral:

Xl=aXl+b~+cX)+tl

x2=dX 1+eX2+fX)+t2

x)=gXI+hX2+iX )+t)

onde tl , t2, t) sao componentes de translacao ao
longo dos eixos 1, 2, 3 e poderao normalrnente ser
desprezados. As equacoes acima podem ser, entao,
escritas na forma matricial:

UTILIZACAo PRATICA DE TENSORES DE DEFORMACAO:
cALCULOS DE EXTENSAO E ENCURTAMENTO A PARTIR DE

MEDIDAS DE STRAIN ,---

1. INTRODUCAO
A analise da deformacao na sua forma mais

geral euma tarefa matematicamente complexa e labo­
riosa. Algumas abordagens diferentes para a questao
tern side adotadas na literatura.

Urn caminho e 0 adotado por livros como
Ramsay (1967) e Jaeger (1969), de grande influencia
no meio da geologia estrutural, que e 0 de evitar 0

desenvolvimento matematico do assunto por meio de
matrizes e tensores, preferindo 0 desmembramento em
equacoes algebricas usuais. Este tipo de abordagem
tern sido bern sucedido quando se adota algumas sim­
plificacoes ou casos especiais. Como por exemplo, a
restricao da analise a uma situacao bidimensional, a
qual a deformacao em tres dimens6es pode ser reduzi­
da quando urn dos eixos principais nao sofre defor­
macae (caso em geral denorninado como deformacao
plana, tal como 0 cisalhamento simples e 0

cisalhamento puro) , ou quando duas deformacoes prin­
cipais sao iguais (deformacao bi-axial). Outra simpli­
ficacao usualmente feita e adotar-se urn sistema de
referencia paralelo aos eixos principais de defonna­
<;ao, eliminando-se assim a componente de rotacao
desses eixos. As equacoes do cfrculo de Mohr por
exemplo adotam este ultimo tipo de pressuposto.

Porern, quando se procura analisar a defonna­
~ao em tres dimensoes, sem este tipo de restricao, tor­
na-se necessario manipular sistemas com ate dezenas
de equacoes, com ate dezenas de termos cada uma,
dificultando ou mesmo inviabilizando a analise. Nes­
te caso a ferramenta maternatica mais adequada e 0

uso de matrizes e tensores. Este e 0 carninho adotado
por exemplo por Nye (1957), Means (1976), Oertel
(1996) , Ramsay & Lisle (2000) e, em urn nfvel mais
avancado, por Malvem(1969) e Truesdell & Toupin
(1960).

Antes do advento dos computadores, as ferra­
mentas matematicas do calculo tensorial eram de rela­
tiva pouca aplicacao pratica, em funcao do carater
extremamente laborioso das operacoes necessarias,
envolvendo procedimentos como multiplicacao e in­
ver sao de matrizes , calculo de autovalores e
autovetores , etc. Hoje, em qualquer linguagem de pro­
gramacao, e mesmo com planilhas eletronicas, fazer
operacoes com matrizes e calculos repetitivos e relati­
vamente simples. No presente caso desenvolveu-se
planilhas e rotinas com 0 programa Mathcad
Professional versao 8, disponfvel na USP. Estas roti­
nas estao disponfveis em: www.igc.usp.br/pessoais/
ginaldo
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o tensor de extensao esquerdo esta associado ao es­
tado deformado, e e definido como :

CAMPANHA, G. A. C. 2003 0 papel do sistema de
zonas de cisalhamento transcorrentes na configura­
fdo da porciio meridional da Faixa Ribeira. (Tese de
Livre Docencia junto ao Instituto de Geociencias da
USP)
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onde os subscritos indicam os eixos principais
de deformacao 1,2, 3.

o tensor de extensao VG referido ao sistema
geografico sera, pela regra da transforrnacao de
tensores de segunda ordem (Nye, 1957): VG =
AxVOXAT 0 qual tera os mesmos autovalores (exten­
sees prin cipais) que V0 ' e seus autovetores darao as
orientacoes dos eixos principais de deformacao com
relacao as direcoes geograficas.

Na tabela 1 mostra-se um exemplo dos resulta­
dos da aplicacao desses calculos, realizados com 0

programa MathCad, a partir de medidas de strai n dis­
poniveis em Campanha & Sadowski (2002).

A partir dos tensor de extensao assim podem
ser feitas diversas outras manipulacoes, como calcu­
los da extensao I encurtamento numa determinada di­
recao, da elipse de deforrnacao para urn plano deter­
minado (por ex ., 0 plano horizontal, ou 0 plano verti­
cal NS).

Urn dos objetivos da realizacao de deterrnina­
coes de strain finito nas rochas e,entre outros, a tenta­
tiva de recuperar a configuracao geometrica dos cor­
pos geo16gicos antes da deform acao.

Como exemplo calculou-se as extensoes hori­
zontais na direcao NW ao lange do perfil Apiaf a
Iporanga (SP), a partir de dados de strain de Campa­
nha & Sadowski (2002).

A na lisando-se 0 perfil geol6gico NW em
1:50.000 atraves da area (Campanha, 1991) verifica­
se que os valores obtidos sao compativeis com a ana­
lise do comprimento das camadas dobradas versus 0

comprimento do perfil.
Ressalte-se que estes procedimentos sao neces- .

sarios porque esta se trabalha ndo com deformacoes
em tres dimensoes, tendo ocorrido de um modo geral
fluxo em direcoes perpendiculares ou oblfquas a se­
c;:ao que se deseja analisar

caimento (plunge), no sistema de referencia aqui ado­
tado, pelas seguintes relacoes:

1= cos (plunge) . sen (azimute) m = cos
(plunge) . cos (azimute) n =sen (plunge)

Deve-se entao montar uma matriz de transfor­
macae com os cossenos diretores (l.m ,n) das direcoes
principais do elips6ide de deformacao obti das por
medidas strain:

onde yr e a matriz transposta de

l
5 '. 0

Vo= 0

1

5 2

o . 0

Para referir-se as extensoes para 0 sistema ge­
ografico, enecessario fazer-se uma rotacao dos eixos
de referencia (transformacao de coordenadas para
tensores de segunda ordem), na qua l usar-se-a as ori ­
entacoes dos eixos principais de deformacao obtidos,
descritas como cossenos diretores com relacao ao sis­
tema 'geografico.

Os cossenos diretores (1, m, n) de uma linha
podem ser calculados a partir do seu azimute e de seu

v= .JF.FT

F.

S=IT ·V ·I
Os valores de S tornados em todas as direcoes

definem 0 elips6ide de deformacao finita, 0 calculo
dos autovetores de V fornecera os eixos principais de
deforrnacao no estado final. 0 calculo de seus
autovalores fornecera as extensoes principais (SI' S2'
S3)' que correspondem ao tamanho dos serni-eixos do
elips6ide de deformacao.

A matriz R representa uma de transformacao
que produz a rotacao das linhas que compoem os ei­
xos principais de deformacao, entre 0 estado inicial,
antes da deformacao, e 0 final, ap6s a deformacao.
Caso a deformacao seja nao-rotacional, ou seja, os ei­
xos principais tenham a mesma orientacao antes e de­
pois da deformacao, R sera a matriz unitaria, e F=V.

A matriz de rotacao R pode ser dada em fun-
c;:ao de F: R=V·lxF onde V-I e a matriz
inversa de V.

Como um dos objetivos da obtencao de dados
de strain e realizar sua integracao sobre uma determi­
nada regiao, e interessante referir-se 0 tensor de ex­
tensao para as orientacoes geograficas. Por exemplo,
adotaremos aqui 0 eixo de referencia XI no sentido
positivo orientado para 0 leste, 0 x2para 0 norte, e 0 x3
vertical para cima.

Na pratica, dispondo-se dos valores principais
de extensao e suas orientacoes, obtidas a partir de
medidas de strain (metodos tais como os de Fry, R/f,
etc .), pode-se montar uma matriz V0 com os valores
principais de extensao na diagonal principal. Esta
matriz representa 0 tensor de extensao no estado de­
formado, porem com relacao a urn sistema de referen­
cia cujos eixos sao os pr6prios eixos principais do
elips6ide.

A extensao de linhas e dada pela relacao S = If
11; onde Ife 0 comprimento final e Ii 0 comprimento
inicial da linha. Sendo a orientacao da linha dada pelo
vetor unitario 1(0 qual pode ser definido pelos cossenos
diretores dessa linha) no estado deformado, a exten­
sao S da linha sera:
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