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1. INTRODUCAO

A anilise da deformag@o na sua forma mais
geral é uma tarefa matematicamente complexa e labo-
riosa. Algumas abordagens diferentes para a questdo
t€m sido adotadas na literatura.

Um caminho € o adotado por livros como
Ramsay (1967) e Jaeger (1969), de grande influéncia
no meio da geologia estrutural, que € o de evitar o
desenvolvimento matemadtico do assunto por meio de
matrizes e tensores, preferindo o desmembramento em
equagdes algébricas usuais. Este tipo de abordagem
tem sido bem sucedido quando se adota algumas sim-
plificagdes ou casos especiais. Como por exemplo, a
restricdo da andlise a uma situacdo bidimensional, a
qual a deformag@o em trés dimensdes pode ser reduzi-
da quando um dos eixos principais ndo sofre defor-
macao (caso em geral denominado como deformacao
plana, tal como o cisalhamento simples e o
cisalhamento puro), ou quando duas deformagdes prin-
cipais sdo iguais (deformacao bi-axial). Outra simpli-
ficagdo usualmente feita € adotar-se um sistema de
referéncia paralelo aos eixos principais de deforma-
¢do, eliminando-se assim a componente de rotagao
desses eixos. As equagdes do circulo de Mohr por
exemplo adotam este ltimo tipo de pressuposto.

Porém, quando se procura analisar a deforma-
¢do em trés dimensdes, sem este tipo de restri¢io, tor-
na-se necessario manipular sistemas com até dezenas
de equagdes, com até dezenas de termos cada uma,
dificultando ou mesmo inviabilizando a anélise. Nes-
te caso a ferramenta matematica mais adequada € o
uso de matrizes e tensores. Este € o caminho adotado
por exemplo por Nye (1957), Means (1976), Oertel
(1996), Ramsay & Lisle (2000) e, em um nivel mais
avangado, por Malvern(1969) e Truesdell & Toupin
(1960).

Antes do advento dos computadores, as ferra-
mentas mateméticas do célculo tensorial eram de rela-
tiva pouca aplicacdo prética, em fungdo do cariter
extremamente laborioso das operagdes necessarias,
envolvendo procedimentos como multiplicagdo € in-
versao de matrizes, cdlculo de autovalores e
autovetores, etc. Hoje, em qualquer linguagem de pro-
gramagio, e mesmo com planilhas eletronicas, fazer
operagdes com matrizes e calculos repetitivos € relati-
vamente simples. No presente caso desenvolveu-se
planilhas e rotinas com o programa Mathcad
Prefessional versdo 8, disponivel na USP. Estas roti-
nas estdo disponiveis em: www.igc.usp.br/pessoais/
ginaldo

2. ANALISE TENSORIAL DE DEFOR-
MACAO

A deformagao finita ¢ definida pela compara-
¢do da forma geométrica dos corpos em dois estados:
um inicial, antes da deformaca@o, e outro final, apés a
deformagdo. Uma deformacdo genérica pode ser de-
composta em termos de quatro componentes:
translagdo de corpo rigido, rotagdo de corpo rigido,
distor¢do de forma e variagao de volume.

A deformagdo pode ser analisada pela varia-
¢do da posi¢do dos pontos que compdem um COrpo
entre os estados inicial e final. Pode-se discriminar as
posi¢des finais (X ,X,,X,) dos pontos que compdem o
continuum dos corpos em funcdo de suas posigdes ini-
ciais (X ,X,,X,). Na deformagio homogénea, essas
fungdes serdo equagdes lineares, na forma geral:

x,=aX +bX, +cX +t,

x,=dX +eX +X +t,

x,=gX +hX +iX +t,

onde t, t,, t, sdo componentes de translagao ao
longo dos eixos 1, 2, 3 e poderdo normalmente ser
desprezados. As equagdes acima podem ser, entdo,

escritas na forma matricial:
%, a b c||X,
X, |=|ld e f|X,
X g h 1||X,
E de forma compacta: x=FxX

Com os simbolos em negrito representando
matrizes. A matriz F, chamada matriz de transforma-
¢do, representa a deformagao, e serd no caso genérico
assimétrica.

A variagdo de volume € igual ao determinante
deF.

A componente simétrica, ndo rotacional da de-
formagdo, a qual abrange a distor¢do de forma
(comumente chamada de strain), pode ser obtida atra-
vés do célculo de diversos tipos de tensores de defor-
magdo descritos na bibliografia.

Utiliza-se aqui os tensores de extensao (strech).
Dada uma matriz F, assimétrica, representando uma
deformac@o geral, esta pode ser decomposta como

F=V.R

onde V é uma matriz de transformacio 3 X 3
simétrica positiva, denominada tensor de extensao
esquerdo (V), e R é uma matriz de transformagéo 3 X
3 assimétrica denotando uma rotagio de corpo rigido.
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O tensor de extensdo esquerdo estd associado ao es-
tado deformado, e € definido como:

V= FF
F.

A extensdo de linhas € dada pela relagdo S =1,
/1. onde 1. € o comprimento final e 1, 0 comprimento
inicial da linha. Sendo a orientagdo da linha dada pelo
vetor unitdrio I (o qual pode ser definido pelos cossenos
diretores dessa linha) no estado deformado, a exten-
sdo S dalinha sera: S=1".V-1

Os valores de S tomados em todas as dire¢des
definem o elipséide de deformag@o finita. O célculo
dos autovetores de V fornecerd os eixos principais de
deformacdo no estado final. O célculo de seus
autovalores fornecera as extensdes principais (S, S,,
S,), que correspondem ao tamanho dos semi-eixos do
elipséide de deformacao.

A matriz R representa uma de transformagao
que produz a rota¢do das linhas que compdem os ei-
xos principais de deformacgio, entre o estado inicial,
antes da deformagdo, e o final, apés a deformagao.
Caso a deformac@o seja ndo-rotacional, ou seja, os ei-
X0s principais tenham a mesma orientag@o antes e de-
pois da deformac@o, R serd a matriz unitaria, e F=V.

A matriz de rotagao R pode ser dada em fun-
cdo de F: R=V'IxF onde V! € a matriz
inversade V.

Como um dos objetivos da obtencao de dados
de strain € realizar sua integragao sobre uma determi-
nada regido, € interessante referir-se o tensor de ex-
tensdo para as orientagdes geograficas. Por exemplo,
adotaremos aqui o eixo de referéncia x, no sentido
positivo orientado para o leste, o X, para o norte, € 0 X,
vertical para cima.

Na prética, dispondo-se dos valores principais
de extensdo e suas orientagoes, obtidas a partir de
medidas de strain (métodos tais como os de Fry, RF/f,
etc.), pode-se montar uma matriz V0 com os valores
principais de extensdo na diagonal principal. Esta
matriz representa o tensor de extensdo no estado de-
formado, porém com relag@o a um sistema de referén-
cia cujos eixos sdao os proprios eixos principais do
elipséide.

onde FT € a matriz transposta de

S0 0
v={0 S, 0
00 S,

Para referir-se as extensdes para o sistema ge-
ografico, € necessdrio fazer-se uma rotagao dos eixos
de referéncia (transformacao de coordenadas para
tensores de segunda ordem), na qual usar-se-a as ori-
entacdes dos eixos principais de deformagao obtidos,
descritas como cossenos diretores com relag@o ao sis-
tema ‘geogréfico.

Os cossenos diretores (1, m, n) de uma linha
podem ser calculados a partir do seu azimute e de seu

caimento (plunge), no sistema de referéncia aqui ado-
tado, pelas seguintes relacdes:

1 = cos (plunge) . sen (azimute) m = cos
(plunge) . cos (azimute) n = sen (plunge)

Deve-se entio montar uma matriz de transfor-
macao com os cossenos diretores (1,m,n) das diregdes
principais do elipséide de deformagdo obtidas por
medidas strain:

1 n2 n3

onde os subscritos indicam 0s €ixos principais
de deformacdo 1, 2, 3.

O tensor de extensdo V referido ao sistema
geografico serd, pela regra da transformacdo de
tensores de segunda ordem (Nye, 1957): V=
AxV xAT o qual terd os mesmos autovalores (exten-
soes principais) que V, e seus autovetores dardo as
orientagdes dos eixos principais de deformagdo com
relagdo as diregdes geograficas.

Na tabela 1 mostra-se um exemplo dos resulta-
dos da aplicag@o desses calculos, realizados com o
programa MathCad, a partir de medidas de strain dis-
poniveis em Campanha & Sadowski (2002).

A partir dos tensor de extensdo assim podem
ser feitas diversas outras manipulagdes, como cilcu-
los da extensdo / encurtamento numa determinada di-
regao, da elipse de deformagao para um plano deter-
minado (por ex., o plano horizontal, ou o plano verti-
cal NS).

Um dos objetivos da realizacdo de determina-
¢oes de strain finito nas rochas €, entre outros, a tenta-
tiva de recuperar a configuraciio geométrica dos cor-
pos geoldgicos antes da deformacao.

Como exemplo calculou-se as extensoes hori-
zontais na diregdo NW ao longo do perfil Apiai a
Iporanga (SP), a partir de dados de strain de Campa-
nha & Sadowski (2002).

Analisando-se o perfil geolégico NW em
1:50.000 através da drea (Campanha, 1991) verifica-
se que os valores obtidos s3o compativeis com a ana-
lise do comprimento das camadas dobradas versus o
comprimento do perfil.

Ressalte-se que estes procedimentos sdo neces-
sdrios porque estd se trabalhando com deformagoes
em trés dimensdes, tendo ocorrido de um modo geral
fluxo em direces perpendiculares ou obliquas a se-
¢ao que se deseja analisar
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