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Coherence orders, decoherence, and quantum metrology
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Since the dawn of quantum theory, coherence has been attributed as a key to understand the weirdness of
fundamental concepts such as, e.g., the wave-particle duality and the Stern-Gerlach experiment. Recently, based
on a resource theory approach, the notion of quantum coherence was revisited and a plethora of coherence
quantifiers was proposed. In this work, we address such issues employing the language of coherence orders
developed by the NMR community. This allowed us to investigate the role played by different subspaces
of the Hilbert-Schmidt space into physical processes and quantum protocols. We found some links between
decoherence and each coherence order. Moreover, we propose a sufficient and straightforward method to testify
to the usefulness of a given state for quantum enhanced phase estimation, relying on a minimal set of elements
belonging to the density matrix.
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I. INTRODUCTION

Quantum coherence is one of the most essential features of
quantum theory. For example, a projective measurement over
a pure state gets a deterministic outcome only if the state has
no coherence with respect to the basis defined by the mea-
surement projector [1]. Moreover, coherence plays a key role
in quantum information science, quantum thermodynamics,
condensed matter physics, and life sciences [2–15].

There are several recent studies reporting the role of coher-
ence in the framework of resource theories [16–18], i.e., a suc-
cessful theoretical approach to characterize entanglement [19]
and quantum thermodynamics [20–23]. The resource theory
for quantum coherence is similar to the theory of asymme-
try [24,25]. A quantum state may or may not be invariant
under the action of a given symmetry group. Thus, the degree
of asymmetry quantifies how much the symmetry is broken
by the quantum state. In this view, coherence is interpreted
as the asymmetry respective to the group of translations
generated by an observable, e.g., the Hamiltonian or one of
the components of the angular momentum vector [26].

A wide variety of quantum coherence quantifiers was
proposed in the literature during the last years [27,28]. For ex-
ample, such measures include both robustness and distillable
coherence, convex roof quantifiers, coherence monotones,
and others [29]. In particular, the so-called distance-based
coherence quantifiers provide a geometric viewpoint in the
characterization of quantum coherence. In summary, such
quantifiers are simply related to the total amount of coherence
exhibited by the quantum state. However, this information
alone is not enough in some physical situations. For example,
concerning phase estimation protocols, the maximally coher-
ent state, 1

2N/2 (|0〉 + |1〉)⊗N , offers smaller precision than a
Greenberger-Horne-Zeilinger (GHZ) state. Interestingly, the
latter exhibits less coherence than the former according to
distance-based measures such as the �1 norm and the relative

entropy of coherence [27]. As pointed out by Marvian and
Spekkens [30], this happens because such quantifiers deal
only with speakable coherence. If the way to encode coher-
ence is not relevant for a certain task, it denotes speakable
coherence. Otherwise, like in the phase estimation example
above, unspeakable coherence depends on how the informa-
tion is encoded in the quantum state.

Here we will focus on unspeakable coherence by exploiting
the concept of coherence order, i.e., an operational language
developed by the nuclear magnetic resonance (NMR) commu-
nity over the past 60 years [31–33]. For example, the idea of
coherence order finds application in multidimensional NMR
spectroscopy in which the two or more frequency dimensions
(the sets of frequencies being probed) are correlated through
coherence orders. This kind of multidimensional spectrum
provides information on the 3D structure of large molecules
in biological and polymer samples, as well as in inorganic
glasses [34–36]. In many applications, the second coherence
order plays an important role since it indicates only spin
pairs interacting through the residual dipolar coupling, which
allows one to estimate the average distance between coupled
spins in an amorphous solid [37–39]. Furthermore, when sim-
ulating localization effects induced by decoherence through a
spin counting experiment [40–43], one can verify the number
of correlated spins measuring the distribution of the signal
among all coherence orders.

Employing this language, here we define quantifiers for
each coherence order and discuss how they behave in open
quantum systems subject to dephasing, highlighting their re-
lation to decoherence-free subspaces. Moreover, we propose a
simple and straightforward criterion to show the usefulness of
a state for quantum enhanced metrology, built upon the con-
cepts of multiple-quantum intensity (MQI) and the squared
speed proposed in Refs. [12,44], respectively. This criterion
has the advantage of using a minimal set of measurements
in comparison to any other figure of merit found in literature
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and holds for any number of qubits, even in the context of
mixed-state quantum metrology [45].

II. MEASURES OF COHERENCE

The quantification of coherence was initially proposed by
Åberg [46,47] and recently updated by Baumgratz et al. [27]
according to an axiomatic framework inspired on resource
theories. Both approaches deal with speakable coherence and
are based on a small set of properties that any coherence
quantifier C must fulfill. To enunciate such properties, it is
essential to establish the concepts of incoherent states and
operations. Moreover, any discussion about quantum coher-
ence requires the choice of a preferred basis of states. Thus,
given a d-dimensional Hilbert space H, let us fix the ref-
erence orthonormal basis {|j 〉}j=1,...,d . Incoherent states (IS)
are those with all the off-diagonal elements equal to zero in
this basis. The set of incoherent states I is a subset of the
space of quantum states. On the other hand, an incoherent
operation (IO) �(•) is a completely positive trace-preserving
map that does not create coherence when acting over the set
of incoherent states I, i.e., �[I] ⊆ I. There are four rules to
be fulfilled by C [27,29]: (i) non-negativity: C(ρ) � 0, with
the equality if and only if ρ is incoherent; (ii) monotonicity:
C(�[ρ]) � C(ρ), for any ρ and any incoherent operation �;
(iii) convexity:

∑
j pjC(ρj ) � C(

∑
j pj ρj ), for 0 � pj �

1 and any states ρj ; and (iv) strong monotonicity: C does
not increase, on average, under selective incoherent oper-
ations:

∑
j qj C(σj ) � C(ρ), with qj = Tr [Kj ρK

†
j ], post-

measurement states σj = Kj ρK
†
j /qj , and incoherent Kraus

operators Kj .
Interestingly, there is an interplay between incoherent

states and quantum operations in coherence theory and both
sets of separable states and local operations and classical
communication (LOCC) in entanglement theory. Since both
sets of states and operations share some properties, e.g.,
convexity when dealing with states, then some entanglement
quantifiers can be rephrased for the coherence scenario. This
is the case of the relative entropy of coherence [27] and the
robustness of coherence (or asymmetry) [48,49], where the
latter represents a straightforward adaptation of the general-
ized robustness of entanglement [50]. When considering the
resource theory scenario, the robustness of coherence (or en-
tanglement) defines a measure with a clear operational mean-
ing, namely, the minimum mixing to make a state incoherent
(or separable). Reference [29] provides a recent review on the
subject of quantum coherence as a resource. Here we intend to
present an alternative and operationally simpler formulation to
characterize quantum coherence. Furthermore, we show that
such a proposal is equivalent to the U(1) resource theory of
asymmetry.

The quantification of unspeakable coherence has been
addressed recently [30] based on the asymmetry relative to
a group of translations. Let us consider the unitary represen-
tation of a group of translations generated by an observable
H describing any relevant physical quantity, e.g., energy or
angular momentum. This representation is defined as

UH,x = e−ixH , x ∈ R , (1)

and the action of such group on a state ρ is given by

UH,x[ρ] = e−ixH ρ eixH . (2)

In the approach of translationally covariant operations, the
incoherent states are those invariant under the translations,
i.e., states commuting with the generator H . Therefore, the
definition of coherence is relative to the eigenspaces of the
observable H . The incoherent operations are those which are
covariant with respect to the symmetry group, i.e., a quantum
operation E (•) is translationally covariant if

UH,x[E (ρ)] = E (UH,x[ρ]) , ∀x ∈ R , ∀ρ . (3)

The idea of coherence via translationally covariant oper-
ations allows us to separate the coherence of each invariant
subspace of H using the concept of modes of asymmetry [24].
The modes of asymmetry are related to the projectors P (m)

defined as

P (m)(ρ) = lim
x0→∞

1

2x0

∫ x0

−x0

dx e−imx UH,x[ρ] . (4)

The index m is associated with the difference of the eigenval-
ues of H , i.e., the gaps in the spectrum of the Hamiltonian
H . The set of projectors P (m), ∀m, specifies a complete or-
thogonal basis of the Hilbert-Schmidt space and also provides
the decomposition of states, operations, and measurements as
linear combinations of P (m)’s. The subspaces associated with
different values of m are termed modes of asymmetry [24,25].

The quantifier of unspeakable coherence of a state ρ is
set as

Cm(ρ) = ‖P (m)(ρ)‖1 , (5)

where ‖X‖1 := Tr (
√

XX† ) is the trace norm and C is defined
for each m �= 0. We remark that such translationally covariant
measures of coherence are not, in general, coherence mea-
sures according to the properties (i)–(iv). For a specific m,
Cm can increase under incoherent operations because these
operations are able to move coherence from other modes to
the mode-m component [30].

Opposite to the trace norm, the so-called Hilbert-Schmidt
(HS) norm or Schatten 2-norm, i.e., ‖X‖2 :=

√
Tr (XX†),

does not characterize itself as a bona fide coherence quantifier
according to the properties (i)–(iv) introduced in Ref. [27].
The HS norm does not define a proper speakable coherence
measure since it violates the monotonicity condition, i.e.,
it can increase under incoherent operations. Furthermore,
Ref. [30] shows that the HS norm does not define a valid U(1)-
asymmetry monotone. If a more restricted set of incoherent
operations is considered, the HS norm defines a quantifier of
unspeakable coherence in the context of the so-called resource
theory of genuine coherence [28].

As a final remark, it is important to discuss the main
differences between both “incoherent” notions introduced in
the last paragraphs. According to the framework presented by
Baumgratz et al. [27], an incoherent state refers to a given
density matrix that does not have coherence with respect
to a fixed preferred basis. On the other hand, Marvian and
Spekkens address the concept of incoherent state by charac-
terizing its degree of asymmetry respective to the action of a
given symmetry group generator.
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III. COHERENCE ORDERS

In several applications of quantum mechanics, a proper
choice of basis can often simplify the calculations and provide
a clear physical significance to the quantities being evaluated.
Thus, for a system of qubits, we adopt the operator basis
{I0, I+, I−, Iz}, which is widely used in the NMR literature,
with I± = (σx ± iσy )/2 being the ladder operators, Iz = σz/2
is the z component of the angular momentum, and I0 = I/2
is the identity matrix [31–33]. We remark that this partic-
ular basis is meaningful because it serves as an eigenbasis
for any interaction whose Hamiltonian depends on a linear
combination of Iz and Ijk

⊗ Ijl
, with jk = {0, x, y, z}, and the

subindex indicating the kth qubit. Focusing on a system of N

qubits, one can represent the density matrix ρ as follows:

ρ =
∑

j1,j2,...,jN

aj1j2...jN

N⊗
l=1

Ijl
, (6)

with jl = {0,+,−, z}, the subindex l ∈ {1, . . . , N} indicating
the particle number, and aj1j2...jN

= Tr ( ρ Ij1j2...jN
) is a com-

plex number.
A clear advantage of this basis appears when we apply a

rotation about the z axis, as e−iθIz Ijl
eiθIz = e−i(δ+jl

−δ−jl
)θ Ijl

.
Therefore, under a rotation generated by the z component of
the total angular momentum, an arbitrary

⊗N
l=1 Ijl

behaves as

e−iθZ

N⊗
l=1

Ijl
eiθZ = e−imθ

N⊗
l=1

Ijl
, (7)

where

Z :=
N∑

l=1

I⊗l−1 ⊗ Iz ⊗ I⊗N−l , (8)

and

m := n+ − n− (9)

defines the coherence order of
⊗N

l=1 Ijl
relative to the

eigenbasis of Z. The number of times that Is appears in
the decomposition of

⊗N
l=1 Ijl

is given by ns = ∑N
l=1 δs,jl

(s = {0,+,−, z}). Moreover, the set of ns’s fulfills the con-
straint n0 + n+ + n− + nz = N . Because the density matrix
in Eq. (6) is Hermitian, each coherence order always occurs
in pairs ±m. This property allows us to rewrite ρ in a de-
composition of subspaces related to each particular coherence
order as [51]

ρ =
N∑

m=−N

ρm , (10)

with

ρm :=
∑

n+−n−=m

aj1j2...jN

N⊗
l=1

Ijl
(11)

being the projection of ρ into the subspace spanned by⊗N
l=1 Ijl

related to the mth coherence order. Notice that
ρ
†
m = ρ−m ∀m ∈ {−N, . . . , N}. Another important property

is that all ρm are orthogonal with respect to the Hilbert-
Schmidt inner product, i.e., Tr(ρ†

m ρn) = Tr(ρ−m ρn) ∝ δmn.

Furthermore, for nonzero n+ and/or n−, each ρm has Nm

elements, given by

Nm = (2N )!

(N − m)!(N + m)!
, (12)

which holds for m �= 0 [31].
Each ρm is a projection on the subspace defined by the

mth coherence order. This is similar for modes of asymmetry,
as they are related to a set of projectors P (m)(ρ) defined in
Eq. (4). Using the relation ρ = ∑

m ρm into Eq. (4), with
H = Z, we get

P (m)(ρ) =
N∑

m′=−N

ρ ′
m lim

x0→∞
1

2x0

∫ x0

−x0

dx e−i(m+m′ )x

=
N∑

m′=−N

δm,−m′ ρ ′
m = ρ−m , (13)

where we have recognized the definition of the Kronecker
δ involving m and m′. In summary, Eq. (13) unveils the
equivalence between both approaches of coherence orders and
U(1) modes of asymmetry.

Each element of the density matrix is related to how infor-
mation is encoded in the quantum system. On the one hand,
populations are related to the probability to detect the system
in one of its eigenstates. On the other hand, each coherence
unveils the net interference between two different basis states.
According to Eq. (7), different coherence orders oscillate
independently and with distinct frequencies under global (or
local) rotations. Since the order of a projector

⊗N
l=1 Ijl

is
defined by the number of times the operators I+ and I−
appear on it, each order is a direct measure of correlation. For
example, the second and third orders are measures of bipartite
and tripartite correlations.

The coherence orders are related to the transitions between
the levels of a quantum system. For instance, a mth coherence
order is generated after the interaction of the quantum system
with at least that m quanta of radiation from an external
field, generating a coherent superposition. Thus, as shown
in Fig. 1, the double quantum coherences are associated to
transitions between levels separated by two quanta, while the
maximum coherence order involves a superposition between
the most energetic and the ground states of the system [31].

|110

|100

|101

|111

|001

|011

|010

|000

FIG. 1. Depiction of all possible transitions of a three-qubit sys-
tem and their relation to each coherence order. The third coherence
order in red (thicker), second in blue, first in black, and zeroth in
green (thinnest). The arrows indicate the direction of a positive order.
The dashed lines separate the transitions associated with each line of
Fig. 2(c).
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0 +1

−1 0

N = 1

(a)

0 +1 +1 +2

−1 0 0 +1

−1 0 0 +1

−2 −1 −1 0

N = 2

(b)

0 +1 +1 +2 +1 +2 +2 +3

−1 0 0 +1 0 +1 +1 +2

−1 0 0 +1 0 +1 +1 +2

−2 −1 −1 0 −1 0 0 +1

−1 0 0 +1 0 +1 +1 +2

+2

−2 −1 −1 0 −1 0 0 +1

−2 −1 −1 0 −1 0 0 +1

−3 −2 −2 −1 −2 −1 −1 0

N = 3

(c)

FIG. 2. Coherence orders for (a) N = 1, (b) N = 2, and (c) N = 3. Note the pattern as N increases.

Interestingly, the zeroth order encompasses transitions with
an equal number of absorptions and emissions.

The coherence orders spread along the density matrix
following a simple recipe. Each line of the quantum state is
related to the transitions between a fixed eigenstate and all
the other ones. The first line of Fig. 2(c) is connected to the
first block of transitions in Fig. 1, the second line to the second
block, and so on. Moreover, due to the tensor product structure
of the Hilbert-Schmidt space, the matrix of 2(a) serves as a
building block for the N -qubit case, with sums among the
elements of each block instead of products. This pattern is
clear from Figs. 2(a)–2(c).

IV. �1 NORM AND DEPHASING OF COHERENCE ORDERS

It is possible to define quantifiers for each coherence order,
relative to global rotations about the z axis, adapting different
coherence quantifiers defined in the literature. Using the �1

norm, we define the amount of coherence of order m stored in
the state ρ as

C�1
|m| = 1

2

∑
|n+−n−|=m

∣∣aj1j2...jN

∣∣ , (14)

with n+ �= 0. We point out one subtle difference between
our definition and the quantifiers proposed in Ref. [30]. The
zeroth coherence order is not considered in the approach based
on modes of asymmetry since it is invariant under global z

rotations, i.e., a state which has only this kind of coherence
is regarded as incoherent one. This is due to the difference
between the notion of incoherent operations and states applied
here (rooted on the work by Baumgratz et al. [27]) and
that based on asymmetry with respect to Z. However, since
P (m)(ρ) = ρ−m, these approaches are equivalent.

The quantifiers of Eq. (14) are not measures of coherence
according to the properties (i)–(iv), as they do not satisfy the
monotonicity property. An incoherent operation can increase
or decrease the amount of coherence of a particular order. For
example, in a two-qubit system, a second-order coherence can

be transferred to zeroth order by a local π rotation about the x

axis, as e−i π
2 σx⊗ I (I+ ⊗ I+) ei π

2 σx⊗ I −→ I− ⊗ I+. However,
it is a monotone under U(1)-covariant operations [30].

As an example, let us discuss the behavior of coherence
orders under dephasing. Particularly, we focus on processes
due to Gaussian noise described by a zero mean and an
homogeneous autocorrelation function K (t, t ′) = K (t − t ′)
as follows [52–54]:

[Bj (t )]B = 0 , [Bj (t )Bl (t
′)]B = δjlK (t − t ′) , (15)

where [•]B := ∫
D[B(t )]P[B(t )] • defines the average per-

formed over all the possible realizations of the process B(t ),
each one occurring with probability P[B(t )]. Just to be clear,
it follows that

∫
D[B(t )]P[B(t )] = 1. A Gaussian process is

fully described by its second-order autocorrelation function
K , with its characteristic function given by[

exp

(
±iκ

∫ t

0
ds B(s)

)]
B

= exp(−κ2β(t )) , (16)

where we define

β(t ) = 1

2

∫ t

0

∫ t

0
ds ds ′K (s − s ′) . (17)

Similar results, under different contexts, are found in the
quantum information literature to describe the decoherence of
quantum registers [55,56] and in NMR to describe spin-spin
relaxation [34,57] and long-lived states [58–60]. Recently,
Ref. [61] proposed a general framework to investigate the
amplitude of a stochastic noise in a fluctuating many-body
Hamiltonian system.

Let us consider the N -qubit state whose matrix repre-
sentation is given by Eq. (10). Considering the scenario in
which each qubit is coupled to a single bath, the open-system
dynamics is driven by the Hamiltonian H (t ) = ∑N

l=1 I
⊗l−1 ⊗

Hl (t ) ⊗ I⊗N−l , with Hl (t ) = [ω0 + λlBl (t )] Iz, where ω0 is
the qubit energy splitting, λl is the strength of the interaction,
and Bl (t ) is an external classical stochastic field acting on
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each qubit. The evolution operator is given by

U (t ) = exp

(
−i

∫ t

0
dsH (s)

)
=

N⊗
l=1

e−iϕl (t )Iz , (18)

where we define ϕl (t ) := ω0t + λlhl (t ) and hl (t ) =∫ t

0 ds Bl (s). Starting from Eqs. (10) and (18), the evolved
state ρ(t ) = [U (t )ρ(0)U †(t )]B can be written as follows:

ρ(t ) =
∑

j1,j2,...,jN

aj1j2...jN

[
N⊗

l=1

e−iϕl (t )Iz Ijl
eiϕl (t )Iz

]
B

. (19)

Noticing that each element, under a z rotation, behaves like
e−iϕl (t )Iz Ijl

eiϕl (t )Iz = e−i(δ+jl
−δ−jl

)ϕl (t )Ijl
, we have

ρ(t ) =
∑

j1,j2,...,jN

aj1j2...jN
ξj1j2...jN

N⊗
l=1

Ijl
, (20)

with

ξj1j2...jN
=

[
N∏

l=1

e−i(δ+jl
−δ−jl

)ϕl (t )

]
B

. (21)

Equation (20) clarifies how each element of the density matrix
behaves under a Gaussian noise dephasing process. In the
following we will discuss two distinct scenarios regarding
the environment itself: (i) the case of N qubits embedded
in a common bath and (ii) the case of N baths completely
uncorrelated.

When considering a common environment, i.e., for ϕl (t ) =
ϕ(t ) ∀l ∈ {1, 2, . . . , N}, the role of the coherence orders
becomes explicit and the decay rates are unique for each order.
Indeed, first notice that for the common environment scenario
Eq. (21) becomes

ξj1j2...jN
= [e−i(n+−n− )ϕ(t )]B . (22)

By using Eq. (16) and the definition of ϕ(t ), we get

ξj1j2...jN
= e−imω0t e−m2λ2β(t ) . (23)

Substituting Eq. (23) into Eq. (20), one may verify that the
evolved state can be written as follows:

ρ(t ) =
∑

j1,j2,...,jN

aj1j2...jN
e−imω0t e−m2λ2β(t )

N⊗
l=1

Ijl

=
N∑

m=−N

e−imω0t e−m2λ2β(t )
∑

n+−n−=m

aj1j2...jN

N⊗
l=1

Ijl
.

(24)

Given the previous results, the �1 norm of each coherence
order is given by

C�1
|m|(ρ(t )) = e−m2λ2β(t ) C�1

m (ρ(0)) . (25)

Equation (25) implies that as long as m increases, the �1 norm
of each coherence order decays faster and the effects of the
bath on the system become more severe. Moreover, for m = 0
there is no decoherence and thus such decoherence-free sub-
spaces can be used to encode logical qubits as a passive way
to perform quantum error correction tasks [62,63]. These sub-
spaces have been realized in several experimental platforms,
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FIG. 3. Open-system dynamics for each coherence order for a
maximally coherent three-qubit state, |+++〉, coupled to Ornstein-
Uhlenbeck environments, in the slow correlation time regime. In
particular, we set �/(2γ 2) ≈ 1, with � = 100 (rad/s)2, τ = 1/γ =
0.1 s, and λl = {1, 0.8, 0.2}. (a) Case of a common environment.
All coherence orders decay with a single rate. The higher the order,
the faster is the decay. The zeroth order remains invariant under
dephasing. (b) Case of three independent environments. Notice that
both C̃0 and C̃2 coincide along the range 0 � t (s ) � 1. There
is a multicomponent decay for all coherence orders but the third
one. Moreover, there is no direct connection between the specific
coherence order and how fast or slow is the decay due to dephasing.
In both cases (a) and (b) we plot the normalized coherence orders
{C̃m}m=0,1,2,3, with C̃m := C�1

|m|(ρ(t ))/C�1
|m|(ρ(0)).

e.g., NMR [64,65] and trapped ions [66–68]. To illustrate
these results, we assume the stochastic field B(t ) in Eq. (15)
to be driven by the Ornstein-Uhlenbeck noise [52–54], de-
scribed by the autocorrelation function KOU(t − t ′, γ,�) =
�γ

2 e−γ |t−t ′ |, where γ = 1/τ plays the role of a memory noise
parameter, τ is the correlation time of the process, and � is
the damping rate that we assume fixed. By inserting the pre-
vious autocorrelation function into Eq. (17), we get βOU(t ) =
�

2γ 2 (γ t + e−γ t − 1). The behavior for a common environment
is shown in Fig. 3(a).

032101-5



DIEGO P. PIRES et al. PHYSICAL REVIEW A 98, 032101 (2018)

Let us now consider the case of N independent environ-
ments, i.e., each qubit is coupled to its own environment
described by uncorrelated stochastic fields Bl (t ). Therefore,
Eq. (21) reads as

ξj1j2...jN
=

N∏
l=1

[e−i(δ+jl
−δ−jl

)ϕl (t )]B

=
N∏

l=1

e−i(δ+jl
−δ−jl

)ω0t [e−i(δ+jl
−δ−jl

)λlhl (t )]B

= e−i(n+−n− )ω0t

N∏
l=1

e−(δ+jl
−δ−jl

)2λ2
l β(t ) . (26)

Because the Kronecker δ function fulfills both properties
δ2
±jl

= δ±jl
, and δ+jl

δ−jl
= 0 for all jl ∈ {0,+,−, z}, it can

be shown that (δ+jl
− δ−jl

)2 = δ+jl
+ δ−jl

. By plugging this
result into Eq. (26), we get

ξj1j2...jN
= e−imω0t e−∑N

l=1(δ+jl
+δ−jl

)λ2
l β(t ) . (27)

Thus, the evolved state can be written as follows:

ρ(t ) =
∑

j1,j2,...,jN

aj1j2...jN
e−imω0t e−∑N

l=1(δ+jl
+δ−jl

)λ2
l βl (t )

N⊗
l=1

Ijl
.

(28)

Equation (28) shows that each element of the density
matrix decoheres with a rate given by a linear combination
of the strengths of the couplings between each qubit and its
own bath, leading to a faster decay as n+ and n− increase.
Basically, matrix elements closer to the antidiagonal decay
faster. For example, the Bell states |φ−〉 and |φ+〉, which
only have zeroth and second coherence order, respectively,
decohere with the same rate λ2 = λ2

1 + λ2
2. Such behavior is

shown in Fig. 3(b).

V. HILBERT-SCHMIDT NORM AND QUANTUM
METROLOGY

Labeling the subspaces according to coherence orders is
particularly useful when dealing with phase or frequency
estimation. In the last decade, it has been shown how quan-
tum correlations can improve precision, especially through
entanglement [45,69–75]. The simplest metrological scenario
consists of the estimation of an unknown phase acquired
by a quantum system, regarded as the probe, through the
interaction with another quantum system of interest. When
considering the dynamics of a closed quantum system with
Hamiltonian H , such interaction can be described by the
action of the unitary operator Uθ = e−iθH imprinting a phase
shift θ on the probe state ρ0, i.e., ρθ = Uθ ρ0U

†
θ .

The quantum Fisher information (QFI), a widely applied
figure of merit for quantum estimation, provides a distin-
guishability measure of the neighboring states ρθ and ρθ+δθ

when changing the phase shift θ by an infinitesimal amount
δθ [51]. It defines a geometric distance between quantum
states, since one can prove that QFI is related to the Bures
angle, i.e., a Riemannian metric defined over the space of
quantum states [76–78]. Let us consider that θ has been

encoded on the initial state ρ0 via an arbitrary dynamics.
Given the spectral decomposition ρθ = ∑

j qj |ψj 〉〈ψj | of the
final state, then the QFI of ρθ when estimating the parameter
θ can be defined as

FQ(ρθ ) = 1

2

d∑
n,m=1

|〈ψn|∂θ �θ |ψm〉|2
qn + qm

, (29)

where ∂θ ≡ ∂/∂θ , d = 2N , with N being the number of
qubits, and the sum runs over the pair of labels {m, n} related
to the set of eigenvalues satisfying qm + qn �= 0. The QFI (i)
is additive, i.e., if the evolved state is a product one ρθ ≡
ρ⊗N

θ , then the QFI fulfills FQ(ρ⊗N
θ ) = NFQ(ρθ ); and (ii)

reduces to the Fubini-Study metric FQ(ρθ ) = 〈∂θψθ |∂θψθ 〉 −
|〈∂θψθ |ψθ 〉|2 if ρθ = |ψθ 〉〈ψθ | is pure [79]. In particular, if the
initial state ρ0 is a pure state undergoing a unitary evolution
via Uθ = e−iθH , then the latter condition becomes simpler
since QFI reduces to the variance of the generator H .

In this scenario, following the recent work of Gärttner,
Hauke, and Rey (GHR) [12], a particularly useful coherence
quantifier is the so-called MQI, defined with the Hilbert-
Schmidt norm

Im(ρ) = Tr(ρ−m ρm) . (30)

It has been proved that MQIs define a lower bound
to the quantum Fisher information, FQ(ρθ ) � FI (ρ,H ) =∑N

m=0 Fm
I (ρ,H ), with Fm

I (ρ,H ) := m2Im(ρ) [12]. It is
worth noting that Eq. (29) includes an additional normaliza-
tion factor 1/4 when compared to the QFI defined by GHR
in Ref. [12]. Each Im defines an entanglement witness for
genuinely multipartite entanglement and takes into account
the contributions of both ±mth orders [12]. Notice that one
can write Eq. (30) as the squared Hilbert-Schmidt norm
discussed in Sec. II.

Let us analyze the role played by quantum coherence into
the speed of a quantum state [44], i.e., its rate of change when
undergoing the action of a global phase shift. In summary, the
main idea relies on proving that such a rate can be described as
a function of the MQI defined in Eq. (30) [11,12]. The squared
speed is defined as

Sτ (ρ0,H ) := 1

τ 2
[〈ρ0〉ρ0 − 〈ρτ 〉ρ0 ] , (31)

with 〈•〉ρ0 = Tr(• ρ0) and ρτ = Uτ ρ0U
†
τ . As pointed out

by Zhang et al. [44], the squared speed is positive, i.e.,
Sτ (ρ0,H ) � 0, and also upper bounded by the quantum
Fisher information, Sτ (ρ0,H ) � FQ(ρτ ), ∀ρ0, τ,H . Note
that Eq. (31) can be seen as a particular quantifier belonging to
the family of statistical speed of quantum states recently pro-
posed by Gessner and Smerzi [80]. Particularly, the squared
speed has the advantage that the contribution of each element
of the density matrix can be assessed separately, allowing us
to describe how much an individual coherence order affects
Sτ (ρ0,H ). To see this, using Eq. (10), we may write down
the decomposition of ρ0 into coherence orders as

〈ρα〉ρ0 =
N∑

m=0

[e−imαIm(ρ0) + eimαI−m(ρ0)] , (32)
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with α = 0, τ . When plugging Eq. (32) into Eq. (31), we
conclude that the squared speed is related to the MQI as
follows:

Sτ (ρ0,H ) =
N∑

m=0

Bτ,m(ρ0,H ) , (33)

where we define

Bτ,m(ρ0,H ) := 2

τ 2
[1 − cos(mτ )]Im(ρ0) . (34)

Therefore, one may realize that the presence of the MQI in
Eq. (34) allows us to describe how much an individual co-
herence order affects the speed Sτ (ρ0,H ). We emphasize that
each term in the summation in the right-hand side of Eq. (33)
is a positive real number. Furthermore, when choosing m =
mmax as describing the maximum nonzero coherence order of
the probe state, with 0 � mmax � N , we conclude that

Sτ (ρ0,H ) � Bτ,mmax (ρ0,H ) . (35)

Since the squared speed is upper bounded by the quantum
Fisher information, we have

Bτ,mmax (ρ0,H ) � Sτ (ρ0,H ) � FQ(ρτ ) . (36)

This inequality is saturated for pure states in the limit τ → 0,
provided the state only has coherence on the mmaxth order.
Moreover, such a bound is robust to different definitions of
the QFI [44].

Let us compare the different bounds on the QFI given
by Sτ (ρ0,H ) and FI (ρ0,H ). In particular, if x � π/2 thus
1 − cos x � 4x2/π2. Therefore, when respecting the con-
straint mτ � π/2, after some simple calculations one obtains
the bound Sτ (ρ0,H ) � (8/π2) FI (ρ0,H ). Since the squared
speed is upper bounded by the QFI, we get the following chain
of inequalities:

8

π2
FI (ρ0,H ) � Sτ (ρ0,H ) � FQ(ρτ ) . (37)

This bound in Eq. (37) differs by a factor of 2/π2 from that
reported by Gärttner, Hauke, and Rey [12]. It is significant that
this bound also holds when addressing each coherence order
separately, i.e., for Bτ,mmax and F

mmax
I .

For phase estimation, the parameter τ would be imprinted
on the probe state by means the generator H = ∑N

l=1 I
⊗l−1 ⊗

Iz ⊗ I⊗N−l . The parameter τ is estimated through an unbiased
estimator τ̂ and its precision is bounded by the QFI, according
to the quantum Cramér-Rao bound [76]. For separable states,
it is known the QFI exhibits a linear dependence in the number
of qubits of the probe system, while some entangled states
show a quadratic scaling. According to Pezzé and Smerzi [73],
the QFI is able to detect entanglement if FQ(ρτ ) > N/4. We
stress that such a bound differs from a factor of 4 to that
derived in Ref. [73] due to the normalization adopted to the
QFI in Eq. (29). Since both Bτ,mmax (ρ0,H ) and Fm

I (ρ0,H )
characterize lower bounds to the QFI, it is straightforward
to obtain a simple criterion to testify quantum enhanced
precision by following Ref. [73]. We guarantee a quantum
advantage if

Bτ,mmax (ρ0,H ) >
N

4
or F

mmax
I (ρ0,H ) >

N

4
. (38)

In comparison to any figure of merit in the literature, both
inequalities in Eq. (38) require much less information from
ρ0 to evaluate their usefulness for phase estimation. While the
squared speed or even FI (ρ0,H ) rely on information from
the whole density matrix, these bounds only depend on a
minimal set of elements whose cardinality given by Eq. (12).
Therefore, in order to get a quantum advantage in phase
estimation, one just needs to maximize the highest coherence
order attainable within the control limitations of a given exper-
imental setup. For example, the highest order in a three-qubit
system can be the second order, due to the lack of universal
control over the qubits or decoherence effects during state
preparation. This has been addressed by the NMR community
under different experimental conditions [81–83]. Moreover,
for a set of states {ρ (m)}, m ∈ {0, 1, . . . , N}, all with the same
amount of coherence just on the mth coherence order, the
Fisher information follows the rule FQ(ρ (0) ) � FQ(ρ (1) ) �
· · · � FQ(ρ (N−1)) � FQ(ρ (N ) ). The quantum advantage for
phase estimation is only achieved for states with mmax � 2.

Entanglement is considered to be the key ingredient to
achieve precision beyond the best classical strategy. In par-
ticular, the GHZ state, |GHZN 〉 = 1√

2
( |0〉⊗N + |1〉⊗N ), is

pointed to as achieving the so-called Heisenberg limit when
FQ ∝ N2. However, only entanglement is not enough [84],
and Eq. (33) makes it clear. Let us focus on the three-qubit
case, i.e., N = 3. On the one hand, the maximally entan-
gled state, |W〉 = 1√

3
(|001〉 + |010〉 + |100〉), cannot provide

any information on a phase shift generated by Z since it
is invariant under such transformation, i.e., Sτ (|W〉〈W|) =
Bτ,mmax (|W〉〈W|) = 0. On the other hand, the GHZ state has
only the highest coherence order, i.e., N . Basically, the way in
which information is encoded over the coherence orders tells
us how useful a state is for phase estimation. As another ex-
ample, both states |++〉 = 1

2 (|00〉 + |01〉 + |10〉 + |11〉) and
|ϕ〉 = 1

2 (|00〉 + |01〉 + |10〉 − |11〉) give the same precision,
despite the former being separable and the latter maximally
entangled.

As an example, let us consider the family of states given
by ρ0 = ( 1−p

2N )IN + p |�〉〈�|, with |�〉 = cos φ |GHZN 〉 +
sin φ |0〉⊗N−1|1〉, 0 � φ � π/2, and 0 � p � 1. Such states
exhibit nonzero coherences in the first and N th orders, with
the parameter φ weighting the contribution of each order.
The degree of purity is given by Tr (ρ2

0 ) = [1 + (d − 1)p2]/d,
with d = 2N . Particularly, when choosing N = 3, Fig. 4 un-
veils how Bτ,mmax (ρ0,H ) and F

mmax
I (ρ0,H ) can detect metro-

logically useful entanglement for different values of φ, as
a function of p. From Figs. 4(a)–4(d), it can be seen that
as the contribution of the first coherence order increases,
then the difference between Sτ (ρ0,H ) and Bτ,mmax (ρ0,H )
follows this trend and the ability to detect entanglement by
Bτ,mmax (ρ0,H ) is reduced. Notice that the same reasoning
holds for FI (ρ0,H ) and F

mmax
I (ρ0,H ). In summary, it means

that Eq. (38) defines a criterion that is only sufficient to
certify the usefulness of a state ρ for phase estimation,
as shown in Fig. 4(c). We emphasize that FI (ρ0,H ) and
FI

mmax (ρ0,H ) offer tighter bounds on the QFI than Sτ (ρ0,H )
and Bτ,mmax (ρ0,H ). While FI (ρ0,H ) and Sτ (ρ0,H ) require
the knowledge of the whole density matrix ρ0, both func-
tionals Bτ,mmax (ρ0,H ) and F

mmax
I (ρ0,H ) are related solely to
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FIG. 4. Plot of quantum Fisher information FQ(ρτ ) (red solid
line), squared speed Sτ (ρ0, H ) (blue dashed line), Bτ,mmax (ρ0, H )
(black dot dashed line), FI (ρ0, H ) (brown loosely dotted line),
and F

mmax
I (ρ0, H ) (magenta loosely dot dashed line) related to the

evolved state ρτ = Uτ ρ0U
†
τ , where ρ0 = ( 1−p

8 )I + p |�〉〈�| and
|�〉 = cos φ |GHZ3〉 + sin φ |001〉 (mmax), for (a) φ = 0, (b) φ =
π/6, (c) φ = π/4, and (d) φ = π/3. Notice that the unitary evolu-
tion is generated by the Hamiltonian H = ∑3

l=1 I
⊗ l−1 ⊗ I z

l ⊗ I⊗ 3−l .
Here we choose τ = π/6. The gray dotted line represents the QFI
related to the three-qubits uniform superposition initial state ρclass

0 =
|+++〉〈+++| which undergoes such unitary dynamics.

the maximal coherence order and thus rely on a small set of
elements of the density matrix. Such a property reduces the
experimental cost and could be seen as a potential advantage
to the design of new quantum technologies. The calculations
and some additional examples are discussed in the Appendix.

VI. CONCLUSIONS

In this paper we adopted an approach of defining quanti-
fiers for each coherence order based on its specific applica-
tion and meaning rather than looking for a general theory.
Particularly, both quantifiers in Eqs. (14) and (30) can be
easily applied to study decoherence or quantum phase esti-
mation, making clear how different subspaces of the Hilbert-
Schmidt space can share some properties while exhibiting a
qualitatively distinct behavior from other subspaces. For open
quantum systems, this allowed us to readily assess which
subspaces are more or less affected by dephasing from a
common environment, with the zeroth coherence order related
to decoherence-free subspaces.

Here we propose a simple and sufficient way to assess the
usefulness of a given quantum state for phase estimation be-
yond the classical limit. The biggest advantage of using such

a framework lies in the minimal experimental cost required to
measure a single coherence order [85]. From an experimental
viewpoint, Eq. (38) implies that the problem to guarantee
quantum enhanced precision consists of the maximization of
the amount of coherence in the highest order attainable, given
limitations on the control fields and decoherence effects. This
subject has been addressed in the context of NMR experi-
ments [81–83]. Finally, according to Eqs. (25) and (38), our
results show that as m increases, more useful to metrology and
more affected by decoherence is a particular coherence order.
In a context of noisy quantum metrology, our results suggest
the existence of an optimal coherence order for frequency
estimation under dephasing.
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APPENDIX A: ADDITIONAL EXAMPLES

1. Example 1

Let us consider the state ρ0 = |ψ〉〈ψ |, where |ψ〉 =
cos φ |001〉 + sin φ |GHZ3〉 with

|GHZ3〉 = 1√
2

(|000〉 + |111〉) , (A1)

and also the three-qubit uniform superposition state ρclass
0 =

|+++〉〈+++|, with

|+〉 = 1√
2

(|0〉 + |1〉) . (A2)

Both states ρ0 and ρclass
0 undergo the unitary evolution ρτ =

Uτ ρ0U
†
τ and ρclass

τ = Uτ ρclass
0 U †

τ , respectively, where Uτ =
e−iτH , and also

H =
3∑

l=1

I⊗ l−1 ⊗ I z
l ⊗ I⊗ 3−l , (A3)

with I z
l = (1/2) σ z

l . Because the unitary evolution does not
change the purity of the probe states ρ0 and ρclass

0 , then both
final states ρτ and ρclass

τ will be also pure. In this case, it can be
shown that the quantum Fisher information related to ρτ and
ρclass

τ reduces to the variance of the generator H with respect
to both probe states ρ0 and ρclass

0 , respectively, i.e.,

FQ(ρτ ) = 〈ψ |H 2|ψ〉 − 〈ψ |H |ψ〉2

= 1
8 [19 + cos(2φ)] sin2φ (A4)

and

FQ

(
ρclass

τ

) = 〈+++|H 2|+++〉 − 〈+++|H |+++〉2

= 3
4 . (A5)

Notice that both states ρτ and ρclass
τ have mmax = 3 nonzero

coherence order. In this case, the coherence quantifiers
Sτ (ρ0,H ) and Bτ,3(ρ0,H ), defined in Eq. (33), read as

Sτ (ρ0,H ) = 1

2τ 2
[9 + 3 cos(2φ) + 8 cos τ

+ 4 sin2φ cos(2τ )] sin2φ sin2
(τ

2

)
(A6)
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FIG. 5. Plot of quantum Fisher information FQ(ρτ ) (red solid
line), squared speed Sτ (ρ0, H ) (blue dashed line), Bτ,mmax (ρ0, H )
(black dot dashed line), FI (ρ0, H ) (brown loosely dotted line),
and F

mmax
I (ρ0, H ) (magenta loosely dot dashed line) related to the

evolved state ρτ = Uτ ρ0U
†
τ , where (a) example 1: ρ0 = |ψ〉〈ψ |,

with |ψ〉 = cos φ |001〉 + sin φ |GHZ3〉 (mmax = 3), and (b) example
2: ρ0 = |ψ〉〈ψ |, with |ψ〉 = cos φ |000〉 + sin φ |W〉 (mmax = 2). In
both cases such unitary evolution is generated by the Hamiltonian H

in Eq. (A3) and τ = π/6. The gray dotted line represents the QFI
related to the three-qubits uniform superposition initial state ρclass

0 =
|+++〉〈+++| which undergoes the unitary dynamics discussed
before.

and

Bτ,3(ρ0,H ) = 1

τ 2
sin4φ sin2

(
3τ

2

)
. (A7)

Interestingly, it is straightforward to conclude the following:

FI (ρ0,H ) = 1
8 [19 + cos(2φ)] sin2φ (A8)

and

F
mmax
I (ρ0,H ) = 9

4 sin4φ . (A9)

In Fig. 5(a) we plot the QFI, Sτ (ρ0,H ), Bτ (ρ0,H ),
FI (ρ0,H ), and F

mmax
I (ρ0,H ) given in Eqs. (A4)–(A9), re-

spectively.

2. Example 2

Let us consider the initial pure state ρ0 = |ψ〉〈ψ |, with
|ψ〉 = cos φ |000〉 + sin φ |W〉 and

|W〉 = 1√
3

(|011〉 + |101〉 + |110〉) . (A10)

Analogous to the previous example, such a probe state under-
goes the unitary evolution ρτ = Uτ ρ0U

†
τ , with Uτ = e−iτH

and the Hamiltonian is defined in Eq. (A3). Because the final
state ρτ is a pure one, then the quantum Fisher information
related to ρτ is given by the variance of the generator H , i.e.,

FQ(ρτ ) = 〈ψ |H 2|ψ〉 − 〈ψ |H |ψ〉2

= sin2(2φ) . (A11)

Notice that the states ρ0, ρτ , and ρclass
0 = |+++〉〈+++|,

with |+〉 defined in Eq. (A2), have only mmax = 2 nonzero
coherence order. Therefore, one can verify that the coherence
quantifiers Sτ (ρ0,H ) and Bτ,2(ρ0,H ) defined in Eq. (33)
become

Sτ (ρ0,H ) = Bτ,2(ρ0,H ) = 1

τ 2
sin2(2φ) sin2τ . (A12)

Furthermore, one can readily verify that

FI (ρ0,H ) = F
mmax
I (ρ0,H ) = sin2(2φ) . (A13)

In Fig. 5(b) we plot the QFI for both states ρτ and ρclass
τ ,

Sτ (ρ0,H ), Bτ (ρ0,H ), FI (ρ0,H ), and F
mmax
I (ρ0,H ) given in

Eqs. (A11), (A5), (A12), and (A13), respectively.

3. Example 3

Let us consider now the three-qubit initial mixed state

ρ0 =
(

1 − p

8

)
I + p |�〉〈�| , (A14)

with

|�〉 = cos φ |GHZ3〉 + sin φ |001〉 , (A15)

where the |GHZ3〉 state is given in Eq. (A1), 0 � p � 1, and
0 � φ � π/2. The probe state undergoes the unitary evolution
ρτ = Uτ ρ0U

†
τ encoding on it the parameter τ , where Uτ =

e−iτH and H is given in Eq. (A3). After some calculations,
the quantum Fisher information related to ρτ becomes

FQ(ρτ ) = p2(9 + cos2φ) cos2φ

2(1 + 3p)
. (A16)

Opposite to the previous example, here ρ0, ρτ and ρclass
τ

have mmax = 3 nonzero coherence order. In this case, both
coherence quantifiers Sτ (ρ0,H ) and Bτ,2(ρ0,H ) defined in
Eq. (33) can be written as follows:

Sτ (ρ0,H ) = p2

2τ 2
[9 − 3 cos(2φ) + 8 cos τ

+4 cos2φ cos(2τ )
]

cos2φ sin2
(τ

2

)
(A17)
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FIG. 6. Example 3: Plot of quantum Fisher information FQ(ρτ ) (red solid line), squared speed Sτ (ρ0, H ) (blue dashed line), Bτ,mmax (ρ0,H )
(black dot dashed line), FI (ρ0, H ) (brown loosely dotted line), and F

mmax
I (ρ0, H ) (magenta loosely dot dashed line) related to the evolved state

ρτ = Uτ ρ0U
†
τ , where ρ0 = ( 1−p

8 )I + p |�〉〈�| and |�〉 = cos φ |GHZ3〉 + sin φ |001〉 (mmax), for (a) φ = 0, (b) φ = π/6, (c) φ = π/4, and
(d) φ = π/3. Notice that the unitary evolution is generated by the Hamiltonian H in Eq. (A3) and τ = π/6. The gray dotted line represents
the QFI related to the three-qubits uniform superposition initial state ρclass

0 = |+++〉〈+++| which undergoes such unitary dynamics.

and

Bτ,3(ρ0,H ) = 1

τ 2
cos4φ sin2

(
3τ

2

)
. (A18)

After some simpler calculations, we get

FI (ρ0,H ) = 1
8 [19 − cos(2φ)]p2cos2φ (A19)

and

F
mmax

I (ρ0,H ) = 9
4 p2cos4φ . (A20)

In Fig. 6 we plot the QFI related to the states ρτ and
ρclass

τ , Sτ (ρ0,H ), Bτ (ρ0,H ), FI (ρ0,H ), and F
mmax

I (ρ0,H )
given in Eqs. (A16), (A5), (A17), (A18), (A19), and (A20),
respectively.

4. Example 4

Let us consider the initial mixed state

ρ0 = (1 − p)|+00〉〈+00| + p|GHZ3〉〈GHZ3| , (A21)

with 0 � p � 1 and the GHZ state given in Eq. (A1). The
probe state ρ0 undergoes the unitary evolution ρτ = Uτ ρ0U

†
τ

which encodes the parameter τ , where Uτ = e−iτH and H

given in Eq. (A3). After some calculations the quantum Fisher
information related to ρτ becomes

FQ(ρτ ) = 1
12 [3 + 8p(1 + 2p)] . (A22)

Similarly to example 3, here the set of states ρ0, ρτ , and
ρclass

τ have mmax = 3 nonzero coherence order. Thus, it is
straightforward to show that coherence quantifiers Sτ (ρ0,H )
and Bτ,2(ρ0,H ) defined in Eq. (33) read as

Sτ (ρ0,H ) = 1

τ 2
[2p2(cos(2τ ) + 2 cos τ )

× 1 − 2p + 4p2] sin2
(τ

2

)
(A23)
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and

Bτ (ρ0,H ) = p2

τ 2
sin2

(
3τ

2

)
. (A24)

Notice that one can verify that

FI (ρ0,H ) = 1
4 [1 + 2p(5p − 1)] (A25)

and

F
mmax
I (ρ0,H ) = 9

4 p2 . (A26)

In Fig. 7(a) we plot the quantum Fisher information
with respect to the states ρτ and ρclass

τ , Sτ (ρ0,H ),
Bτ,3(ρ0,H ), FI (ρ0,H ), and F

mmax
I (ρ0,H ) given in

Eqs. (A22), (A5), (A23), (A24), (A25), and (A26),
respectively.

5. Example 5

Finally, let the initial mixed state be

ρ0 = (1 − p)|+++〉〈+++| + p|GHZ3〉〈GHZ3| , (A27)

where 0 � p � 1 and the GHZ state is given in Eq. (A1). Sim-
ilarly to the previous examples, such an initial state undergoes
the unitary evolution ρτ = Uτ ρ0U

†
τ , where Uτ = e−iτH and

H given in Eq. (A3). One can verify that the quantum Fisher
information related to ρτ is given by

FQ(ρτ ) = 3
4 (1 + 2p) . (A28)

We stress the fact that the states ρ0, ρτ , and ρclass
τ have mmax =

3 nonzero coherence order and therefore the coherence quan-
tifiers Sτ (ρ0,H ) and Bτ,2(ρ0,H ) proposed in Eq. (33) read
as

Sτ (ρ0,H ) = 1

8τ 2
[3(5 − 6p + 9p2) + 8(1 + 3p2) cos τ

+ (1 + 3p)2 cos(2τ )] sin2
(τ

2

)
(A29)

and

Bτ,3(ρ0,H ) = (1 + 3p)2

16 τ 2
sin2

(
3τ

2

)
. (A30)

Moreover, the following can be shown:

FI (ρ0,H ) = 3
8 [2 + p(5p − 1)] ,

F
mmax
I (ρ0,H ) = 9

64 (1 + 3p)2 . (A31)

In Fig. 7(b) we plot the quantum Fisher information
with respect to the states ρτ and ρclass

τ , Sτ (ρ0,H ),

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2 (a)

p

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2 (b)

p

FIG. 7. Plot of quantum Fisher information FQ(ρτ ) (red solid
line), squared speed Sτ (ρ0, H ) (blue dashed line), Bτ,mmax (ρ0,H )
(black dot dashed line), FI (ρ0, H ) (brown loosely dotted line),
and F

mmax
I (ρ0, H ) (magenta loosely dot dashed line) related to

the evolved state ρτ = Uτ ρ0U
†
τ , where (a) example 4: ρ0 =

(1 − p)|+00〉〈+00| + p|GHZ3〉〈GHZ3| (mmax = 3) and (b) example
5: ρ0 = (1 − p)|+++〉〈+++| + p|GHZ3〉〈GHZ3| (mmax = 3). In
both cases such unitary evolution is generated by the Hamiltonian
H in Eq. (A3) and τ = π/6. The gray dotted line represents the QFI
related to the three-qubits uniform superposition initial state ρclass

0 =
|+ + +〉〈+ + +|, which undergoes the unitary dynamics discussed
before.

Bτ,3(ρ0,H ), FI (ρ0,H ), and F
mmax
I (ρ0,H ) given in

Eqs. (A28), (A5), (A29), (A30), and (A31), respectively.
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tum metrology with full and fast quantum control, Quantum 1,
27 (2017).

[80] M. Gessner and A. Smerzi, Statistical speed of quantum states:
Generalized quantum Fisher information and Schatten speed,
Phys. Rev. A 97, 022109 (2018).

[81] M. H. Levitt and R. R. Ernst, Spin-pattern recognition in high
resolution-proton NMR spectroscopy, Chem. Phys. Lett. 100,
119 (1983).

[82] M. H. Levitt and R. R. Ernst, Multiple-quantum excitation and
spin topology filtration in high-resolution NMR, J. Chem. Phys.
83, 3297 (1985).

[83] S. S. Köcher, T. Heydenreich, Y. Zhang, G. N. M. Reddy, S.
Caldarelli, H. Yuan, and S. J. Glaser, Time-optimal excitation
of maximum quantum coherence: Physical limits and pulse
sequences, J. Chem. Phys. 144, 164103 (2016).

[84] P. Hyllus, O. Gühne, and A. Smerzi, Not all pure entangled
states are useful for sub-shot-noise interferometry, Phys. Rev.
A 82, 012337 (2010).

[85] J. Teles, E. R. deAzevedo, R. Auccaise, R. S. Sarthour, I. S.
Oliveira, and T. J. Bonagamba, Quantum state tomography for
quadrupolar nuclei using global rotations of the spin system, J.
Chem. Phys. 126, 154506 (2007).

032101-13

http://arxiv.org/abs/arXiv:quant-ph/0612146
https://doi.org/10.1103/PhysRevLett.113.150402
https://doi.org/10.1103/PhysRevLett.113.150402
https://doi.org/10.1103/PhysRevLett.113.150402
https://doi.org/10.1103/PhysRevLett.113.150402
https://doi.org/10.1103/PhysRevLett.116.150502
https://doi.org/10.1103/PhysRevLett.116.150502
https://doi.org/10.1103/PhysRevLett.116.150502
https://doi.org/10.1103/PhysRevLett.116.150502
https://doi.org/10.1103/PhysRevA.93.042107
https://doi.org/10.1103/PhysRevA.93.042107
https://doi.org/10.1103/PhysRevA.93.042107
https://doi.org/10.1103/PhysRevA.93.042107
https://doi.org/10.1103/PhysRevA.67.054305
https://doi.org/10.1103/PhysRevA.67.054305
https://doi.org/10.1103/PhysRevA.67.054305
https://doi.org/10.1103/PhysRevA.67.054305
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1016/j.physa.2014.06.052
https://doi.org/10.1016/j.physa.2014.06.052
https://doi.org/10.1016/j.physa.2014.06.052
https://doi.org/10.1016/j.physa.2014.06.052
https://doi.org/10.1016/j.physleta.2014.06.043
https://doi.org/10.1016/j.physleta.2014.06.043
https://doi.org/10.1016/j.physleta.2014.06.043
https://doi.org/10.1016/j.physleta.2014.06.043
https://doi.org/10.1142/S0219749915600035
https://doi.org/10.1142/S0219749915600035
https://doi.org/10.1142/S0219749915600035
https://doi.org/10.1142/S0219749915600035
https://doi.org/10.1103/PhysRevA.65.032326
https://doi.org/10.1103/PhysRevA.65.032326
https://doi.org/10.1103/PhysRevA.65.032326
https://doi.org/10.1103/PhysRevA.65.032326
https://doi.org/10.1103/PhysRevB.71.195325
https://doi.org/10.1103/PhysRevB.71.195325
https://doi.org/10.1103/PhysRevB.71.195325
https://doi.org/10.1103/PhysRevB.71.195325
https://doi.org/10.1063/1.435086
https://doi.org/10.1063/1.435086
https://doi.org/10.1063/1.435086
https://doi.org/10.1063/1.435086
https://doi.org/10.1103/PhysRevLett.92.153003
https://doi.org/10.1103/PhysRevLett.92.153003
https://doi.org/10.1103/PhysRevLett.92.153003
https://doi.org/10.1103/PhysRevLett.92.153003
https://doi.org/10.1021/ja0490931
https://doi.org/10.1021/ja0490931
https://doi.org/10.1021/ja0490931
https://doi.org/10.1021/ja0490931
https://doi.org/10.1063/1.1893983
https://doi.org/10.1063/1.1893983
https://doi.org/10.1063/1.1893983
https://doi.org/10.1063/1.1893983
https://doi.org/10.1103/PhysRevLett.119.010403
https://doi.org/10.1103/PhysRevLett.119.010403
https://doi.org/10.1103/PhysRevLett.119.010403
https://doi.org/10.1103/PhysRevLett.119.010403
https://doi.org/10.1103/PhysRevLett.81.2594
https://doi.org/10.1103/PhysRevLett.81.2594
https://doi.org/10.1103/PhysRevLett.81.2594
https://doi.org/10.1103/PhysRevLett.81.2594
https://doi.org/10.1103/PhysRevLett.95.020501
https://doi.org/10.1103/PhysRevLett.95.020501
https://doi.org/10.1103/PhysRevLett.95.020501
https://doi.org/10.1103/PhysRevLett.95.020501
https://doi.org/10.1103/PhysRevLett.91.217904
https://doi.org/10.1103/PhysRevLett.91.217904
https://doi.org/10.1103/PhysRevLett.91.217904
https://doi.org/10.1103/PhysRevLett.91.217904
https://doi.org/10.1126/science.1057357
https://doi.org/10.1126/science.1057357
https://doi.org/10.1126/science.1057357
https://doi.org/10.1126/science.1057357
https://doi.org/10.1103/PhysRevLett.95.060502
https://doi.org/10.1103/PhysRevLett.95.060502
https://doi.org/10.1103/PhysRevLett.95.060502
https://doi.org/10.1103/PhysRevLett.95.060502
https://doi.org/10.1007/s00340-005-1917-z
https://doi.org/10.1007/s00340-005-1917-z
https://doi.org/10.1007/s00340-005-1917-z
https://doi.org/10.1007/s00340-005-1917-z
https://doi.org/10.1126/science.1104149
https://doi.org/10.1126/science.1104149
https://doi.org/10.1126/science.1104149
https://doi.org/10.1126/science.1104149
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1103/PhysRevA.88.042109
https://doi.org/10.1103/PhysRevA.88.042109
https://doi.org/10.1103/PhysRevA.88.042109
https://doi.org/10.1103/PhysRevA.88.042109
https://doi.org/10.1103/PhysRevLett.102.100401
https://doi.org/10.1103/PhysRevLett.102.100401
https://doi.org/10.1103/PhysRevLett.102.100401
https://doi.org/10.1103/PhysRevLett.102.100401
https://doi.org/10.1142/S0217984912300104
https://doi.org/10.1142/S0217984912300104
https://doi.org/10.1142/S0217984912300104
https://doi.org/10.1142/S0217984912300104
https://doi.org/10.1103/PhysRevLett.112.210401
https://doi.org/10.1103/PhysRevLett.112.210401
https://doi.org/10.1103/PhysRevLett.112.210401
https://doi.org/10.1103/PhysRevLett.112.210401
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.77.2851
https://doi.org/10.1103/PhysRevLett.77.2851
https://doi.org/10.1103/PhysRevLett.77.2851
https://doi.org/10.1103/PhysRevLett.77.2851
https://doi.org/10.1088/1751-8113/44/25/252002
https://doi.org/10.1088/1751-8113/44/25/252002
https://doi.org/10.1088/1751-8113/44/25/252002
https://doi.org/10.1088/1751-8113/44/25/252002
https://doi.org/10.22331/q-2017-09-06-27
https://doi.org/10.22331/q-2017-09-06-27
https://doi.org/10.22331/q-2017-09-06-27
https://doi.org/10.22331/q-2017-09-06-27
https://doi.org/10.1103/PhysRevA.97.022109
https://doi.org/10.1103/PhysRevA.97.022109
https://doi.org/10.1103/PhysRevA.97.022109
https://doi.org/10.1103/PhysRevA.97.022109
https://doi.org/10.1016/0009-2614(83)80697-6
https://doi.org/10.1016/0009-2614(83)80697-6
https://doi.org/10.1016/0009-2614(83)80697-6
https://doi.org/10.1016/0009-2614(83)80697-6
https://doi.org/10.1063/1.449189
https://doi.org/10.1063/1.449189
https://doi.org/10.1063/1.449189
https://doi.org/10.1063/1.449189
https://doi.org/10.1063/1.4945781
https://doi.org/10.1063/1.4945781
https://doi.org/10.1063/1.4945781
https://doi.org/10.1063/1.4945781
https://doi.org/10.1103/PhysRevA.82.012337
https://doi.org/10.1103/PhysRevA.82.012337
https://doi.org/10.1103/PhysRevA.82.012337
https://doi.org/10.1103/PhysRevA.82.012337
https://doi.org/10.1063/1.2717179
https://doi.org/10.1063/1.2717179
https://doi.org/10.1063/1.2717179
https://doi.org/10.1063/1.2717179



