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Abstract
In supervised learning, training and test datasets are often sampled from distinct distributions. Domain adaptation tech-

niques are thus required. Covariate shift adaptation yields good generalization performance when domains differ only by

the marginal distribution of features. Covariate shift adaptation is usually implemented using importance weighting, which

may fail, according to common wisdom, due to small effective sample sizes (ESS). Previous research argues this scenario

is more common in high-dimensional settings. However, how effective sample size, dimensionality, and model perfor-

mance/generalization are formally related in supervised learning, considering the context of covariate shift adaptation, is

still somewhat obscure in the literature. Thus, a main challenge is presenting a unified theory connecting those points.

Hence, in this paper, we focus on building a unified view connecting the ESS, data dimensionality, and generalization in

the context of covariate shift adaptation. Moreover, we also demonstrate how dimensionality reduction or feature selection

can increase the ESS and argue that our results support dimensionality reduction before covariate shift adaptation as a good

practice.
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1 Introduction

A fundamental assumption in supervised statistical learn-

ing is that the data used to train our models and the data we

want to make predictions for are sampled from the same

distribution. Usually, real-world machine leaning applica-

tions, explicitly or implicitly, rely on this assumption1.

However, that assumption is violated when there is

covariate shift [7, 8]. In this scenario, we have a train-

ing/source joint distribution Qx;y which differs from the

test/target distribution Px;y. Features are sampled from

different marginals Qx 6¼ Px while labels are sampled

according to the same conditional distribution Qyjx ¼ Pyjx.

In the training phase, labeled pairs fðxi; yiÞg
n
i¼1 are iden-

tically and independently sampled from Qx;y, while unla-

beled vectors fx0ig
m
i¼1 are identically and independently

sampled from Px. If the marginal distributions of features

have density functions px and qx, such that

supportðpxÞ � supportðqxÞ, the most common approach to

adapt a model for the target distribution is to employ an

empirical error weighted by wðxÞ ¼ pxðxÞ=qxðxÞ [7–11].
The weighting scheme may fail when the effective

sample sizes (ESS) are small. According to common wis-

dom, a small ESS hurts model’s performance in the target

distribution. As previous research argues, e.g., [12], that

kind of scenario is common when working with high-di-

mensional data. However, to the best of our knowledge,

there is no unified and rigorous view on how the three key

concepts (i) effective sample size (ESS), (ii) data dimen-

sionality, and (iii) generalization of supervised models
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under covariate shift are connected to each other. In this

paper, we present a unified theory connecting the three

concepts. Moreover, we also explore how dimensionality

reduction or feature selection can increase the effective

sample size.

This paper is organized as follows. In Sect. 2, we dis-

cuss previous results and explain our contribution to the

debate. In Sect. 3, we briefly review importance weighting

and introduce a new connection between effective sample

size and generalization in the context of covariate shift

adaptation. In Sect. 4, we introduce dimensionality to the

problem showing how it connects to the other two concepts

and then illustrate these connections with a toy experiment.

Finally, in Sect. 5, we show how dimensionality reduction

and feature selection can lead to a larger effective sample

size. We conclude our discussion with real-data experi-

ments that supports feature selection before covariate shift

adaptation as a good practice.

2 Related work

There is a rich literature on the problem of covariate shift

adaptation2 or related subjects. The main interest has been

to develop methods to estimate the density ratio

w [9, 11, 13–15]. Some of the proposed methods aim to

reliably estimate w in high-dimensional and unstable set-

tings [14, 15], when the more traditional approaches may

fail. However, according to the common wisdom of the

area, even if we could perfectly estimate w, we would still

have to deal with poor performance due to small effective

sample sizes (ESS), especially in high-dimensional set-

tings. Understanding the role of small ESS and possible

ways to attenuate it may, therefore, be productive. The

covariate shift adaptation literature has already tried to

articulate the relationships between ESS and generalization

in high-dimensional settings, also proposing dimensional-

ity reduction as a cure. In spite of that, we believe these

previous attempts fail in connecting these concepts in a

unified manner and as explicitly as we propose to do in this

paper.

In recent years, [16] proposed a regularization method

that controls the ESS and offers sharper generalization

bounds while correcting for covariate shift. However, the

authors do not explore how the number of features plays an

essential role. Another work that explores the concept of

ESS in the context of covariate shift adaptation is [17]. In

that work, the authors present the relationship between ESS

and generalization bounds in a transductive learning sce-

nario. Besides transductive learning not being as common

as inductive learning in practice, the authors also do not

explore how dimensionality plays an essential role in the

problem.

The idea of features dimensionality being related to ESS

is explored in [12], without formalizing the connection to

generalization. The authors also motivate how dimension-

ality reduction can make ESS bigger; however, the central

hypothesis adopted in this case is that dimensionality

reduction does not depend on the data, which, in most

cases, is not valid. In a more recent paper, [18] proposes a

dimensionality reduction method to make covariate shift

adaptation feasible, especially when estimating weights.

The authors show how the number of features is indirectly

related to transductive generalization bounds and effective

sample size when the correction is made by Kernel Mean

Matching [9]. In addition to the results being restricted to a

particular case, the authors implicitly assume that the

mapping that defines dimensionality reduction is given

beforehand and does not depend on the training data, what

is not realistic.

In this paper, we complement previous works by for-

mally articulating the relationship among ESS, general-

ization of predictive models in the inductive scenario, and

dimensionality as explicitly as possible. We present a

unified theory connecting the three concepts, which was

not observed by us in the literature. We also show that

dimensionality reduction, even considering that the map-

ping may depend on the data, mitigates low ESS by making

the source and target domains less divergent.

3 Effective sample size (ESS)
and generalization in covariate shift
adaptation

3.1 Importance weighting

To keep our discussion as self-contained as possible, we

first use this subsection to quickly summarize key points

behind importance weighting.

Given a hypothesis class H and a loss function L, our

goal is finding a hypothesis h� 2 H that minimizes the risk

R assessed in the target distribution Px;y using data from

source distribution Qx;y. From now on we assume: (i)

Qyjx ¼ Pyjx and Qx 6¼ Px; (ii) distributions Px and Qx have

probability density functions (p.d.f.s) px and qx such that

supportðpxÞ � supportðqxÞ. Then, the risk can be written in

terms of the source distribution:

RðhÞ ¼ Ex�Px
Eyjx LðhðxÞ; yÞ½ � ð1Þ

¼
Z

pxðxÞ
qxðxÞ

qxðxÞEyjx LðhðxÞ; yÞ½ �dx ð2Þ

2 See [8] for a general view.
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¼ Ex�Qx
Eyjx wðxÞ � LðhðxÞ; yÞ½ � ð3Þ

We would like to find a hypothesis hERMŵ 2 H that mini-

mizes a weighted version of the empirical risk while also

obtaining a low value for R. Assume we have an estimate ŵ

for the ’’true’’ weighting function w ¼ px=qx and that we

have pairs fðxi; yiÞg
n
i¼1 that are identically and indepen-

dently (i.i.d.) sampled from Qx;y. The weighted empirical

risk is thus given by

bRŵðhÞ ¼
1

n

Xn
i¼1

ŵðxiÞ � LðhðxiÞ; yiÞ ð4Þ

In practice, we might also want to add a regularization term

XðhÞ to penalize for the complexity of the hypothesis h.

3.2 Relationship of effective sample size (ESS)
and generalization in covariate shift
adaptation

To introduce the concept of effective sample size in the

context of covariate shift adaptation, we first describe how

this heuristic is employed within the importance sampling

literature [19–21], where it originally comes from. We

assume the ‘‘true’’ importance function (density ratio) is

known up to a constant. This assumption enables us to

achieve some theoretical results and is also adopted in

previous works [12, 22, 23]. The strategy we use to show

the relevance of the effective sample size in covariate shift

adaptation is to find an asymptotic approximation for that

quantity and then connect it to a known generalization

bound.

The ESS formulation we use is slightly different from

the most usual one [19–21] in the sense we are concerned

with percentage of effective samples and not with the

number of effective samples3. Given the two definitions are

not very different, the intuitions and some results regarding

ESS are easily adaptable. We present our definition in the

following.

Consider two probability distributions Pz and Qz over

Z � Rd with probability density functions pz and qz such

that supportðpzÞ � supportðqzÞ. From now on, we call Pz

the target distribution and Qz the source distribution. We

thus sample from Qz in order to estimate the integralR
Z gðzÞpzðzÞdz ¼

R
Z

pzðzÞ
qzðzÞ gðzÞqzðzÞdz, with g : Z ! R inte-

grable. A key quantity in this problem is the importance

function, which is given by w / pz=qz.

Suppose we have an independent and identically dis-

tributed (i.i.d.) sample fzigni¼1 from the source distribution

Qz and we want to use the (self-normalized4) importance

sampling estimator n�1
Pn

i¼1 �wigðziÞ in order to estimate

the integral of interest. The weights are given by

�wi ¼ wi=
P

j wj, where wi ¼ wðziÞ / pzðziÞ=qzðziÞ,
i 2 ½n� :¼ f1; :::; ng. Then, the effective sample size is

defined as

dESSnðPz;QzÞ :¼
1

n
Pn

i¼1 �w2
i

ð5Þ

¼ ð
Pn

i¼1 wiÞ2

n
Pn

i¼1 w
2
i

ð6Þ

Intuitively, the effective sample size is the percentage of

effective samples. For example, if the effective sample size

equals 1/2, then the importance sampling estimator effec-

tiveness is the same of a Monte Carlo estimator with n/2

samples. That formulation can be used to approximate, via

Delta Method, the ratio of Monte Carlo estimators’ vari-

ance and the self-normalized importance sampling esti-

mator’ variance, using the derivation made by [24]. While

that work motivates the use of the ESS, other approaches

can be derived from [20] and [21]. The latter presents the

relationship between effective sample size and the eucli-

dean distance between the vector ð �w1; :::; �wnÞ and the

’’ideal’’ balanced vector (1/n, ..., 1/n). Furthermore, effec-

tive sample size informs about the importance sampling

estimator’s convergence rate [25]. Said that, the results

presented in this section, in the context of covariate shift

adaptation, resembles the results presented by [25] in a

different context.

To move forward, we introduce the concept of Rényi

Divergence, which plays a central role in our analysis:

Definition 1 (Rényi Divergence [26]) Consider two

probability distributions Px and Qx over X � Rd , with

probability density functions px and qx such that

supportðpxÞ � supportðqxÞ. The Rényi Divergence of order
a[ 1 of Px from Qx is given by:

DaðPxjjQxÞ :¼
1

a� 1
log E

x�Qx

"
pxðxÞ
qxðxÞ

� �a
#

ð7Þ

Consequently, the Rényi Divergence of order 2 of Px from

Qx is given by D2ðPxjjQxÞ ¼ log Ex�Px
½pxðxÞqxðxÞ�.

Despite all previous work, the question of how we

should transpose the effective sample size concept to the

covariate shift adaptation framework remains. In the fol-

lowing, we make explicit the close relationship between

the ESS and generalization bounds under covariate shift

3 In the literature, it is common to present the ESS as n � dESSn, while
we are concerned only with dESSn (Equation 5).

4 We show the case of the self-normalized estimator because it

returns the most usual definition for the ESS, which is also used in the

context of covariate shift [16]. In spite of that, we show that this

definition for the ESS is still useful for the non-normalized case while

performing covariate shift adaptation.
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adaptation. As we start talking about covariate shift adap-

tation, we substitute z by a vector of features x, the set Z
by X or X � Y and the function g by the loss function L.

Before we move on, we must establish that the effective

sample size dESSnðPx;QxÞ converges almost surely to the

quantity ESS�ðPx;QxÞ, which plays a central role in our

analysis. ESS�ðPx;QxÞ can be considered a population

version for the effective sample size. From now on, we

may call it by population effective sample size or only

effective sample size, when it is not ambiguous.

Theorem 1 Consider two probability distributions Px and

Qx over X � Rd, with probability density functions px and

qx such that supportðpxÞ � supportðqxÞ. Suppose we have a
random sample fxigni¼1, identically and independently

sampled from the distribution Qx, and we define

wi ¼ wðxiÞ / pxðxiÞ=qxðxiÞ. Assume that

0\Ex�Qx
wðxÞ2
h i

\1. Then,

dESSnðPx;QxÞ �!
a:s:

n!1
ESS�ðPx;QxÞ ð8Þ

where

ESS�ðPx;QxÞ :¼ exp �D2ðPxjjQxÞ½ � ð9Þ

The quantity D2ðPxjjQxÞ is the Rényi Divergence of order

2 of Px from Qx [26].

The proof can be found in the ‘‘Appendix’’. The last

theorem can be seen as a variation of some of the results

presented by Agapiou et al. [25]. While the authors focus

on related but different divergences, we choose to present

this result in terms of the Rényi Divergence because, in that

way, we can connect it to other results in the literature.

Furthermore, it is essential to state that similar results hold

for other effective sample size definitions as, for example,

the one used by [12] divided by n, to give the percentage of

effective samples considering the non normalized weights

for covariate shift adaptation.

It is fascinating how Rényi Divergence naturally emer-

ges when working with the effective sample size. It is a

crucial point to understand that, when calculating the

effective sample size, we are approximating a quantity

inversely proportional to the exponential of Rényi Diver-

gence of order 2 of Px from Qx.

Now we focus on the understanding of how effective

sample size relates to generalization of adapted supervised

models. For Theorem 2, consider some conditions. Let X
denote the input space, Y the label set, and let L : Y2 !
½0; 1� be a bounded loss function. Denote the target dis-

tribution of features by Px and the source distribution of

features by Qx, such that Px is dominated by Qx. Consider

H to be the hypothesis class used by the learning algorithm

and f : X ! Y to be the labeling function we want to learn

about. We denote by PdimðUÞ the pseudo-dimension5 of a

real-valued function class U [27]. Pdim is used here to

quantify the complexity of a hypothesis class through the

loss function. Finally, R is the risk assessed in the target

distribution Px and R̂w is the weighted empirical error

calculated using the true weighting function (density ratio)

and samples fxigni¼1, identically and independently sam-

pled from the source distribution Qx.

Theorem 2 (Adapted from [22]) Define the function

LhðxÞ :¼ L½hðxÞ; f ðxÞ� and let H be a hypothesis set such

that Pdimð Lh : h 2 Hf gÞ ¼ p\1. Assume that

ESS�ðPx;QxÞ ¼ exp �D2ðPxjjQxÞ½ �, D2ðPxjjQxÞ\1, and

the target/source density ratio w[ 0. Then, for any

d 2 ð0; 1Þ, with probability at least 1� d, we have that:

sup
h2H

½RðhÞ � R̂wðhÞ� 	 ð10Þ

	 2
5
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ESS�ðPx;QxÞ
p �

p � log 2�e�n
p þ log 4

d

n

" #3
8

ð11Þ

See [22] for the proof and replace D2 by ESS� to get this

version of the theorem.

It is clear from Theorem 2 that ESS�ðPx;QxÞ plays a

fundamental role when learning f from data. A larger

ESS�ðPx;QxÞ leads to a tighter generalization bound.

Consequently, if dESSnðPx;QxÞ is a good approximation for

ESS�ðPx;QxÞ, the rationale behind using effective sample

size as a heuristic for diagnosis of covariate shift adaptation

becomes clearer. To conclude, we should mention that [23]

shows a similar result to Theorem 2 with less assumptions,

namely, assuming the existence of a labeling function f and

that w[ 0. However, we chose the form provided by [22],

as it gives us a more straightforward expression without

losing the property that is key to our approach, to say, that

a larger ESS�ðPx;QxÞ leads to a sharper generalization

bound.

4 The role of dimensionality

In Sect. 3, we showed the effective sample size’s role in

the context of covariate shift adaptation exploring its

asymptotic relationship with generalization bounds. How-

ever, we still need to understand the role that dimension-

ality plays during covariate shift adaptation. In Theorem 3,

we demonstrate that the Rényi Divergence of source and

target distributions does not decrease with the number of

features, and, consequently, the population effective

5 A pseudo-dimension is an extension of VC Dimension for real-

valued classes of functions.
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sample size does not increase with the number of features,

which explains potential adaptation problems for high-di-

mensional data.

Theorem 3 Given two joint probability distributions Px1;x2

(target) and Qx1;x2 (source) over X � Rd,

D2ðPx1;x2 jjQx1;x2Þ\1, with joint probability density func-

tions px1;x2 and qx1;x2 , such that

supportðpx1;x2Þ � supportðqx1;x2Þ, we have that

D2ðPx1;x2 jjQx1;x2Þ
D2ðPx1 jjQx1Þ ð12Þ

And, consequently,

ESS�ðPx1 ;Qx1Þ
ESS�ðPx1;x2 ;Qx1;x2Þ ð13Þ

The proof can be found in the ‘‘Appendix’’. This theo-

rem can be seen as a particular case of the Data Processing

Inequality [26].

Combining the results of Theorems 2 and 3, we con-

clude that performing covariate shift adaptation with many

features may not be feasible, as we would potentially have

loose generalization bounds.

Note that Theorem 3 does not necessarily say that by

reducing dimensions or selecting the most relevant fea-

tures, we will have a bigger effective sample size.

Reducing dimensions or selecting features is a random

process that depends on data, and we have ignored this fact

so far. In Sect. 5, we consider the randomness of the

dimensionality reduction or feature selection step to prove

that we can increase the effective sample size by following

these procedures before conducting covariate shift

adaptation.

4.1 A toy experiment

In this section, we present a toy experiment in order to

illustrate the relationship between effective sample size,

Rényi divergence, dimensionality, and performance of

supervised methods.

Assume there are two joint distributions of features and

labels Pk and Q with densities pk and q, being the case that

Q describes the source/training population and that Pk

describes the target/test population. Moreover, we assume

that we are facing the classical covariate shift problem, that

is, pkðyjxÞ ¼ qðyjxÞ ¼ pðyjxÞ but pkðxÞ 6¼ qðxÞ, plus the

fact that we cannot sample the labels from the test popu-

lation. Finally, consider qðxÞ ¼ N ðxj0; IdÞ and

pkðxÞ ¼ N ðxjk � 1; IdÞ, for k 6¼ 0, with d indicating the

number of dimensions. Suppose pðyjxÞ ¼ N ðyj100 � x1; 1Þ,
that is, y depends on x only through its first coordinate x1.

Firstly, we calculate D2ðPkjjQÞ and ESS�ðPk;QÞ as

functions of d and then simulate how the predictive power

of a decision tree regressor deteriorates as d increases and

ESS�ðPk;QÞ decreases. We train the trees by minimizing

the empirical error weighted by the true weighting function

w in the training set, also imposing a minimum of 10

samples per leaf as a regularization strategy. We choose to

work with decision trees since they are fast to train and

robust against irrelevant features. Thus, it is reasonable to

expect that a great part of performance deterioration is not

due to noisy features but because of small ESSs.

The first step to calculate ESS�ðPk;QÞ and D2ðPkjjQÞ is
to calculate exp½D2ðPkjjQÞ�:

exp½D2ðPkjjQÞ� ¼ Ex�Pk

pkðxÞ
qðxÞ

� �
ð14Þ

¼ Ex�Pk

exp½� 1
2
ðx� k1Þ>ðx� k1Þ�
exp½� 1

2
x>x�

( )
ð15Þ

¼ exp � dk2

2

� �
� Ex�Pk exp k

Xd
j¼1

xj

 !" #
ð16Þ

¼ expðdk2Þ ð17Þ

The last equality is true since expðk
Pd

j¼1 xjÞ�
LogNormalðdk2; dk2Þ. Then, D2ðPkjjQÞ ¼ dk2 and

ESS�ðPk;QÞ ¼ expð�dk2Þ.
Figure 1 depicts the behavior of Rényi Divergence and

ESS�ðPk;QÞ as functions of d. We also vary the value for

k. Given that D2ðPkjjQÞ only depends on jkj and not on

signðkÞ, we consider the case where k[ 0. When jkj is
bigger, the divergence between the source and target dis-

tributions also increases. Finally, to check how large d

affects performance of a regressor, we, for each d, (i)

sample 50 training and test sets of size 106, (ii) train the

trees on the training set minimizing the weighted empirical

error and (iii) assess the regressors on the test sets. The

third plot of Fig. 1 represents the average root-mean-square

test error (± standard deviation). Clearly the regressor

deteriorates as the divergence between domains grows and

the ESS decreases.

5 The use of dimensionality reduction/
feature selection to make effective sample
size bigger

In this section, we present dimensionality reduction and

feature selection as ways to obtain a bigger effective

sample size. The two main results of this section are given

by Theorems 4 and 5. We show that linear dimensionality

reduction and feature selection, under some conditions,

decrease Rényi divergence between the target and source

probability distributions, leading to a bigger effective

sample size. This result accounts for the dimensionality
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reduction or feature selection’s randomness; that is, the

transformation can depend on data in some specific ways.

To arrive at our main results, we first show the inter-

mediate result given by Lemma 1. In the following result,

A represents a constant dimensionality reduction matrix

and the vector b represents a translation in data before

dimensionality reduction, which is common when per-

forming principal components analysis (PCA) [28], for

example. When there is no need for considering a trans-

lation, we just can adopt b ¼ 0. Also, A can represent a

feature selector, as we explain in the coming paragraphs.

Lemma 1 Consider (i) two absolutely continuous random

vectors x�Qx and x0 �Px of size d
 2, D2ðPxjjQxÞ\1,

(ii) a nonrandom constant vector b 2 Rd, and (iii) a non-

random constant matrix A 2 Rd0�d with rank d0 (and

d0 	 d). Suppose Qx and Px measure events in X � Rd,

d
 2, and have probability density functions qx and px,

such that supportðpxÞ � supportðqxÞ. Also, assume Aðx�
bÞ�QAðx�bÞ and Aðx0 � bÞ�PAðx�bÞ. Then,

D2ðPxjjQxÞ
D2ðPAðx�bÞjjQAðx�bÞÞ ð18Þ

And, consequently,

ESS�ðPAðx�bÞ;QAðx�bÞÞ 
ESS�ðPx;QxÞ ð19Þ

The proof can be found in the ‘‘Appendix’’. Like The-

orem 3, this result can be seen as a particular case of the

Data Processing Inequality [26].

Although Lemma 1 gives us a way out in cases which

the dimensionality reduction is not random, this case is not

realistic. We know that, in practice, A and b are obtained

using data.

In the next results, linear dimensionality reduction and

feature selection are represented by the random matrix A.

If we assume in advance that A is absolutely continuous,

then it represents an ordinary dimensionality reduction

matrix. On the other hand, if A is composed of zeros except

for a single entry in each of its columns, which is given by

one, then it represents a feature selector. Also, we can

consider a random data translator b instead of the deter-

ministic b.

Theorem 4 (Linear dimensionality reduction) Firstly,

consider the training random samples of absolutely con-

tinuous vectors fxigni¼1 �
iid
Qx and an absolutely continuous

random vector from target domain x0 �Px. Assume Qx and

Px measure events in X � Rd, d
 2, and have probability

density functions qx and px, such that

supportðpxÞ � supportðqxÞ. Also, assume that

D2ðPxjjQxÞ\1. Secondly, consider an absolutely contin-

uous random vector b 2 Rd and an absolutely continuous

random matrix A 2 Rd0�d, rankðAÞ ¼ d0, jointly distributed
according to the p.d.f. pb;A, such that ðb;AÞ; xi; and x0 are

pairwise independent, for every i 2 ½n�. Assume that d0 	 d.

Suppose Aðxi � bÞ�QAðx�bÞ and Aðx0 � bÞ�PAðx�bÞ, for

every i 2 ½n�, then
D2ðPxjjQxÞ
D2ðPAðx�bÞjjQAðx�bÞÞ ð20Þ

And, consequently,

ESS�ðPAðx�bÞ;QAðx�bÞÞ 
ESS�ðPx;QxÞ ð21Þ

The proof can be found in the ‘‘Appendix’’.

Theorem 4 tells us that a dimensionality reduction

procedure before performing covariate shift adaptation

increases the population effective sample size. It is

important to state that Theorem 4 also holds when dis-

considering b and the proof’s adaptation is straightforward.

In that case, we would have that D2ðPxjjQxÞ

D2ðPAxjjQAxÞ and ESS�ðPAx;QAxÞ
ESS�ðPx;QxÞ.

Fig. 1 (i) We plot the Rényi Divergence of the target distribution Pk

from the source distribution Q as a function of the number of features.

Both distributions are normal with the same covariance matrix but

located
ffiffiffiffiffiffiffi
dk2

p
units apart from each other, i.e., the divergence also

depends on jkj; (ii) We plot the ESS�ðPk;QÞ as a function of d and

also varying k. As expected, ESS�ðPk;QÞ exponentially decays in d as
long as the divergence is linearly related with d; (iii) in 50 simulations

for each pair ðk; dÞ, we observe how decision trees’ performances

deteriorate as the divergence between domains grows and the ESS

decreases
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Next, in Theorem 5, we state a result regarding feature

selection.

Theorem 5 (Feature selection)Firstly, consider the

training random samples of absolutely continuous vectors

fxigni¼1 �
iid
Qx and an absolutely continuous random vector

from target domain x0 �Px. Assume Qx and Px measure

events in X � Rd, d
 2, and have probability density

functions qx and px, such that supportðpxÞ � supportðqxÞ.
Also, assume that D2ðPxjjQxÞ\1. Secondly, consider a

discrete random matrix A 2 Rd0�d, that represents a fea-

ture selector with rankðAÞ ¼ d0, distributed according to

the probability mass function (p.m.f.) pA, such that A; xi;

and x0 are pairwise independent, for every i 2 ½n�. Assume
that d0 	 d. Suppose Axi �QAx and Ax0 �PAx, for every

i 2 ½n�, then
D2ðPxjjQxÞ
D2ðPAxjjQAxÞ ð22Þ

And, consequently,

ESS�ðPAx;QAxÞ
ESS�ðPx;QxÞ ð23Þ

The proof can be found in the ‘‘Appendix’’.

Theorems 4 and 5 hold when the data used to obtain A

and b do not depend on training data that will be used to

train the supervised models or data points that represent the

target domain we want to make generalizations for. That

does not mean we cannot use some portion of the dataset to

obtain A and b, but it only means the results are not valid

for those specific used data points, being from source or

target domains.

Before closing this section, it is worth mentioning three

points. Firstly, at the same time dimensionality reduction/

feature selection solve the problem of low effective sample

sizes, it might impose other problems. For example, when

performing principal components analysis (PCA) [28] for

dimensionality reduction, it is not guaranteed the method

will not discard useful information for the supervised task.

Also, it is not even possible to ensure the covariate shift

main assumption, that the conditional distribution of the

labels are the same in source and target domains, still

holds. In this direction, [18] offers a clever solution to

overcome these specific problems, applying sufficient

dimension reduction (SDR), which is a supervised method,

to reduce dimensions. Secondly, given that A and b are

random quantities6, fAðxi � bÞgni¼1 or fAxigni¼1 may not

form independent samples, even when

, and fxigni¼1 �
iid
Qx. If samples are not

independent, then the results presented in Sect. 3 might not

hold. Finally, it is true that the results presented in this

section can be extended to include more general dimen-

sionality reduction transformations, i.e., nonlinear trans-

formations, and the validity of other transformations might

be proven using the Data Processing Inequality [26].

Unfortunately, exploring the two last points is beyond the

scope of the present paper and might be treated in future

work.

6 Numerical experiments with real data

In this section, we present regression and classification

experiments in which we perform feature selection before

covariate shift adaptation. When designing the experi-

ments, we choose to work with the least possible number of

assumptions, searching for evidence that the theoretical

results presented so far can be extended to more general

cases, which will be treated in future work. Namely, we did

not assume (i) the true importance function is always

known, (ii) that training data are independent of the feature

selector, and (iii) that training data are formed with inde-

pendent data points after the feature selection procedure.

For the following experiments, 10 regression datasets

with no missing values were selected7. Each experiment

consisted of (i) introducing covariate shift8, (ii) estimating

the weights, (iii) correcting the shift by the importance

weighting method, and finally (iv) assessing the perfor-

mance of the predictors and the effective sample size. We

also studied the classification case by binarizing the target

variables using their medians as a threshold. We use the

same datasets for both regression and classification

experiments to make comparisons easier. For each one of

the 10 datasets, we repeated the following preprocessing

steps: (i) we kept up to 8000 data points per dataset9, (ii)

generated new features using independent standard Gaus-

sian noise and (iii) standardized each column in every

dataset. By augmenting the dataset to 32 features using

noise, we can explore a scenario in which performance

deterioration is mainly due to small effective sample sizes.

We give more details on this point in the next paragraph.

The following procedure is used to create divergent

training and test sets after the preprocessing steps. For each

of the datasets, we sampled a sequence of vectors uni-

formly from ½�1; 1�d. We projected the data points onto the

subspace generated by each vector, resulting in only one

feature x
ðjÞ
i per sample i for each subspace/simulation j. For

6 This is not true when A and b are fixed.

7 From www.dcc.fc.up.pt/*ltorgo/Regression/DataSets.html and

https://archive.ics.uci.edu/ml/datasets.php.
8 Similarly to previous research, e.g., [9, 12, 16, 18].
9 The datasets ‘‘Abalone,’’ ‘‘Delta Ailerons,’’ and ‘‘Wine Quality’’

had 4177, 7129, and 6497 data points, respectively. All the others

were undersampled to have 8000 data points.
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each x
ðjÞ
i , we calculated the score

sij ¼ U
�
½xðjÞi �medianðxðjÞÞ�=rj

�
, which is the probability

that the data point i from simulation j is in the training set.

According to that score, we randomly allocated each data

point in either the training or test set in simulation j. The

constant rj was adjusted until the empirical effective

sample size, as defined in Sect. 3, is less than 0.01. Fol-

lowing this procedure, the training and test sets are

approximately of the same sizes in each simulation j. Then,

we fit two decision trees for each of the training/test sets:

one in the training set and one in a subset of the test set.

Then, we tested both decision trees in the unused portion of

the test set and compared their performance according to

the mean squared error for regression and classification

error (1 - accuracy) for classification. We selected the 75

simulations10 in which decision trees trained in the test sets

did best, relatively to the training set trees. We chose

decisiontrees because they are fast to train and robust

against irrelevant features. Thus, the noisy features added

in the datasets are not likely to directly affect predictive

power but only by making the effective sample size

smaller. It is important to state that, during the whole

experimenting phase, decisions trees were twofold cross-

validated in order to choose the minimum number of

samples per leaf11.

For the feature selection step, we were inspired by [18]

and the idea of Sufficient Dimension Reduction [29], which

is a supervised approach to dimensionality reduction and

feature selection, contrasting to Principal Component

Analysis, for example. Supervised approaches to dimen-

sionality reduction and feature selection are preferable

since we are able to keep important information for a

supervised task performed afterwards. Using training data,

we apply a combination of the methods described by

[30, 31] and the Forward Selection algorithm [32]. The

approach uses gaussian mixture models (GMMs) to esti-

mate, using the whole training set, the mutual information

between a subset of features and the target variable. In this

case, the number of GMMs’ components are chosen evenly

splitting the training data and performing a simple holdout

set hyperparameter tuning phase12. After training the

GMMs, the procedure follows these steps: we start by

choosing the feature that has the largest estimated mutual

information with the target variable, and, at each subse-

quent step, we select the feature that marginally maximizes

the estimated mutual information of target variable and

selected features. We repeat the process until we reach a

stop criteria. Our stopping criteria is that we should stop

selecting features when the marginal improvement in the

empirical mutual information is less than 1% relative to the

last level or when we select the first 15 features. An

implementation of the feature selection method is available

in the Python package InfoSelect13.

To estimate the weighting function for covariate shift

adaptation, we use the probabilistic classification approach

[8, 33] with a logistic regression model combined with a

quadratic polynomial expansion of the original features.

We choose to work with this approach since it is simple

and fast to implement, besides being promising for high-

dimensional settings. Others approaches are possible

though [8]. In order to prepare the data for training the

logistic regression model, we first append the whole

training set and randomly select rows (80%) from the test

set, and create the artificial labels for both groups. Then,

we randomly/evenly split that dataset in order to choose the

best value for the l1 regularization hyperparameter of the

logistic regression, using the simple holdout validation

approach14. After getting the optimal values for the

hyperparameter, we train a final model using the whole

appended dataset.

In the experiments, we work with four training scenar-

ios. In the first one, we use the whole set of features and no

weighting method. In the second one, we use the entire set

of features and importance weighting combined with the

‘‘true’’ weights ð1� sijÞ=sij. In the third, we use the whole

set of features and estimated weights using the probabilistic

classification approach. In the fourth scenario, we use only

selected features and estimated weights using the proba-

bilistic classification approach. Comparing the four sce-

narios enables us to see how importance weighting may fail

in high-dimensional settings due to low ESS, even when

we know the ‘‘true’’ weighting function.

Table 1 shows, for each one of the employed datasets,

(i) the original number of features, (ii) the augmented

number of features, (iii) the average number (± standard

deviation) of selected features for the regression and (iv)

classification experiments.

In Fig. 2, one can see the distribution of effective

sample sizes in all the weighted approaches, calculated in

the entire set of experiments. It is possible to notice how

small the ESSs can be by adopting the pure weighting

strategy. The feature selection step allows bigger ESSs.

In Table 2, we see the average test errors (± standard

deviation). To compute the errors, we use the test set

portion (20%) not used to train the importance function.

10 From the total of 7200 simulations.
11 More details on hyperparameter tuning can be found in the

‘‘Appendix’’.
12 More details on hyperparameter tuning can be found in the

‘‘Appendix’’.

13 See https://github.com/felipemaiapolo/infoselect or https://pypi.

org/project/infoselect/.
14 More details on hyperparameter tuning can be found in the

‘‘Appendix’’
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The errors reported are the mean squared error and clas-

sification error relative to the first scenario. From Table 2,

it is noticeable that our feature selection approach and

posterior weighting systematically outperforms all the

other benchmarks, especially the pure weighting method

when the whole set of features is used. Even the bench-

marks that used true weights are often beaten by large

margins. That suggests that poor models’ perfor-

mances are mainly due to small effective sample sizes

instead of difficulties estimating the weighting function.

Through our experiments, we were able to verify that

the feature selection stage tends to increase the effective

sample size, consequently allowing better performance of

supervised methods.

7 Conclusion

In this paper, we have made two main contributions. The

first is that we explicitly and formally connected three key

concepts in the context of covariate shift adaptation:

(i) effective sample size, (ii) dimensionality of data, and

(iii) generalization of a supervised model. Since, to the best

of our knowledge, there is no unified and rigorous view on

how the three key concepts connect to each other, we

consider this to be the first contribution of the paper. The

second contribution of the paper is that we show dimen-

sionality reduction or feature selection, even considering

data dependent mappings, corrects small effective sample

sizes by making the source and target distributions less

divergent. This suggests that it is a good practice to per-

form dimensionality reduction or feature selection before

covariate adaptation. We also present numerical experi-

ments using real and artificial data to complement our

theoretical results.

Regarding possible future research paths and improve-

ments, we point to Sects. 3 and 5. Concerning Sect. 3,

perhaps the three most relevant points to be considered for

future research relate to the following assumptions: the first

one is assuming the importance function is known up to a

constant, the second is assuming the sample ESS is close to

its population version, and the third is assuming indepen-

dent samples. While the first hardly applies in practice, the

second may hold in many situations, and the third could be

relaxed to include dependent samples, thus solving one of

the problems discussed in Sect. 5. Considering Sect. 5, we

think there is one main point to be explored in future work,

which is extending the theorems to include more general

transformations, i.e., nonlinear or training data dependent

transformations. Said that, future work and improvements

could focus on relaxing assumptions.

8 Computing infrastructure

All the experiments were carried out using a Google Cloud

Platform’s (GCP) Virtual Machine with 96 vCPUs and 86.4

GB of memory. All the experiments took around 4 h to run.

Table 1 Average Numbers of

features (± standard deviation) -

in this table we compare the

numbers of original, augmented

and selected features for

regression (reg.) and

classification (class.) tasks

Dataset Original Augmented Selected (Reg.) Selected (Class.)

Abalone 7 32 4:19� 1:26 9:87� 5:64

Ailerons 40 40 5:16� 0:54 3:79� 0:64

Bank32nh 32 32 10:00� 1:82 13:91� 0:61

Cal housing 8 32 5:29� 1:29 7:45� 4:92

CPU act 21 32 9:88� 1:20 2:56� 0:72

Delta ailerons 5 32 3:16� 0:49 3:75� 0:63

Elevators 18 32 7:97� 1:11 13:08� 2:16

Fried delve 10 32 4:45� 0:50 5:00� 0:00

Puma32H 32 32 1:88� 0:32 14:00� 0:00

Wine quality 11 32 9:60� 1:02 14:00� 0:00

It is possible to note that, on average, we select small subsets of features, even smaller than the original sets

Fig. 2 Effective Sample Size distributions across all experiments.

Notice higher ESSs can be achieved by a prior feature selection stage
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Appendix

Proofs and derivations

Proof of Theorem 1

Proof Assume the hypothesis stated are valid. Being c 6¼ 0 a real

constant, see we can re-wright the ESS as follows:

dESSnðPx;QxÞ ¼
ð
Pn

i¼1 wiÞ2

n
Pn

i¼1 w
2
i

¼
Pn

i¼1 c �
pxðxiÞ
qxðxiÞ

h i2

n
Pn

i¼1 c � pxðxiÞqxðxiÞ

h i2

¼
1
n

Pn
i¼1

pxðxiÞ
qxðxiÞ

h i2
1
n

Pn
i¼1

pxðxiÞ
qxðxiÞ

h i2

Then, by the Strong Law of Large Numbers and almost-

sure convergence properties [34], we verify that

dESSnðPx;QxÞ�!
a:s: Ex�Qx

pxðxÞ
qxðxÞ

h i2

Ex�Qx
pxðxÞ
qxðxÞ

	 
2
� � when n ! 1. To complete

the proof, we state the following

Ex�Qx

pxðxÞ
qxðxÞ

h i2

Ex�Qx

pxðxÞ
qxðxÞ

	 
2� � ¼ 1

Ex�Px

pxðxÞ
qxðxÞ

h i ¼ 1

exp D2ðPxjjQxÞ½ �

¼ ESS�ðPx;QxÞ

h

Proof of Theorem 3

Proof Assume the hypothesis are valid and let d2ðPx1 ;x2 jjQx1 ;x2 Þ =

exp½D2ðPx1 ;x2 jjQx1 ;x2 Þ�. See that:

Table 2 Average Test Errors (±

std. deviation) - here we

compared the predictive

performance of decision trees in

the test set of 75 different

simulations for each dataset. We

have four basic scenarios: (i)

whole set of features and no

weighting method; (ii) whole set

of features and use of ‘‘true‘‘

weights; (iii) whole set of

features and estimated weights;

(iv) selected features and

estimated weights

All features Selected features

Dataset Unweighted True weights Estimated weights Estimated weights

Regression Abalone 1.00 1:42� 0:24 1:25� 0:19 0:92� 0:07

Ailerons 1.00 1:01� 0:13 0:99� 0:11 0:87� 0:11

Bank32nh 1.00 1:29� 0:14 1:20� 0:11 0:98� 0:06

Cal housing 1.00 1:50� 0:24 1:35� 0:20 0:84� 0:09

CPU act 1.00 0:52� 0:55 0:55� 0:59 0:15� 0:21

Delta ailerons 1.00 1:39� 0:18 1:25� 0:12 0:92� 0:06

Elevators 1.00 1:10� 0:15 1:05� 0:13 0:85� 0:15

Fried delve 1.00 1:60� 0:22 1:40� 0:15 0:90� 0:11

Puma32H 1:00 2:24� 1:18 1:45� 0:22 1:77� 2:42

Wine quality 1.00 1:31� 0:12 1:24� 0:11 0:97� 0:04

Classification Abalone 1:00 1:29� 0:19 1:22� 0:16 1:05� 0:15

Ailerons 1.00 1:03� 0:27 1:01� 0:20 0:86� 0:13

Bank32nh 1:00 1:25� 0:13 1:20� 0:13 1:00� 0:09

Cal housing 1.00 1:43� 0:23 1:36� 0:19 0:87� 0:14

CPU act 1.00 1:09� 0:16 1:06� 0:16 0:99� 0:15

Delta ailerons 1.00 1:38� 0:40 1:25� 0:31 0:84� 0:12

Elevators 1.00 1:07� 0:15 1:04� 0:14 0:89� 0:13

Fried delve 1.00 1:34� 0:22 1:22� 0:18 0:85� 0:09

Puma32H 1:00 1:73� 0:59 1:22� 0:18 1:10� 0:42

Wine quality 1:00 1:20� 0:13 1:13� 0:10 1:07� 0:10

The numbers reported are the mean squared error and classification error averages and their std. deviations.

All the results were normalized w.r.t. the first scenario
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d2ðPx1;x2 jjQx1;x2Þ ¼ EPx1 ;x2

px1;x2ðx1; x2Þ
qx1;x2ðx1; x2Þ

� �

¼ EPx1

px1ðx1Þ
qx1ðx1Þ

� EPx2 jx1

px2jx1ðx2jx1Þ
qx2jx1ðx2jx1Þ

� �� �

¼ EPx1

px1ðx1Þ
qx1ðx1Þ

� d2ðPx2jx1 jjQx2jx1Þ
� �


 EPx1

px1ðx1Þ
qx1ðx1Þ

� �
¼ d2ðPx1 jjQx1Þ

The inequality is obtained by the fact that the exponential

of the Rényi Divergence must be greater or equal to one.

To complete the proof, see that ESS�ðPx1;x2 ;Qx1;x2Þ ¼
d2ðPx1;x2 jjQx1;x2Þ

�1
. Therefore,

ESS�ðPx1 ;Qx1Þ
ESS�ðPx1;x2 ;Qx1;x2Þ

h

Proof of Lemma 1

Proof If d ¼ d0, the result is direct, considering the arguments used

by Qiao and Minematsu [35] to prove their Theorem 1, because A
represents an invertible linear (and differentiable) transformation.

Otherwise, consider a full rank matrix C ¼ A
B

� �
2 Rd�d , where

B 2 Rd�d0 ;d . Given that C is full rank, it represents an invertible

linear (and differentiable) transformation. If Cðx� bÞ ¼
Aðx� bÞ
Bðx� bÞ

� �
�QCðx�bÞ and Cðx0 � bÞ ¼ Aðx0 � bÞ

Bðx0 � bÞ

� �
�PCðx0�bÞ, then

by the arguments used by Qiao and Minematsu [35] to prove15 their

Theorem 1 we have that D2ðPxjjQxÞ ¼ D2ðPCðx�bÞjjQCðx�bÞÞ. Dis-

carding Bðx� bÞ and Bðx0 � bÞ from random vectors Cðx� bÞ and

Cðx0 � bÞ, by Theorem 3, we have that

D2ðPxjjQxÞ
D2ðPAðx�bÞjjQAðx�bÞÞ

Therefore,

ESS�ðPAðx�bÞ;QAðx�bÞÞ ¼ exp �D2ðPAðx�bÞjjQAðx�bÞÞ
� �


 exp �D2ðPxjjQxÞ½ � ¼ ESS�ðPx;QxÞ

h

Proof of Theorem 4

Proof Firstly, we define v :¼ Aðxi � bÞ�Qv � QAðx�bÞ and

u :¼ Aðx0 � bÞ�Pu � PAðx�bÞ, for an arbitrary i 2 ½n�. Let qv and

pu be probability density functions associated with distributions Qv

and Pu. From Lemma 1, we know that D2 Pujb¼b;A¼AjjQvjb¼b;A¼A

� �
	D2 PxjjQxð Þ;8b 2 Rd , 8A 2 Rd0�d such that rankðAÞ ¼ d0. That

statement implies the following:

D2 Pujb¼b;A¼AjjQvjb¼b;A¼A

� �
	D2 PxjjQxð Þ

) expD2 Pujb¼b;A¼AjjQvjb¼b;A¼A

� �
	 expD2 PxjjQxð Þ

) Epb;A expD2 Pujb;AjjQvjb;A
� �� �

	 expD2 PxjjQxð Þ

)
Z

pb;Aðb;AÞ
Z

pujb;Aðujb;AÞ
pujb;Aðujb;AÞ
qvjb;Aðujb;AÞ

dudbdA

	 expD2 PxjjQxð Þ

)
Z

pujb;Aðujb;AÞpb;Aðb;AÞ
pujb;Aðujb;AÞ
qvjb;Aðujb;AÞ

pb;Aðb;AÞ
pb;Aðb;AÞ

dudbdA	 expD2 PxjjQxð Þ
) D2 Pu;b;AjjQv;b;A

� �
	D2 PxjjQxð Þ

) D2 PAðx�bÞjjQAðx�bÞ
� �

¼ D2 PujjQvð Þ
	D2 Pu;b;AjjQv;b;A

� �
	D2 PxjjQxð Þ

The last step is due to Theorem 3 (extending to random

matrices). To complete the proof, we state the following:

ESS�ðPAðx�bÞ;QAðx�bÞÞ ¼ exp �D2ðPAðx�bÞjjQAðx�bÞÞ
� �


 exp �D2ðPxjjQxÞ½ � ¼ ESS�ðPx;QxÞ

h

Proof of Theorem 5

Proof Firstly, we define v :¼ Axi �Qv � QAx and

u :¼ Ax0 �Pu � PAx, for an arbitrary i 2 ½n�. Let qv and pu be

probability density functions associated with distributions Qv and Pu.

From Lemma 1, we know that D2 PujA¼AjjQvjA¼A

� �
	D2 PxjjQxð Þ,

8A 2 Rd0�d such that rankðAÞ ¼ d0. That statement implies the

following:

D2 PujA¼AjjQvjA¼A

� �
	D2 PxjjQxð Þ

) expD2 PujA¼AjjQvjA¼A

� �
	 expD2 PxjjQxð Þ

) EpA expD2 PujAjjQvjA
� �� �

	 expD2 PxjjQxð Þ

)
X
A

pAðAÞ
Z

pujAðujAÞ
pujAðujAÞ
qvjAðujAÞ

du	 expD2 PxjjQxð Þ

)
X
A

Z
pujAðujAÞpAðAÞ

pujAðujAÞ
qvjAðujAÞ

pAðAÞ
pAðAÞ

du

	 expD2 PxjjQxð Þ ) D2 Pu;AjjQv;A

� �
	D2 PxjjQxð Þ

) D2 PAxjjQAxð Þ ¼ D2 PujjQvð Þ	D2 Pu;AjjQv;A

� �
	D2 PxjjQxð Þ

Given the matrix A represents a feature selector, it can only

assume a finite number of values. Thus, the sum is given

over a finite number of values of A. The last step is due to

15 Even though D2 is not an f-divergence, the thoughts presented by

Qiao and Minematsu [35] in their proof can readily be applied in this

case. Furthermore, we can write D2ðPxjjQxÞ ¼ logðv2ðPxjjQxÞ þ 1Þ,
where v2 is a f-divergence [36]. This is an another reason on why this

is valid.
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the Theorem 3 (extending to random matrices). To com-

plete the proof, we state the following:

ESS�ðPAx;QAxÞ ¼ exp �D2ðPAxjjQAxÞ½ �

 exp �D2ðPxjjQxÞ½ � ¼ ESS�ðPx;QxÞ

h

Experiments

In the experiments section, we tune three hyperparameters:

(i) l1 regularization parameter used to train the logistic

regression model when estimating w, (ii) the minimum

number of samples per leaf in each regression/classification

tree, and (iii) number of GMM components. We use the

Scikit-Learn [37] implementations to train the logistic

regressions, regression/classification trees and GMMs.

Firstly, we choose the l1 logistic regression regularization

parameter C from values in ½10�4; 5�, in order to minimize

the log loss in a holdout dataset. Secondly, we choose the

minimum number of samples per leaf in each regres-

sion/classification tree from values in the list

(5, 15, 25, 40, 50), in order to minimize the mean squared

error or classification error within a twofold cross-valida-

tion procedure. Finally, we maximize the log-likelihood in

a holdout dataset to choose the number of GMM compo-

nents, varying the possible number of components within

the list (1, 3, 5, 7, 9, 11, 13, 15).
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