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Complex systems such as ecological communities and neuron networks are essential parts of our
everyday lives. These systems are composed of units which interact through intricate networks. The ability
to predict sudden changes in the dynamics of these networks, known as critical transitions, from data is
important to avert disastrous consequences of major disruptions. Predicting such changes is a major
challenge as it requires forecasting the behavior for parameter ranges for which no data on the system are
available. We address this issue for networks with weak individual interactions and chaotic local dynamics.
We do this by building a model network, termed an effective network, consisting of the underlying local
dynamics and a statistical description of their interactions. We show that behavior of such networks can be
decomposed in terms of an emergent deterministic component and a fluctuation term. Traditionally, such
fluctuations are filtered out. However, as we show, they are key to accessing the interaction structure. We
illustrate this approach on synthetic time series of realistic neuronal interaction networks of the cat cerebral
cortex and on experimental multivariate data of optoelectronic oscillators. We reconstruct the community
structure by analyzing the stochastic fluctuations generated by the network and predict critical transitions
for coupling parameters outside the observed range.
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I. INTRODUCTION

We are surrounded by a range of complex networks
composed of many units forming an intricate network of
interactions. Neuron networks form an important class of
examples where the interaction structure is heterogeneous
[1]. Because changes in the interaction can have massive
ramifications on the system as a whole, it is desirable to
predict such disturbances and thus enact precautionary
measures to avert potential disasters. For instance, neuro-
logical disorders such as Parkinson’s disease, schizophre-
nia, and epilepsy are thought to be associated with an
anomalous interaction structure among neurons [2]. As in
the case of neuron networks, it is impossible to directly
determine the interaction structure. Therefore, a major
scientific challenge is to develop techniques using mea-
surements of the time evolution of the nodes to indirectly
recover the network structure and predict the network
behavior when the interactions change.
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The literature on data-based network reconstruction is
vast. Reconstruction methods can be classified into model-
free methods and model-based methods. The former
identify the presence and strength of a connection between
two nodes by measuring the dependence between their time
series in terms of correlations [3,4], mutual information [5],
maximum entropy distributions [6,7], Granger causality,
and causation entropy [8,9]. Such methods alone do not
provide information on the dynamics, which is necessary to
predict critical transitions. Model-based methods provide
estimates (or assume a priori knowledge) of the dynamics
and interactions and use this knowledge to reconstruct the
network structure. When the interactions are strong, the
network structure can be recovered [10-12]. For a more
extensive account of reconstruction (model-free and-based)
methods, see the reviews [10,13,14].

In many applications, the behavior of isolated nodes is
chaotic and the interaction is weak [1,15,16]. The network
structure typically has communities and hierarchical organ-
izations such as the rich clubs [17]. As the interaction
strength per connection is weak and the statistical behavior
of the nodes is persistent, the influence of each node on the
network corresponds essentially to a random signal.
Existing techniques fail to reconstruct a model from the
data, as they require the interaction to be of the same
magnitude as the isolated dynamics. In our setting, only the
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cumulative contribution of many links matter and the
network signals decompose into a deterministic and a
fluctuation term. The latter, which is usually filtered out,
turns out to give crucial information on the network
structure and is fundamental to our approach.

In this paper, we introduce the notion of an effective
network which aims to model a complex system from
observations of the nodes evolution when the network has a
heterogeneous structure, the strength of interaction is small,
and local dynamics are highly erratic. This approach starts
by reconstructing the local dynamics from observations of
nodes with relatively few connections, and then recover the
interaction function from observations of the highly con-
nected nodes whose dynamics are the most affected by the
interactions as a result of the multitude of connections they
receive from the rest of the network [18,19]. A key
achievement is that this reconstruction enables us to
identify community structures also when the coupling is
only weak. Moreover, it recovers enough information to
forecast and anticipate the network behavior, even in
situations where the parameters of the system change into
ranges that have not been previously encountered.

A. Complex networks of nonlinear systems

We consider networks with N nodes with chaotic
isolated dynamics and pairwise interactions. The network
is described by its adjacency matrix A, whose entry A;;
equals 1 if node i receives a connection from j and equals 0
otherwise. The time evolution of the state x;(¢) of node i at
time ¢ is expressed as

x;(t+1) =Fi(x; (1) + azN:Ain(xi(t),xj(t)). (1)

When performing reconstruction, the isolated local dynam-
ics F;: M — M, the coupling function H, the coupling
parameter «a (that is small), the adjacency matrix A, and the
dimension of the space M are all unknown. These equations
model important complex systems such as neuron networks
[20], smart grids [21,22], superconductors [23], and cardiac
pacemaker cells [24].

B. Main assumptions

Our three assumptions are the following. (a) The local
dynamics are close to some unknown ergodic and chaotic
map F (that is, |[F — F;|| < &, which is often the case in
applications [25,26]). (b) The network connectivity is
heterogeneous, which means that the number of incoming
connections at a node i (given by its degree k; = > iAij)
varies widely across the network. k; is large for a few nodes
called hubs. (c) a is such that, denoting by A = max; k;, the
maximum number of connections @A is at most of the order
of F and DF, where DF stands for the Jacobian of F.
Assumptions (a) and (c) imply that only the cumulative

effect of the coupling is important. A prime example is the
cat cerebral cortex which possesses interconnected regions
split into communities with a hierarchical organization, as
well as modular and disassortative rich clubs. This network
has heterogeneous connectivity, chaotic motion, and weak
coupling [27-29]. Other examples include the drosophila
optic lobe network [30,31]. For a given dataset, our
effective network first tests whether the underlying system
satisfies assumptions (a)-(c) and, if so, reconstructs
the model.

We assume the availability of a time series of
observations,

yi(t) = d(x;(1))

where ¢ is a projection to a variable on which unit
interactions depend. This situation occurs frequently in
applications, as with measurements of membrane potentials
in neurons.

II. EFFECTIVE NETWORKS RECOVER
STRUCTURE AND DYNAMICS

To obtain an effective (reconstruction of the) network from
observations, we combine statistical analysis, machine-
learning techniques, and dynamical systems theory for
networks. An effective network provides local evolution
laws and averaged interactions for each unit that, in combi-
nation, closely approximate the unit dynamics, and a network
with the same degree distribution and community structures
as the original system. We use the term “effective” because it
gathers sufficient data to reproduce the behavior of the
original network and predict its critical transitions.

Using our assumptions for the network and local dynam-
ics, we can show that the evolution at each node will
have low-dimensional excursions over finite timescales.
More precisely, the evolution rule at node i is approximately
given by

xi(t+1) = Gi(x,(1)) = Fi(xi(1)) + BV (xi(1)),
where F; = F is the isolated dynamics,
pi = ak;

is the rescaled degree, and

wm=/waww,

where y is physical measure of the isolated dynamics. V takes
into account the cumulative effect of interactions on node i.
The true dynamics,

xi(t+1) =G;(x;(1) +&(1).

is influenced by a fluctuation term &;(¢) that is small for an
interval of time which is exponentially large and depends on
the state of neighbors of the ith node. This low-dimensional
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reduction has been rigorously established in test cases (see
Ref. [19]). See the Appendix D and Sec. II of Supplemental
Material [32] for further information.

The approximation described above applies to the
measured state variable y;(7). First, we preprocess the data
according to the system under study (see Supplemental
Material [32]). The processed variable is still referred to as
y;(#). Takens reconstruction tells us that y;(r+ 1) is a
nonlinear function of k + 1 past points y;(¢), ..., y;(t — k),
for a given number k provided by the approach. Here, we
focus on the case when k = 1, which occurs in many real-
world examples, and discuss cases with k>2 in
Appendix E. This means that

yilt+1) = gi(y(2)) + &i(2), (2)

where g; = fi(y;(?)) + piv(y;(¢)), and v is the correspond-
ing projection of effective coupling V.

A. Reconstruction procedure

An effective network is obtained in three main steps.

1. Step 1. Reduced dynamics

We employ Takens reconstruction. If the time series is
high dimensional, we discard it. Otherwise, once we are in
the appropriate dimension, we estimate and learn the rule
g;- We decompose ¢; as a linear combination of basis
functions, tailored to the application. The parameters of the
basis functions are obtained by performing a tenfold cross-
validation with 90% training and 10% test [33,34]. As the
dynamics is low dimensional, other techniques such as
compressive sensing [35,36] or embedding [37] can be also
employed.

2. Step 2. Isolated dynamics and effective coupling

We run a model-free estimation that coarsely classifies
nodes according to their degree by assigning to every pair
of y; and y; a Pearson distance s;; > 0, such that s;; ~ 0 if
the attractors of i and j are similar and s;; ~ 1 if they are
distinguishable. The higher the number of nodes with
behavior different from i, the larger the intensity S; =
> ;jSij (see Appendix B for details). Low degree nodes
have typically small S;, while for hubs this quantity is large.
Notice that for the low-degree nodes, ak;v is negligible and
the dynamics at the low-degree nodes are close to f.
Therefore, we use g; at the identified low-degree nodes to
obtain an approximation for f = g;, while g; at hub nodes
allows us to estimate f;v =~ g; — f. We estimate f; by
Bayesian inference.

3. Step 3. Network structure and communities

Since f; = ak;, we can recover the network’s degree
distribution from f;. Then, having the local rules g;, we can
decompose the time series in terms of a low-dimensional

deterministic part and the fluctuation term &;, and use this
last term to recover community structures. If nodes i and j
interact with the same nodes, they are subject to the same
inputs and the correlation Corr(&;,&;) is high. If not,
Corr(&;,&;) is nearly zero due to the decay of correlations
in the deterministic part. Thus, Corr(¢;,&;) is high when
nodes i and j have high matching index (high fraction of
common connections), and are likely to belong to the same
cluster. Given the matrix p;; = Corr(¢;, £;), we estimate the
adjacency matrix A by thresholding the correlation matrix
as A;; = O(p;; > 1), where © is a Heaviside step function
and the value of the threshold 7 between 0.3 and 0.6. We
then apply the modularity-based Louvain method [38] on A
to detect communities.

That Corr(&;, &;) is high when nodes i and j have high
matching index is true for generic coupling, as shown by
the following argument. In general, the coupling function is
a sum of terms h(x,y) = u(x)v(y). This leads to noise
terms,

&) = utx) (5 S o) =k [ o0)an) )

where u is the physical measure of the local dynamics.
Given i and j, the sum can be split into common
connections to i and j and to the independent connections:
& = u(x)[Ci(r) +w(n)] and & = u(x;)[L;(1) +w(r)),
where w is the noise due to the common connections
(notice that w has zero mean), and {;, {; depend on different

coordinates and can be assumed to be uncorrelated.
Omitting the time index ¢, the covariance of &; and &; is

Cov(&;, &;) ~ E[(uxi)w) (u(x;)w)].

After some manipulation, we obtain
Cov(&;, &;) ~ (u)*Var(w), (3)

s0, if [u(x)du(x) = 0, the correlation between the noise
will vanish even though they have a common term. Thus,
the above scheme is able to recover communities if (v) # 0.
If this condition is not met, the network reconstruction via
the g;’s is not possible. We remark that (v) = 0 is a special
condition on the coupling that is destroyed by small
perturbations.

It is crucial that the correlation analysis is restricted to
fluctuations &;. Since the variance of the deterministic part
of y; is larger than that of the small fluctuations &,
performing a direct correlation analysis between y; and
y; hides all the contributions coming from the covariance
between &; and &;. Consequently, the correlation of the

021047-3



EROGLU, TANZI, VAN STRIEN, and PEREIRA

PHYS. REV. X 10, 021047 (2020)

deterministic part is close to zero due to the chaotic
dynamics, as shown in Appendix A.

B. Benchmark model for the isolated dynamics

We present the effective network methodology applied to
networks of neurons. We use synthetic time series where
each neuron is simulated using the Rulkov model, which
has two variables, u and w, evolving at different timescales
as described by F(x) = (F(u,w), Fo(u,w)), with

Fi(u,w) = s+w and F(u,w)=w—vu—o.

14+u

The fast variable u describes the membrane potential and is
the state variable measured by the observed time series
vi(t), while w describes the slow currents. Different
combinations of parameters ¢ and f give rise to different
dynamical states of the neuron, such as resting, tonic
spiking, and chaotic bursts. To test our procedure we
considered two cases, 6 = v = 0.001 and f = 5.9, which
correspond to tonic spiking, and # = 4.4, which correspond
to bursting. As for the coupling, we consider chemical
synaptic coupling, that is, H(x;,x;) = (h(u;, u;),0) with
h(u;,u;) = (u; = V)I'(u;), where

Tuj) = 1/(1 + exp{a(u; - ©,)}),

(a) Real network
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FIG. 1.

(b) Covariance of data

and electrical synaptic coupling, H(x;,x;) = (h(u;, u;),0),
with h(u;, u;) = u; — u;. In the chemical coupling, V is a
parameter called reverse potential. Choosing V > u;(1),
the synaptic connection is excitatory. We take V, = 20,
0, = —0.25, and 4 = 10. In addition to Rulkov maps, we
show in Appendix E that the approach performs well on a
wide range of nonlinear local dynamics such as doubling
maps, logistic maps, spiking neurons, and Hénon maps. We
also provide performance analysis for Rossler oscillators in
Sec. II of the Supplemental Material [32].

III. REVEALING COMMUNITY STRUCTURE:
THE RICH-CLUB MOTIF

We focus on the network structure of the cat cerebral
cortex [29]. The network contains 53 mesoregions arranged
in four communities that follow functional subdivisions:
visual (16 nodes), auditory (7 nodes), somatomotor (16
nodes), and frontolimbic (14 nodes), as shown in Fig. 1(a).
Some cortical areas (hubs) form a hidden layer called a rich
club and are densely connected to each other and the
communities. A set of nodes forms a rich club if their level
of connectivity exceeds what would be expected by chance
alone. The maximum number of connections in this net-
work is A = 37.

The regions and their connections were discovered by
using datasets from tract-tracing experiments [27,28]. The

(d) Effective network
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Effective network of the cat cerebral cortex. We use the local dynamics as a spiking neuron coupled via electric synapses.

(a) The cat cerebral cortex network with nodes color coded according to the four functional modules. Rich-club members are indicated
by red encircled nodes. (b) The covariance matrix of the data cannot detect communities. (c) The covariance matrix of the fluctuations
can distinguish clusters. This matrix has entries color coded (according to the key on the right) with red entries corresponding to pairs of
nodes sharing a large numbers of nearest neighbors in the network, while blue nodes correspond to pairs of nodes that share a small
number of common neighbors. (d) A model in the cat cortex constructed via the effective network approach. From the matrix in (c) we
can recover a representative effective network. The reconstructed network represents the actual network in (a) with good accuracy.
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network obtained is weighted. For simplicity and to
improve the performance in detecting communities, we
turn the network into an undirected simple graph [29]. We
simulate each mesoregion as a neuron interacting via
electrical synapses and obtain a multivariate data
{1(2), y2(2), ..., yn (1)} for a time T = 5000. For simplic-
ity, we denote y; = {y;(#)}_,.

A. Comparison with previous approaches

For comparison, we recover the network using two
widely employed approaches: functional networks [39-41]
and sparse recovery techniques [10,35]. The intuition
behind the functional network approach is that nodes with
similar time series have similar characteristics. The func-
tional network can be constructed by the matrix of
similarities between nodes via statistical analysis [42,43].
As a measure of similarity, we employ a covariance
analysis between the time series. The functional network
cannot detect communities in this case since the time series
at different nodes are essentially uncorrelated [Fig. 1(b)].
Other similarity measures give no significative improve-
ment. See Appendix B for the details.

The key idea in sparse recovery techniques is to write the
dynamics as a linear combination of basis functions with
unknown coefficients, and the presence of a link is deter-
mined when any coefficient of the corresponding interaction
is nonzero. Thus a link is present if the estimated coefficient
corresponding to the link is above a given threshold o.

We implemented the sparse recovery method to our
benchmark model when the strength of each connection is
of order a =~ 0.015. Hence we have chosen values of ¢ close
to this value. The reconstructed network does not identity
the clusters correctly, as can be seen by comparing the blue
and red markers in Fig. 2. In the cases that we are studying
here, each individual link provides a negligible contribution
and only the cumulative effect of many links is relevant.
The coefficients to be recovered are close to zero, and
cannot be distinguished from zero terms. A discussion on
sparse recovery can be found in Sec. I of Supplemental
Material [32].

B. Community structure via effective networks

Remarkably, the effective network is able to recover
the community structures [Fig. 1(c)]. Using steps 1, 2,
and 3, we obtain a model for the isolated dynamics,
coupling function, distribution of degrees, and correlations
Corr(&;, ;). To apply the method of community detection
in Ref. [38], we threshold the matrix of correlations,
Fig. 1(c), considering nodes i and j linked only when
the correlations were greater than 0.5. We test threshold
values ranging from 0.3 to 0.6 and obtain similar results as
the distribution of the entries of the matrix of correlations is
unimodal and has a peak near 0.5. We use the algorithm in
Ref. [44] to compute the rich-club coefficients for each
node. The coefficient depends on the degree and is a

0=0.011

0 20 30 40 50
Node index

Node index Node index

FIG. 2. Sparse recovery method on a cat cerebral cortex. Sparse
recovery is applied to the data generated by bursting neurons
electrically coupled on the cat cerebral cortex. Selecting the
threshold parameter ¢ in the method changes the reconstructed
network. Here we show the results of sparse recovery method for
different enforced sparsity ¢. The nonzero entries of the original
network’s adjacency matrix are in blue. The red filled circles
represent the nonzero entries in the adjacency matrix of the
network reconstructed with the sparse recovery method. As each
connection is small in comparison with the isolated dynamics, the
sparse recovery tends to neglect them.

number between 0 and 1. We assigned to the rich club the
nodes with coefficient at least 0.8. As shown by Fig. 1(d),
the effective network methodology is able to classify the
nodes in the network according to their function.

Note that our model predicts the presence of a link between
twonodes i and j when Corr(¢;, £;) is high. Since every node
makes most of its interactions within a cluster, two nodes
with highly correlated fluctuations &(z) are likely to belong to
the same community, and this can be enforced in the effective
network by adding a connection between them.

C. Performance of the communities reconstruction

To quantify the effectiveness of community recon-
struction, we compute the prediction error, which equals
m/N, where N is the total number of nodes and m is the
number of nodes assigned to the wrong community. We
compute the prediction error for Aa between 0.05 and 0.4.
For each value of «, we considered 50 different simulations
by choosing different initial conditions. The Fig. 3 shows
the plot of the mean of the prediction error and a shaded
region corresponding to the standard deviation. For Aa
values larger than 0.4, the reconstruction procedure cannot
identify the communities correctly as synchronization
appears in the rich club around this value.

In Appendix E, we analyze synthetic networks with 100
nodes which are undirected and have a rich-club structure.
We use them as a benchmark to evaluate the success of the
reconstruction. The ability of the reconstruction procedure
to recover the community structure was tested for various
coupling functions and isolated dynamics.

IV. PREDICTING CRITICAL TRANSITIONS
IN RICH CLUBS

The ability to reconstruct the network and dynamics
from data can be exploited to predict critical transitions that
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FIG. 3. Prediction error for misidentification of communities in

the reconstructed cat cerebral cortex from synthetic data. For each
realization, the chosen parameters are the same as in Fig. 1 and
only the overall coupling is changed. Mean and standard
deviation of prediction error computed for the network over
50 realizations for each value of a. If Aa > 0.42, the system
synchronizes and the procedure cannot reconstruct the commu-
nity structures.

may occur when the coupling strength varies. This is
crucial for applications. For example, in the cat brain, a
transition to collective dynamics in the rich club has drastic
repercussions for the functionality of the network [29,45].

The goal is to obtain and predict the onset of collective
motion in the rich club from data recorded when the
network is far from a collective dynamics. The effective
network can predict the onset of such collective dynamics
based on a single multivariate time series for fixed coupling
strength in a regime far from the synchronized state. We
analyze time series obtained simulating the dynamics for
Aa = 0.3, and reconstruct the network structure and the
isolated dynamics.

Transitions to synchronization between the scale variable
is possible while the fast spikes remain out of synchrony
[46]. Notice that the slow variable w changes on a scale
1/v. In the present setting we have 1/v = 103, which is
about the number of points we need to apply the approach.
Thus, for such short time series we can neglect the slow
scale. This is also an advantage of this present approach. To
estimate the transition to burst synchronization, we obtain
the slow variable as a filter over the membrane potential
(fast variable). Since we measure the membrane poten-
tial y;(¢) = u;(z), the slow variable is given as z;(1) =
uY i_ilvi(k) — o], and for a choice y and o, this can be
identified with the slow variable of the model w. In
Appendix C, we derive the following equation for the
slow variable of a node in the rich club:

1) = (= Ba)e(d) + 13 <)

where 4 = 1.42 is estimated from the data. The equation
can be used to analyze the effect of the network con-
nectivity on the dynamics. We can use the data on the
network and the dynamics recovered from the time series

0.8
(a) ) m
_a.25) U Mol Al . LA
os] XY VTR
= —330 ) ?,000 10000 0 - 5000 ‘10000
g Time

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7

FIG. 4. Prediction of critical transitions in the rich club of the
cat cerebral cortex. The level of synchronization r of the rich club
is shown for different values of the coupling strength. Insets show
time series of neuronal dynamics of four rich-club members, and
color of time series matches with the color of nodes in Fig. 1. For
values in the gray shaded region, r is increasing toward close to
one and the rich club exhibits collective behavior. We can predict
the critical coupling a,.. (standard deviation in shaded region) by
studying the effective network obtained from a time series
measured at Aa = 0.3.

recorded at Aa = 0.3 to predict that at the value Aa =~ 0.42,
the rich club will develop a burst synchronization (details in
Appendix C).

To capture a transition to a synchronized state, we
introduce a phase 6;(¢) for the slow variable. To define
6,(t), we first smooth the time series [47]. Then, we find the
time ¢, of local maxima as the nth maximum point of the
slow variable. We introduce the phase variable 6 as

t—t
0,(1) = 2n<7"+ zn>, Ly <t <ty
n+1 n

as shown in Ref. [48]. We then compute the order
parameter:

¢ j=1

A small value of the order parameter, r ~ 0, means that no
collective state is present, whereas () ~ 1 means that the
bursts are synchronized. Figure 4 shows that behavior of r
as a function of the coupling. The rich club undergoes a
transition to burst synchronization at Aa ~ 0.4 that corre-
sponds to an increase of roughly 40% of the coupling
strength and is close to the predicted value Aa ~ 0.42. In
Appendix E, we show other examples where the local
dynamics is chaotic.

V. OBTAINING A STATISTICAL DESCRIPTION
OF THE NETWORK

The effective network can provide a statistical descrip-
tion of the network structure. To illustrate this, we recon-
struct the statistical properties of scale-free networks.

021047-6



REVEALING DYNAMICS, COMMUNITIES, AND CRITICALITY ...

PHYS. REV. X 10, 021047 (2020)

(a) Original and reconstructed degree Distribution of the similarity (S)

distribution of a scale-free network

e Original == Yest=-3.1
1034 q o Effective 10°4
‘\. == Yest=-2.55 '\f
\
_ 1027 e 1075
X ‘o 0 v
= % T b
10%4 \‘v 1014 f‘
S .
\\ oo o
1094 tmeomn . 100 4 = .
100 100 102 10° 100100 102 10°
k S
(b) Reconstructed degree distribution (C) True parameter vs estimated parameter
optical lobe D. melanogaster
® e Original 3.6 /,
° o Effective 4
102 %, 3.31
X A 3.0
x >
& 101 .
P o® 2.74
-
L]
2.4+
1004 e o ° T
10 10' 102 103 24 27 3.0 33 36
k Y
FIG. 5. Reconstruction of structural power-law exponents y of

scale-free networks from data. We estimated y from the multi-
variate time series obtained from the dynamics random scale-free
networks with degree distribution P(k) « k7. The plots in
(a) compare the functional and effective network approach.
We obtain better estimates using the effective network. Panel
(b) shows the degree distribution of the original system (in blue)
and that estimated from an effective model (in red) for the neural
network in the optical lobe of Drosophila melanogaster. We
obtained an accuracy of 3% in the structural exponent y. Panel
(c) shows the true exponent y versus y., obtained with an
effective network from data for spiking neuron coupled with
chemical synapses. We generated 1000 networks with distinct y,
from which the y., estimate is within 2% accuracy.

A. Scale-free networks of coupled bursting neurons

We consider coupled bursting neurons with excitatory
synapses [46] in scale-free networks. A scale-free network
has degree distribution P(k) = Ck™", where y > 0 is the
characteristic exponent and C is a normalizing constant. We
generate a scale-free network with N = 10* nodes such that
the probability of having a node of degree k is proportional
to k77, where y = 2.53. We use a random network model
which is an extension of the Erdos-Rényi model for random
graphs with a general degree distribution. More details are
provided in Ref. [49].

For this reconstruction we only need 2000 data points for
each node. Again, to every pair of time series y; and y; we
assign a Pearson distance s;; > 0 and the node intensity
Si=> ;ij- The empirical distribution of the intensities S;
approximates the degree distribution of the network; see the
right-hand panel of Fig 5(a). In the example here, the
estimated structural exponent from the distribution of S; is

Yest = 3.1, which yields a relative error of nearly 25% with
respect to the true value of y [see the plots in Fig. 5(a)]. The
functional network therefore overestimates y, which has
drastic consequences for the predicted character of the
network. For example, the number of connections of a
hub for a scale-free network is concentrated at kp, ~
N1 5o the relative inaccuracy for the estimate k., of
the maximal degree is K,y /kese = N'/7~1/%e which is about
500%. Such inaccuracy has important repercussions for the
ability to predict the emergence of collective behavior
[19,50].

The statistical measures used for the construction of a
functional network typically depend in a nonlinear way on
the degrees, thus causing a distortion in the statistics.
We will discuss the case of Pearson distance. Suppose that
the signals {[y;(¢),y;(r+1)]} are purely deterministic,
yi(t+1) = g;(yi(¢)). The Pearson distance s;; between
the signal at i and j is a number between 0 and 1, depending
on how close these graphs are. This distance depends
nonlinearly on the degrees k; and k;. Devising another
distance s;-j without knowledge of the interaction, in general,
still carries the nonlinear dependence on the degrees. Once
fluctuations from the network are included, the differences
between time series can be due to fluctuations rather than
differences in the degrees. The decomposition of the rules in
terms of interactions and fluctuations is essential to recover
degree distribution accurately.

The effective network provides a better statistical
description of the network structure. To compare with
the functional network approach, we constructed an effec-
tive network of the same system tested for the functional
network. The estimate for y from the effective network is
Yest = 2.55, which has an error of only 1% [left-hand panel
of Fig. 5(a)]. We repeat the analysis on a different network
with different parameters y in the degree distribution. The
estimated y. values are shown in Fig. 5(c) as a function of
the true parameter y. The relative error on the estimated
exponent is within 2%.

B. Performance of the degree distribution
reconstruction

In Appendix E, we present additional simulations
showing how accurate the degree distribution is recon-
structed for various isolated dynamics. In particular, Fig. 2
in Supplemental Material [32] we show the results for
(a) doubling maps with diffusive coupling, (b) logistic
maps with Kuramoto interactions, (c) spiking neurons with
electrical coupling, and (d) Hénon maps with the y
component diffusive coupled with the x component.
Moreover, in Supplemental Material [32] we show the
performance of the reconstruction for a system of differ-
ential equations coupled on scale-free networks.

We provide a study on the effects of noise in the
reconstruction (Sec. II.B of Supplemental Material [32]).
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FIG. 6. Effective network from experimental data of networks of optoelectronic oscillators. We consider multivariate time series of
voltages of a network of 17 weakly coupled optoelectronic oscillators (interaction corresponding to 1% of the oscillator amplitude). In
the left-hand panels, we show the actual network used to couple the optoelectronic oscillators in Ref. [52] as adjacency matrix in (a) and
graph representation in (d). In the middle panels, we show the reconstruction of the network by a functional network analysis in terms of
its adjacency matrix in (b) and graph representation in (e). In the right-hand panels, we show the reconstruction of the network from an
analysis of the dynamical fluctuations by applying the effective network approach as adjacency matrix in (c) and graph representation in
(f). The effective network provides a striking reconstruction and only two links are misidentified and are indicated in (f) as red links. In
the graph representation, the nodes of the network are colored according to the community obtained by a community detection

algorithm [38].

We established that for stochastically stable [51] systems
such that the doubling map if the noise amplitude 7,
satisfies 77y < ak,;,, where k;, is the minimal degree, the
reconstruction procedure works. When the noise amplitude
is of order ak;, nodes with degree less than k; cannot be
estimated.

C. Optic lobe of Drosophila melanogaster

We applied our method to data simulated from the
neuronal network in the Drosophila melanogaster optic
lobe, which constitutes > 50% of the total brain volume
and contains 1781 nodes [30]. The degree distribution has a
power-law tail [31]. We used spiking neurons with chemi-
cal coupling to simulate the multivariate time series, from
which we constructed an effective model and estimated the
degree distribution [Fig. 5(b)].

1. Experimental data of optoelectronic oscillators

We now apply our effective network to experimental data
of networks of optoelectronic oscillators whose nonlinear
component is a Mach-Zehnder intensity modulator. This
data were generated in Ref. [52], where the authors studied
enhancement of synchronization by structural changes in

the network. The experimental setup can also be found in
Refs. [52,53]. Each element consists of a clocked opto-
electronic feedback loop. Light from a 780-nm continuous-
wave laser is nonlinearly transformed as it passes through
the Mach-Zehnder intensity modulator. Light intensity is
converted into an electrical signal by a photoreceiver and
measured by a field-programmable gate array (FPGA) via
an analog-to-digital converter. The FPGA is clocked at
10 kHz, resulting in the discrete-time map dynamics of
the oscillators. The FPGA controls a digital-to-analog
converter that drives the modulator with a voltage
x;(t+1) = pI(xi(t)), closing the feedback loop. The
elements are coupled electronically on the FPGA according
to the desired coupling matrix, as described in detail in
Ref. [53]. The system can be modeled as

0 1) =15 (1)) +0 S A (e ()]~ 1 ()]} mod 23

where 1 is discrete time, B is the feedback strength, 7(x) =
sin?(x + ) is the normalized intensity output of the Mach-
Zehnder modulator, x represents the normalized voltage
applied to the modulator, and & is the operating point set to
n/4. The data are acquired for § = 4.5 and 17 elements
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coupled through the network presented in left-hand panel
Figs. 6(a), 6(d). The coupling strength ¢ varies from 0 to 1
in steps of 0.0325 starting from 0.015625. For each fixed
value of o, we obtain the experimental multivariate time
series {x1(7), ..., x17(1) }H33%.

We discard the first 5000 data points for each i =
1,...,17 as a transient. We will provide an analysis for
the coupling ¢ = 0.03125. First, we perform a functional
network analysis by considering a correlation matrix X, of
the multivariate time series. To obtain a model of the
adjacency matrix, we threshold X,. The value of the
threshold 0.02 is chosen such that the functional network
has a mean degree close to the actual network. The result is
shown in middle panel Figs. 6(b), 6(e) and as observed, the
functional network does not capture the actual network
structure.

Next we employ the effective network. We start by
applying step 1 to learn the function g; and step 2 from
where we obtain the degrees and coupling strength. Once
we obtain g;, we filter the determinist part from x; to obtain
the fluctuations ;. Next, we compute the correlation matrix
2 for the fluctuations &;. To turn this matrix into a network,
we threshold it. Again the value of the threshold is fixed
such that the mean degree is closed to the actual network.
Here, any threshold value from 0.07 to 0.1 works. The
result is shown in right-hand panel Figs. 6(c), 6(f) and
shows excellent agreement with the actual network. In fact,
only two links are misidentified.

We also performed the analysis for further coupling
strengths o. For large coupling strengths, both functional
network and effective network will capture the network
misidentifying on average 4 links. In these cases, the
effective network has the advantage that it provides in
addition to a model of the adjacency matrix also a model for
the local dynamics.

VI. CONCLUSIONS

We have introduced an effective network obtained from
time series of a complex network observing the dynamics at
each node. Our method complements the existing ones in
two ways. First, it encompasses the case of chaotic local
dynamics at each node. Second, it deals with weak
coupling among the nodes. Both cases are commonly
found in applications [1,15,16]. Key to the success of
the reconstruction is the heterogeneity of the network
which allows us to perform a multilevel reduction. To
recover the community structures, we use that certain noise
terms associated with the time series at two nodes in the
same community are correlated. By collecting data when
the network is far from critical transitions, an effective
network enables us to predict a critical transition.

We have compared our procedure with methodologies
most relevant for the systems considered. We have
excluded results tailored to specific setups or dynamics

(binary dynamics [54], and see Ref. [10] for a review). We
did not consider methods that rely on measurements
obtained by intervening on the system with controlled
inputs [13], and we restrict our attention to time series
recorded under constant conditions. When the coupling is
strong, sparse recovery can be applied [35]. When the
coupling is weak, sparse recovery cannot distinguish small
parameters from those that are identically zero, thus mis-
identifying connections between nodes. Also, model-free
methods are ill suited, as the influence of a single pairwise
interaction on the time series is weak and can hardly be
detected.

The effective network methodology performs well when
the network is heterogenous and has a few nodes making a
large number of connections while most of the nodes are
less connected, and the local dynamics are chaotic and their
typical orbits visit most of the phase space. The effective
network approach did not perform well in two cases. The
first is when most of the observed time series take values on
a very restricted part of the phase space, for example, if the
local dynamics has a singular attractor, as an attracting
fixed point, or if it spends long periods of time in a small
region, like around the fixed points of the classical Lorenz
attractor. This means that we do not have access to a big
portion of phase space, and no prediction is possible in
those regimes of coupling strength that make these portions
accessible. The passage near a fixed point also suppresses
the fluctuations hindering the reconstruction of commun-
ities. This is what seems to happen, for example, in the
bursting dynamics of Rulkov maps, when the quiescent
state is too long. These situations are excluded if the local
dynamics is sufficiently chaotic. The second case is when
the coupling is strong enough to synchronize big parts of
the network. For example, a synchronous rich club can send
similar forcing to nodes in different communities, resulting
in high correlations between the fluctuations. Therefore,
our method would identify these nodes as belonging to the
same community even if they are not.

The connection matrices of cat cortex is found in
Ref. [55]. Connectivity of Drosophila melanogaster is
found in Ref. [56]. The experimental data on the optoelec-
tronic oscillators from Ref. [52] can be obtained by
contacting Hart and Roy upon reasonable request.
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APPENDIX A: EFFECTIVE NETWORK
REPRESENTATION FROM DATA

A summary of the effective network approach is given in
Fig. 7. Here we include some details that were omitted for
the sake of presentation in the main text.

In step 2 of the reconstructing procedure, we identify
low-degree nodes by analyzing the distribution of S;. More
precisely, we use the top N, nodes of the highest intensity
to obtain a proxy for the isolated dynamics. We then
average these rules to get (g) ~ f. The choice of Ny, is not
fixed and depends on the number of nodes and the
fluctuation o2 = ((g; — (9))?). For scale-free (Barabasi-
Albert) networks the degree of the hubs scales as N'/?; a
good heuristic is to choose Ny, satisfying 0'3 /Ntlo/p2 < L
The effective coupling function ak;v can be obtained
analyzing the family {g; — (¢)}".,, which can yield the
shape of v up to a multiplicative constant via a nonlinear
regression by imposing that g; —(g) and g; — (g) are
linearly dependent.

In step 3, after selecting a v that satisfactorily approx-
imates g; — (g) up to a multiplicative constant over all
indices i, the parameter f; is estimated using a dynamic
Bayesian inference. Because the fluctuations &;(t) are close
to Gaussian, we use a Gaussian likelihood function and a
Gaussian prior for the distribution of the values of f;, and
hence obtain equations for the mean and variance. We split
the data into epochs of 200 points and update the mean and
variance iteratively.

1. Community structures

Once we obtain the rules g;, we filter the deterministic part
of the time series y; and access the fluctuations &; [recall
Eq. (2)] and decompose it as &; = & 4 &7, where &£ is the
fluctuation of the local mean field from nodes in the cluster

Data Rules
e
W TIC Y L TRGE N
: : : |
Tl 1
L'Jd ‘ :
' S

Step 1: Step 2:
Machine-learning techniques and dynamical

systems theory allows us to obtain rules

Local interactions

ﬁ: isolated dynamics

mean interaction

: us to obtain the interaction

containing i, and &7 is the contribution from outside the
cluster. Since a node makes most of its connections within its
cluster, £ > &7 with high probability, and thus if i and j
belong to the same cluster, Corr(&;, &;) = Corr (&7, £5). The
common noise is generated by the common connections
between nodes i and j. For fixed isolated dynamics and
coupling function,

Corr (&5, &5) o fuj;.

Corr(¢;, &;) is related to the matching index [29] of the nodes
i and j. This is a parameter used to quantify the number of
common neighbors of two nodes. Recall that the degree
ofnodeiisk; = Zf' A;j and counts the number of neighbors
it has. Consider the neighborhood of node i, I'(i) =
{j €{l.....N}|A;; = 1}. Thisis the set of nodes that shares
an edge with the node i. The matching index of nodes i and #
is the cardinality of the overlap of their neighborhoods
uir = |U(i) NT(£)|. We consider the normalized matching
index:

o I are)
“ TR uT(e)

El

or equivalently in terms of the adjacency matrix,

L (A+A4%);,
Hie ki +ky—(A+A%),"

Clearly, ji;,, = 1if and only if i and / are connected to exactly
the same nodes, and fi;, = 0 if they have no common
neighbors. It is well known that in the cat cerebral cortex,
nodes in the same community have a high matching index
while nodes in distinct communities have a low matching
index. This tends to be typically in modular networks [29].
For nodes in distinct clusters the component & =0, so

Network representation

—+

+
fluctuations

: . Step 3:
: Heterogeneity in the rules allows : Reconstruction of highly chaotic

oscillator network from data

FIG. 7. Reconstruction scheme with the effective network. From the time series, we build a model for the local evolution f; at each
node. Under the assumption that such rules change from node to node depending on their connectivity, we estimate the coupling
function. Using the fluctuations of the time series with respect to the low-dimensional rules, we recover the community structures.
Gathering all this information, we obtain an effective network that can be used to predict critical transitions.

021047-10



REVEALING DYNAMICS, COMMUNITIES, AND CRITICALITY ...

PHYS. REV. X 10, 021047 (2020)

Corr(&;, &) ~ 0. We recover the network structure from a
noise covariance analysis.

Filtering out the deterministic part plays a major role in
recovering community structures. Suppose we have two
signals of the form y;(¢) = Y;(¢) + {(¢), i = 1, 2, where ¥;
is independent of i and {(z) is a common noise term. Y;
represents the superposition of the deterministic chaos and
the independent fluctuations. For the correlation, we have

Cov(¢,¢)
C LY N ———
orr(y;, y;) 7 o,

Hence, the large values of the variance of the time series
(0,, ® oy, > o) suppress the contribution of the common
noise, and an analysis solely based on the original time
series y; will overlook the common noise contribution.

APPENDIX B: FUNCTIONAL NETWORKS

For networks of chaotic oscillators, building the func-
tional network from the standard Pearson correlation
between time series gives no meaningful results because
of the decay of correlation intrinsic to dynamics. Functional
networks are built using a Pearson distance s;; > 0 describ-
ing the proximity of the dynamics at two nodes i and ;.
To do this, we consider the time series z;(t) := (y;(1),
yi(t+1)),t=0,...,T — 1, reordered in z**(¢) according
to the lexicon order, that is, according to the magnitude of
the first component of z;(¢). Then, let r;; be the Pearson
correlation, r;; = Corr(z\**, z}ex), so that r;; = 1 indicates
that the attractors at nodes i and j agree. Define the Pearson
distance s;; = 1 — |r;;], so that s;; = 0 indicates agreement
of the dynamics and s;; >0 measures the difference
between the attractors.

The intensity S; =>_ ;jSij approximates how many
nodes have a dynamical rule different from i and helps
to distinguish between poorly connected nodes and hubs.
Since most of the network is composed of poorly connected
nodes, they exhibit a smaller S; than high-degree nodes,
which are scarcer and have different dynamics from the
low-degree nodes.

APPENDIX C: PREDICTING CRITICAL
TRANSITIONS

Here we explain how to gather the information for a
theoretical prediction of the critical transition.

1. Reduction in the rich club

Nodes in the rich club have degrees of approximately A
and make kA connections inside the rich club and (1 — x)A
connections to the rest of the network. Following our
reduction scheme, the interactions within and outside the
rich club can be described by the expected value of the
interactions with respect to the invariant measure associated

with each of them. Let C denote the set of nodes in the rich
club, then the coupling term is

ZAin(xi,xj) = ZAin(xi’xj) T ZAiiH(xi’xj)'
J

jec Jj&C

However,

S AH(x) = (100 [ Hiryduty) + £,

JEC

where yu is the invariant measure for the nodes outside the
rich club. Hence, for the rich club we obtain

xi(t+1) = q;(x; (1) + ZAin(xivxj) + &7 (1),
jec

where

g (1)) = Fi(ei(1) + (1 - x)Aa / H(x,.y)duly).

2. Predicting the transition to collective behavior
Let us recall that when isolated, u;(t+1)=

Fyi(ui(2)) +wi(2), where Fy; ~ Fy, wi(t+1) = wi(1)+
p(wi(t) = 1), and
t
w(t+1) =wy —|—,uz;(u(n)—l)). (C1)
Using the reduction Eq. (C1), in the network we obtain
wi(t+1) = Fr(u;(1)) + w;(1) + Aal(u) — u;(0)] + &),
where i denotes the ith nodes in the rich club, (u) is the

mean in the rich club, and ¢; are fluctuations. We fix two
nodes y; = u; and y; = u; in the rich club and consider

¢() = i) = u;(1).

Using that F; ; & F; by the mean value theorem, we obtain
1
£t +1) = DFy (x(0)E(1) + 1) E(n) = Aag (1),
n=0
Introducing a proxy for the dynamics of the slow variables,

n(t) = Zé(n),

and considering >'_  DF(x;(n)){(n) =AY ! _,¢(n)
(where we used that ) ! {(n) is a slow variable), we obtain

n(t+1) = (A= dayn(t) +uy_n(n).
n=0
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For the cat cerebral cortex, A = 37. Given the time series {y; }
for Aa=0.3, we estimate F; using Step 1 of our
reconstruction procedure in Sec. II A. From the data, we
estimate 4 = 1.42, and thus we obtain Aa = 0.42. At this
critical value the slow variables tend to stay together due to the
contraction in the dynamics. This is related to the onset of
synchronization in the bursts, which is captured via a phase
variable through the order parameter.

For estimation of the power-law distribution parameters,
we use the maximum likelihood estimator [57,58]. After
that, we test the reliability between the data and the power
law by using the goodness-of-fit method. If the resulting p
value is larger than 0.1, the power-law estimation is an
appropriate hypothesis for the data. A complete procedure
for the analysis of power-law data can be found in Ref. [59].

APPENDIX D: DIMENSIONAL REDUCTION IN
HETEROGENEOUS NETWORKS

We present an informal statement of the theoretical
results used in the reconstruction procedure. For a precise
statement, see Ref. [19]. The theorem has three main
assumptions.

(1) The local dynamics must increase the distance

between points by a constant factor.

(2) The networks are heterogeneous. Most of the nodes
have small degree 5~ N2, and some nodes are
hubs with degree A ~ N'/2+¢,

(3) The reduced dynamics must be hyperbolic. The
maps G; must either be expanding or have a finite
number of attracting periodic orbits. In dimension
one, every map can be perturbed by an arbitrarily
small amount to obtain such a hyperbolic map [60].

Under these assumptions, we have the following result.

1. Theorem 1
For every hub node j, the dynamics at the hub is given by

x;(t+1) = G;(x;(1) + (1),

where [€;(1)| < & for time T with 1 < T < exp[C&2A], and
a set of initial conditions of measure 1 — T/ exp[CE2A],
where C is constant in A and &.

Note that one can pick the timescale 7' exponentially
large, but such that 7'/ exp[C&>A] is very small, so that, for
large A, the approximation result holds for very long time
and for a large set of initial conditions.

APPENDIX E: EFFECTIVE NETWORK FOR A
VARIETY OF CHAOTIC DYNAMICS AND
COUPLING

We tested the performance of the effective network in
recovering community structure and degree distribution for
the systems listed below. Recovery of community struc-
tures was tested on a network of 100 nodes having five

clusters of 20 nodes each. Four of these clusters are
modeled as an Erdos-Rényi random graph with connection
probability p = 0.3, and the fifth, the integrating cluster,
with p = 0.8. The coupling strength «a is of the order of
1074, Recovery of degree distribution was tested on scale-
free networks with 6000 nodes and characteristic exponent
y varying between 2.4 and 3.6, and coupling strength at
alA = 0.5. Details and results of the simulations can be
found in Supplemental Material [32].

1. Doubling maps

Since the dynamics is one dimensional, we denote x = x
and F;(x) = f;(x), with f;(x) =2x+ ¢;sin2zxmod I,
and where we take ¢; to be independent and identically
disturbed random variables uniformly distributed on
[0,107]. Likewise we writt H =h with h(x;,x;) =
sin 2zx; — sin 2zx;. We were able to recover all community
structures and the characteristic exponent y within 0.5%
accuracy.

2. Logistic map

Again, x =x and F;(x) = f;(x), where f(x):=
4x(1 —x), and we consider h(x;,x;) = sin(2zx; — 27x;).
We were able to recover all community structures and the
characteristic exponent within 0.5% accuracy.

3. Spiking neurons with electrical synapses

We use the same spiking neurons as in the main text, and
denoting x = (u,w), the coupling function reads as
H(x;,x;) = E(x; —x;) = (u; —u;,0). We were able to
recover all community structures and the characteristic

exponent within 2% accuracy.

4. Bursting neurons with electrical synapses

Our numerical investigation reveals that when the resting
time is not much larger than the total bursting time, the
reduced dynamics is capable of extracting the relevant
information of the time series. Thus, we fixed the neuron
parameter f§ = 4.4 to obtain a bursting dynamics. The
coupling is electrical, as for the systems above. We were
able to recover all community structures.

5. Hénon maps

Using the notation x = (u, w), the coupled Hénon maps
we study are given by F(u,w) = (1 - 1.4u> +w,0.3w)
and H(x;,x;) = (w; —w;,0). We assume to observe only
the dynamics of the first component, y = ¢(x) = u. In this
multidimensional case, the reconstruction will start by
determining the dimension of the reduced system.
Takens embedding reveals that the dimension is two for
large time excursions; hence, we will aim at learning a
function:
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yi(t +1) = gi(yi(2), yi(t = 1)) + &(1).  (El)

We use polynomial functions for the fitting via a tenfold
cross-validation. Our theory implies that g; (;(¢),y;(t—1)) =
JFi(0).yi(t=1)) +akv(y;(1).yi(t=1)), where f models
the isolated dynamics and v the coupling. We obtain f from
the low-degree nodes via a similarity analysis. We learn A
by akiv(yi(t),yi(t = 1)) = g;(yi(1),yi(t = 1)) = f(vi(2),
yi(t —1)). We were able to recover all community structures
and the characteristic exponent within 2% accuracy.
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