
Feature Learning in Feature–Sample Networks
using Multi-objective Optimization

Filipe Alves Neto Verri
Institute of Mathematical and Computer Sciences

University of São Paulo – São Carlos, SP, Brazil

E-mail: filipeneto@usp.br

Renato Tinós, Liang Zhao
Department of Computing and Mathematics, FFCLRP

University of São Paulo – Ribeirão Preto, SP, Brazil

E-mail: rtinos@ffclrp.usp.br, zhao@usp.br

Abstract—Data and knowledge representation are fundamental
concepts in machine learning. The quality of the representation
impacts the performance of a learning model directly. Feature
learning transforms or enhances raw data to structures that are
effectively exploited by those methods. In recent years, several
works have been using complex networks for data representation
and analysis. However, no feature learning method has been
proposed to enhance such category of representation. Here, we
present an unsupervised feature learning mechanism that works
on datasets with binary features. First, the dataset is mapped into
a feature–sample network. Then, a multi-objective optimization
process selects a set of new vertices to produce an enhanced
version of the network. The new features depend on a nonlinear
function of a combination of preexisting features. Effectively, the
process projects the input data into a higher-dimensional space.
To solve the optimization problem, we design two metaheuristics
based on the lexicographic genetic algorithm and the improved
strength Pareto evolutionary algorithm (SPEA2). We show that
the enhanced network contains more useful information and can
be exploited to improve the performance of machine learning
methods. The advantages and disadvantages of each optimization
strategy are discussed.

Index Terms—Feature learning, complex networks, multi-
objective optimization, genetic algorithm

I. INTRODUCTION

A good representation of the encoded knowledge in a

machine learning model is fundamental to its success. Several

data structures have been used for this purpose, for instance,

matrices of weights, trees, and graphs [1], [2].

In recent years, several works have been using complex
networks for data representation and analysis [3]–[5]. Complex

networks are graphs with a nontrivial topology and can be

used to represent the interactions of a dynamical system [6].

Advances in the science of complex systems bring several

tools to understand such systems.

In [7], we describe how to map a dataset with binary

features into a bipartite complex-network. Such network is

called feature–sample network. We used this representation in

a semi-supervised learning task called positive-unlabeled (PU)

learning. Such task consists of a binary classification problem

in which few positive samples and many unlabeled samples

are given [8].

When dealing with machine learning problems, we often

need to pre-process the input data. Feature learning transforms

or enhances raw data to structures that are effectively exploited

by learning models. Autoencoders and manifold learning are

examples of feature learning methods [9]. Traditional ap-

proaches, however, can not be directly applied in feature–

sample networks.

In this paper, we propose a feature learning process to

enhance feature–sample networks. In summary, we optimize

the network by adding a limited number of new vertices based

on a non-linear function of the preexisting ones. The set of

new vertices is determined by a multi-objective algorithm, in

which the goal is to maximize the number of features while

maintaining some properties of the original data. Two multi-

objective approaches are proposed: a lexicographic genetic

algorithm (LGA) and an algorithm based on the improved

strength Pareto evolutionary algorithm (SPEA2). The choice

of the optimization methods aims to compare opposite results:

one that considers diversity – SPEA2 – and another that

prioritizes fast convergence – LGA.

We show that enhanced feature–sample networks improve

the performance of learning methods in the two main machine

learning paradigms: supervised and unsupervised learning. We

also expose the pros and cons of the proposed optimization

approaches.

The rest of this paper is organized as follows. Section II

describes how to enhance feature–sample networks as an

optimization problem. Section III presents the two proposed

algorithms. In Section IV, computer simulations illustrate the

optimization process and assess the performance improve-

ments in machine learning tasks. Finally, we conclude this

paper in Section V.

II. ENHANCED FEATURE–SAMPLE NETWORKS

In this section, we describe how we enhance a feature–

sample network by adding to it a constrained number of

new features. Connections between the samples and each new

feature depend on a nonlinear function of a combination of

preexisting features. The chosen set of new features is the

result of an multi-objective optimization process: the algorithm

should maximize the number of new features and uniformly

distribute them along the samples. The second objective is

adopted because the unbalanced distribution of the new fea-

tures leads to artifacts that hinder the performance of learning

methods.

In the following subsections, we first review the feature–

sample networks, then describe the creation of new features.

978-1-5090-6017-7/18/$31.00 ©2018 IEEE

Moreover, we elaborate an optimization problem to enhance

feature–sample networks.

A. Feature–sample network

Assume a machine learning task where the inputs are

represented by a dataset B = {�x1, . . . , �xN}. The dataset B
consists of N binary samples, each one with D features, i.e.,

�xi = [xi1, . . . , xiD] ∈ {0, 1}D. The feature vectors are sparse,

that is, the number of elements with value 1 is much lower

than the dimension D.

The feature–sample network G is a bipartite complex-

network whose edges connect samples and features of the

dataset B. A simple, unweighted, undirected graph (V, E) rep-

resents the feature–sample network. A vertex of G represents

either a feature or a sample, and edges only exist between a

sample vi and feature vN+j if xij = 1, where i = 1, . . . , N
and j = 1, . . . , D.

B. And-features definition

According to the Cover’s Theorem [10], given a not-densely

populated space of a classification problem, a training dataset

that is not linearly separable can be transformed into a linearly

separable dataset with high probability if it is projected to a

high dimensional space using a nonlinear transformation.

Since we assume the input feature–sample network is

sparse, we can create new features using nonlinear transfor-

mation to exploit the results of the Cover’s Theorem and, as a

consequence, obtain better performance for machine learning

algorithms. One way to produce new features is using the and
operator, which is a nonlinear Boolean function.

We call and-feature the new feature v that links to all

samples connected to a given subset of two or more preexisting

features.

Given a feature–sample network G with N samples and

D features, we can produce an and-feature v for each com-

bination W of q features such that |W| ≥ 2 and W ⊆
{vN+1, . . . , vN+D}. We call q the order of the and-feature

v. Thus, the number of possible and-features is

D∑
q=2

(
D

q

)
=

D∑
q=2

D!

q! (D − q)!
= 2D −D − 1.

In the rest of this paper, we index every possible and-feature

using the parameter �a = [a1, . . . , aD] ∈ {0, 1}D such that∑
j aj ≥ 2. Each element aj indicates the presence or absence

of one of the original features in the composition of a new

feature. The feature vN+j is part of the combination if, and

only if, aj = 1. Thus, the set W is {vN+j | aj = 1}.
Using this notation, we say that the and-feature v(�a) con-

nects to each sample vi if, and only if, (¬a1 ∨ xi1) ∧ · · · ∧
(¬aD ∨ xiD) = 1 holds.

From this discussion, it is easy to observe that enumerating

every combination has exponential cost. Moreover, once the

network is sparse, we expect that many of the and-features

have no connections at all. Also, arbitrarily including and-

features is not a valid approach, since it would impair the

network.

C. Optimization problem definition

The problem of enhancing the network can be viewed as a

optimization problem. Given an input feature–sample network

G with N samples and D features, we denote G(Y) the

enhanced network from the original G by adding every and-

feature v ∈ Y . The number of features of the enhanced

network, excluding the and-features that have no connections,

is given by D(Y). Thus, G = G(∅) and D = D(∅).
Let Mmax be the maximum allowed number of generated

features, we want to

maximize
Y

D(Y)
subject to D(Y)−D(∅) ≤Mmax.

The disadvantage of this approach is that the and-features

might not be well distributed. Thus, while some samples may

have few new features, others may have many. To overcome

this limitation, we introduce the disproportion Δ(G,G′) ∈
[0,∞) between the network G and its enhanced version G′.

The disproportion is zero if the number of new connections

in each sample is proportional to its initial sparsity. In this way,

while the sparsity of each sample might change, we keep the

same shape of the degree distribution of the samples.

Let ki be the degree of the vertex vi, the disproportion

between two networks is

Δ(G,G′) = sd

(
k1(G′)− k1(G)

k1(G) , . . . ,
kN (G′)− kN (G)

kN (G)
)

,

where sd is the standard deviation of the arguments.

Using the disproportion in our optimization problem, the

goal becomes

maximize
Y

D(Y),
minimize

Y
Δ
(G(∅),G(Y)),

subject to D(Y)−D(∅) ≤Mmax.

III. METHODS

In this section, we study the multi-objective problem stated

in the previous section and describe the two optimization

approaches proposed in this work.

A. Problem study

The number of possible and-features scales exponentially

with the number of features D (Section II-B). As a conse-

quence, storing every possible and-feature is not feasible.

Furthermore, the number of candidate solutions is also ex-

ponential with the number of possible new features. Precisely,

there are at the most

2D−D−1∑
m=1

(
2D −D − 1

m

)
=

2D−D−1∑
m=1

(
2D −D − 1

)
!

m! (2D −D −m− 1)!

solutions Y to explore. The size of the set Y cannot be

restricted by Mmax since many and-features may have no

connection.

The three common approaches for solving multi-objective

optimization problems are weighted-formula, lexicographic,

2018 IEEE Congress on Evolutionary Computation (CEC)

and Pareto [11]. The first strategy transforms the problem into

a single-objective one, usually by weighting each objective and

adding them up. The lexicographic approach assigns a priority

to each objective and then optimizes the objectives in that

order. When comparing two candidate solutions, the highest-

priority objective is compared and, if the evaluations are sim-

ilar, the second objective is compared. If the second objective

is also similar for both solutions, the third one is used, and so

on. Both the weighted-formula and the lexicographic strategies

return only one solution for the problem. This is an advantage

when compared to Pareto methods. A disadvantage for the

lexicographic approach is that the priority of the objectives

must be provided. Pareto methods use different mathematical

tools to evaluate candidate solutions, finding a set of non-

dominated solutions. A solution is said to be non-dominated

if it is not worse than any other solution concerning all the

criteria [11].

We use two objectives for the optimization problem stated

in this paper (Section II-C). The first objective clearly is more

important than the second one. So, the lexicographic approach

is attractive for this problem because it outputs only one

solution for each run of the algorithm. On the other hand,

the Pareto approach does not require a definition a priori of

the relative importance of the objectives. In this way, it is

important to compare the lexicographic and Pareto approaches

for the optimization of the feature-sample networks.

We design two population-based optimization algorithms.

Specifically, we consider the use of two metaheuristics: a) a

lexicographic genetic algorithm (LGA); and b) the improved

strength Pareto evolutionary algorithm (SPEA2) [12].

Although the methods are different, both approaches share

many properties – individual representation, population ini-

tialization, operators of mutation, recombination and selection

– which are explained in Section III-D. The main difference

between them is in the evaluation of the individuals.

In the LGA, the individuals are ordered lexicographically,

that is, they are ordered according to the first objective function

(number of new features) and, in case of tie, to the second

objective (disproportion). SPEA2, however, consider not only

the Pareto front but also the density of the solutions. SPEA2

is a popular multi-objective evolutionary algorithm that is

attractive for higher dimensional objective spaces [12].

B. Lexicographic genetic algorithm

The pseudo-code of the standard GA is presented in Algo-

rithm 1. Initially, a random population of candidate solutions is

generated. Then, while the stop condition is not met, the next

population is composed of the best individuals of the previous

population and the individuals originated by recombining and

mutating parents selected from the previous population [13].

The standard GA and the lexicographic GA are different

because during the evaluation of the candidate solution the best

individuals are decided lexicographically in the second [14].

In our specific problem, a solution Y1 is better than solution

Y2 if

• D(Y1) > D(Y2); or

Algorithm 1 Pseudo-code of a standard GA [13].

1: X ← INITIALPOPULATION()

2: while STOPCONDITION() = false do
3: EVALUATE(X)

4: Xnext ← ELITISM(X)

5: while |Xnext| < |X| do
6: parents ← SELECT(X)

7: children ← RECOMBINE(parents)

8: MUTATE(children)

9: Xnext ← Xnext∪ children

10: end while
11: X ← Xnext

12: end while.

• D(Y1) = D(Y2) and Δ
(G,G(Y1)

)
< Δ

(G,G(Y2)
)
.

Originally, the lexicographic ordering takes into account a

threshold to compare the objective function values. However,

given that our first objective function is a discrete value, we

opted out of the threshold.

C. Improved Strength Pareto Evolutionary Algorithm

SPEA2 works similarly to a traditional GA. The major dif-

ference is that it keeps an archive with the candidate solutions

for the Pareto set. If the number of non-dominated solutions

is greater than the limit of the archive, some solutions are

discarded. Such operation is called truncation. The truncation

operator tries to maintain the candidate solutions uniformly

distributed along the Pareto front [12].

Here, we select individuals by employing binary tourna-

ment. Also, let A be the archive size, we fix the parameter

k =
√
A in the truncation operator [12].

D. Metaheuristic design

The common implementation characteristics of our meta-

heuristic is exposed as follows.

1) Individual representation: In our problem, each solution

is a set Y of zero or more and-features. If we enumerate

every possible and-feature, the solution can also be viewed

as a binary vector with entries 1 for the present and-features.

2) Population initialization: Given μ, σ > 0, we sample,

without replacement, �M
 random and-features to compose

each candidate solution Y such that M ∼ N (μ, σ). And-

features are sampled so that the probability of having order

q ≥ 2 is

q − 1

q!
.

3) Recombination operator: We use the uniform crossover

operator with two parents generating two children. In Algo-

rithm 2, we show how to implement it efficiently using our

set representation.

4) Selection operator: The binary tournament method is

chosen to select the parents for the recombination step.

2018 IEEE Congress on Evolutionary Computation (CEC)

5) Mutation operator: Based on other mutation operators

for similar problems, we propose in this paper a specific

mutation operator to exploit the characteristics of the problem

of optimization of the feature-sample network.

Given a candidate solution Y , we apply η ∈ {1, 2, . . . }
random changes in the individual. For each change, there is a

equal probability of either

• trying to add a new and-feature; or

• trying to remove an and-feature v ∈ Y; or

• trying to modify an and-feature v ∈ Y .

For the first case, one and-feature v is sampled and the

solution is updated to Y ∪ {v}. Note that Y ∪ {v} = Y if the

and-feature v was previously present, that is v ∈ Y .

For the second case, with probability (|Y|+ 1)
−1

, the indi-

vidual Y remains unchanged. With probability 1−(|Y|+ 1)
−1

,

one and-feature v ∈ Y is sampled uniformly, and the candidate

solution is updated to Y \ {v}.
Finally, in the last case, an and-feature v(�a) ∈ Y with order

q =
∑

j aj is selected uniformly to be modified. Once the

and-feature is selected, a modified and-feature v′(�a′) will be

produced. Two cases may happen: a) with probability 1
q , an

index j′ ∈ [1, D] is selected uniformly, and �a′ is{
a′j′ = 1

a′j = aj ∀j �= j′;

b) with probability q−1
q , two indexes j′ ∈ {j | aj = 1} and

j′′ ∈ [1, D] are chosen uniformly. The modified and-feature is⎧⎪⎨
⎪⎩
a′j′′ = aj′

a′j′ = aj′′

a′j = aj ∀j �∈ {j′, j′′}
The first case will include one more term into the and-

feature if aj′ = 0. The second one swaps two elements of

�a and, effectively, takes effect when aj′′ = 0. The candidate

solution is then updated to (Y \ {v}) ∪ {v′}. The size |Y| is

never increased, and the candidate solution will be preserved

if v = v′.
6) Performance considerations: We can view both solu-

tions and and-features as binary vectors. However, the set

representation is more practical because of the high space-

complexity of the problem. Moreover, there is no need to store

entries for and-features that lack connections. Instead of just

ignoring them, we exploit the evaluation step to determine

which and-features are useless and remove them from the set.

Also, using the set representation, the crossover of the

candidate solutions Yparent
1 and Yparent

2 can be implemented

efficiently as shown in Algorithm 2. First, both children, Ychild
1

and Ychild
2 , will have the and-features that the parents share.

Then, for each and-feature v that is in either of the parents

and not in both, a child is chosen uniformly to have the new

feature v. The � in the algorithm stands for the symmetric

difference operator.

Finally, in the population initialization, a sampled and-

feature is composed by q with probability q−1
q! . Using the

Algorithm 2 Pseudo-code of the efficient uniform crossover

operator using the set representation of the individuals.

1: Ychild
1 ,Ychild

2 ← Yparent
1 ∩ Yparent

2

2: for v ∈ Yparent
1 �Yparent

2 do
3: if SAMPLEUNIFORM(0, 1) < 0.5 then
4: Ychild

1 ← Ychild
1 ∪ {v}

5: else
6: Ychild

2 ← Ychild
2 ∪ {v}

7: end if
8: end for

Algorithm 3 Pseudo-code of the efficient sampling of and-

features for the initial population.

1: j ← SAMPLE(1, . . . , D)

2: W ← {vN+j}
3: loop
4: j ← SAMPLE(1, . . . , D)

5: W ←W ∪ {vN+j}
6: if SAMPLEUNIFORM(0, 1) < 1− |W|−1 then
7: break
8: end if
9: end loop

set representation W of and-features, one can sample them

efficiently using the Algorithm 3. Original features vN+j ,

j ∈ {1, . . . , D}, are sampled with same probability and with-

out replacement. The sampled features are included iteratively

in the and-feature W . At each iteration, with probability,

1− |W|−1
the procedure stops.

IV. EXPERIMENTAL RESULTS

In this section, we present experiments of our feature

learning technique in problems of supervised and unsupervised

learning.

We illustrate the optimization process in the famous Iris

dataset. In this example, we compare the results of data

clustering using the original dataset against using the enhanced

one. To solve the clustering problem, we use community

detection in both networks.

In a similar way, we analyse the performance gain of the

proposed feature learning method in supervised learning tasks.

First, feature–sample networks are constructed from other four

UCI datasets. Then, we use our optimization approach to

enhance each network. The k-nearest neighbors [1] classifier

is applied in each scenario. Accuracy results are compared

before and after the optimization process.

A. Enhanced community detection and clustering

The UCI Iris dataset [15] contains 150 samples and 4

features. The classes are Iris setosa, Iris virginica, and Iris
versicolor. In [7], we built a feature–sample network from

this dataset by discretizing the features.

Figure 1 shows the generated network. In the experiments,

we use the same network as input for both algorithms, SPEA2

and LGA.

2018 IEEE Congress on Evolutionary Computation (CEC)

Figure 1. Feature–sample network for Iris dataset. Circles are vertices
associated with samples and squares with features. Colors represent the
classes. After discretization of the original dataset, each numeric feature
becomes 3 binary ones.

N
um

ber of A
nd-Features

D
isproportion

0 50 100 150 200

0

50

100

0.0

0.1

0.2

0.3

Generation

Figure 2. Evolution of the number of and-features and disproportion over
time of one execution of the SPEA2 algorithm with Iris dataset as the input
network. Solid lines are the average disproportion and number of and-features
of the non-dominated solution at a given generation. Shadows cover the range
of the measurements.

1) Evolution of the candidate solutions: As an illustration,

we execute the optimization process once for each strategy.

Such example provides a big picture of the strategies when

dealing with our specific optimization problem. Given the

characteristics of the machine learning problems involved, it

is interesting for us to observe how the candidate solutions

evolve over time. With this information, one can choose a

strategy given one’s time or memory restrictions.

We fix the population in 1000 individuals. For SPEA2, the

archive has size 100 and, for the LGA, we keep the 100 best

solutions over time. In the initial population, we use μ = 10
and σ = 5. The recombination rate is 0.6 and the η = 1
random changes are applied in each generated individual.

Figures 2 and 3 describe the obtained results. Both dispro-

portion and number of discovered and-feature are shown over

time. Solid lines are the average result in the population and

N
um

ber of A
nd-Features

D
isproportion

0 25 50 75 100

50

100

0.0

0.2

0.4

0.6

Generation

Figure 3. Evolution of the number of and-features and disproportion over
time of one execution of the LGA with Iris dataset as the input network.
Solid lines are the average disproportion and number of and-features of the
best 100 solutions (elitism) at a given generation. Shadows cover the range
of the measurements.

shadows cover the range – from minimum to maximum – of

each measurement. The results include only the non-dominated

solutions in SPEA2 and the 100 best solutions in the LGA.

Using both strategies, we could reach the optimal solution:

128 and-features with at least one connection and 0 dispro-

portion. However, the optimization strategies differ as to how

to achieve this.

SPEA2 tries to find as many new and-feature while keeping

the ones with lowest values of disproportion. When a larger

set of and-features with disproportion 0 is discovered, such

solution dominates all solutions found so far. Thus, we observe

“steps” in the evolution of the number of and-features.

In LGA, the disproportion is only considered when the

number of discovered and-features is the same. As a result,

the algorithm greedily produce and-features disregarding the

disproportion until it cannot find more new features to add. It

enables a faster convergence, but it may find only solutions

with high disproportion when it is unfeasible to reach the

maximum number of and-feature – which is very common

in practice. To solve this issue in larger problems, one can set

the limit in the number of new features, Mmax.

Finally, Figure 4 summarizes the average best results of 30

independent runs with the same parameters. The results are

consistent with the discussion above.

2) Clustering and community detection: The optimal en-

hanced feature–sample network for this dataset is in Figure 5.

One can notice that there are many new features and the

samples are more clustered.

Applying a greedy community detection method [16] in

both networks, the enhanced network has modularity 12.4%
(Q = 0.561) higher than the input network (Q = 0.499.)

2018 IEEE Congress on Evolutionary Computation (CEC)

N
um

ber of A
nd-Features

D
isproportion

0 50 100 150 200 250

50

75

100

125

0.00

0.05

0.10

0.15

Generation

Figure 4. Average number of and-features and disproportion in the Iris
dataset. Graphs show the average values of 30 runs for each algorithm over
time. In each run, only the best value of each objective is considered. Solid
lines correspond to LGA and dashed lines to SPEA2.

Figure 5. Feature–sample network for Iris dataset with all possible 128
and-features. Circles are vertices associated with samples and squares with
features. Colors represent the classes.

The enhanced network can also improve clustering tasks. If

comparing the expected class and the obtained communities,

the enhanced version achieves higher Jaccard index, 0.731
against 0.719.

B. Performance enhancement in supervised learning

We also apply our proposal in 4 classification tasks from

UCI [15]. Table I presents the datasets along with the number

Table I
UCI DATASETS ALONG WITH THE NUMBER OF SAMPLES N , FEATURES D,

AND POSSIBLE AND-FEATURE M .

Dataset N D M

Breast 2010 106 27 134,217,700
Ecoli 336 19 524,268
Glass 214 25 33,554,406
Wine 178 39 549,755,813,848

Table II
NUMBER OF AND-FEATURES AND DISPROPORTION OBTAINED BY THE

OPTIMIZATION PROCESS FOR BOTH STRATEGIES. AVERAGE AND

STANDARD DEVIATION ARE SHOWN FOR EACH MEASUREMENT.

Dataset LGA SPEA2

Breast 2010 2700± 0, 0.2± 0.03 513.3± 272.4, 0.02± 0.03
Ecoli 1900± 0, 0.13± 0.01 372.6± 268.3, 0.04± 0.04
Glass 2500± 0, 0.14± 0.01 481± 399, 0.05± 0.04
Wine 3900± 0, 0.28± 0.03 561± 452.8, 0.03± 0.02

Table III
NUMBER OF AND-FEATURES, DISPROPORTION, AND STRATEGY OF THE

BEST RESULTS.

Dataset Lowest disproportion Highest number of and-features

Breast 2010 513, 0.000 (SPEA2) 2700, 0.129 (LGA)
Ecoli 166, 0.011 (SPEA2) 1900, 0.114 (LGA)
Glass 416, 0.019 (SPEA2) 2500, 0.130 (LGA)
Wine 413, 0.015 (SPEA2) 3900, 0.226 (LGA)

of samples N , features D, and possible and-features M . We

highlight that it is unfeasible to list every possible combination

among the features even for small datasets. The input networks

are generated as specified in [7] with 3 bins.

The optimization process is executed 15 times for each

strategy – SPEA2 and LGA. We fix the population size in

1000, the archive size in 100, and the elitism 100 solutions.

For the initial population, we use μ = 50 and σ = 10. The

recombination rate is 0.6 and η = 1 mutation is performed for

each candidate solution. We limit the number of and-feature

by Mmax = 100D. The execution is stopped at the 1000th

generation.

Table II summarizes the number of and-features and dis-

proportion obtained by the optimization process. For the

LGA, we show the average and the standard deviation of the

measurements among the 100 best individuals. For SPEA2,

only the non-dominated solutions are considered.

As expected by considering the previous study (Sec-

tion IV-A,) the LGA achieved better count of and-features –

the maximum allowed –, but worse values of disproportion.

The candidate solutions of SPEA2 present wide variation, but

consistent lower disproportion.

For each one of the datasets, we take the candidate solution

with highest count of and-features and with the lowest dispro-

portion among every solution produced. (Solutions with less

than 100 and-features are ignored.) Such candidate solutions,

and the strategy that has found them, are indicated in Table III.

To estimate the improvements given by the new features, we

solve the classification problems for each one of the datasets

using the k-nearest neighbors method. As inputs we use the

interaction matrices of the original network and the enhance

ones from the selected candidate solutions. We performed 20
independent holdout validations with 60%, 70% and 80% of

labeled samples for each case. We varied k ∈ {1, 2, . . . , 20}.
The best results for each configuration are shown in Ta-

ble IV. Improvements are highlighted in bold. We see higher

2018 IEEE Congress on Evolutionary Computation (CEC)

Table IV
ACCURACY OF THE k-NN METHOD ON THE UCI DATASETS USING THREE DIFFERENT INPUT NETWORKS – ORIGINAL, LOWEST DISPROPORTION, AND

HIGHEST NUMBER OF AND-FEATURES. FOR EACH SETTING, THE BEST VALUE OF k IS SHOWN.

Dataset Original (k) Lowest disproportion (k) Highest number of and-features (k)

60% labeled
Breast 2010 0.63± 0.06 (1) 0.62± 0.06 (1) 0.65± 0.06 (1)

Ecoli 0.76± 0.03 (4) 0.76± 0.03 (4) 0.76± 0.03 (11)
Glass 0.66± 0.05 (5) 0.68± 0.05 (7) 0.69± 0.06 (7)
Wine 0.92± 0.02 (15) 0.93± 0.03 (9) 0.93± 0.02 (3)

70% labeled
Breast 2010 0.62± 0.07 (1) 0.63± 0.07 (1) 0.64± 0.06 (1)

Ecoli 0.76± 0.03 (4) 0.77± 0.03 (4) 0.76± 0.04 (12)
Glass 0.66± 0.06 (7) 0.69± 0.05 (6) 0.71± 0.05 (8)
Wine 0.92± 0.03 (17) 0.93± 0.03 (3) 0.93± 0.02 (5)

80% labeled
Breast 2010 0.65± 0.11 (5) 0.62± 0.10 (4) 0.66± 0.10 (3)

Ecoli 0.77± 0.03 (6) 0.78± 0.04 (4) 0.78± 0.04 (13)
Glass 0.66± 0.07 (7) 0.69± 0.06 (6) 0.72± 0.07 (9)
Wine 0.93± 0.05 (19) 0.94± 0.05 (3) 0.94± 0.03 (3)

improvements using the solutions with the highest number of

and-features than using those with lower disproportion.

V. CONCLUSION

In this paper, we presented an unsupervised feature learning

mechanism that works on datasets with binary features. First,

the dataset is mapped into a feature–sample network. Then, a

multi-objective optimization process selects a set of new ver-

tices that correspond to new features to produce an enhanced

version of the network.
We show that the enhanced network contains more infor-

mation and can be exploited to improve the performance of

machine learning methods.
To solve the optimization problem, we designed population-

based metaheuristics. We used both a LGA and the SPEA2

algorithm to find the candidate solutions.
From the experiments, we conclude that the LGA produces

more new features in fewer generations. However, candidate

solutions in SPEA2, besides having less new features, also

improved the performance of machine learning methods.
We realize that the disproportion is a good measurement

of the quality of the selected set of and-features. In future

works, we will correlate improvement and disproportion of

the solutions with the same number of features. Regarding

the optimization phase, we will use other well-known meta-

heuristics, such as NSGA-II, and different mutation operators

to compare with the presented approaches.
Furthermore, the learning techniques used – fast-greedy

community detection and k-nearest neighbors – do not take

full advantage of the new features. In subsequent studies, we

will elaborate learning models to exploit the enhanced feature–

sample network explicitly. The explicit knowledge of the new

features may increase the performance gain.

ACKNOWLEDGMENTS

This research was supported by the São Paulo State Re-

search Foundation (FAPESP) and the Brazilian National Re-

search Council (CNPq).

REFERENCES

[1] C. M. Bishop, Pattern Recognition and Machine Learning. Springer-
Verlag New York, 2006.

[2] X. Zhu and A. B. Goldberg, “Introduction to Semi-Supervised Learn-
ing,” Synthesis Lectures on Artificial Intelligence and Machine Learning,
vol. 3, no. 1, pp. 1–130, 2009.

[3] T. C. Silva, L. Zhao, and T. H. Cupertino, “Handwritten data clustering
using agents competition in networks,” Journal of Mathematical Imaging
and Vision, vol. 45, no. 3, pp. 264–276, 2013.

[4] T. C. Silva and L. Zhao, Machine Learning in Complex Networks, 1st ed.
Springer, 2016.

[5] F. A. N. Verri, P. R. Urio, and L. Zhao, “Network unfolding map
by vertex-edge dynamics modeling,” IEEE Transactions on Neural
Networks and Learning Systems, vol. PP, no. 99, pp. 1–14, 2016.

[6] M. E. J. Newman, Networks: An Introduction, 1st ed. New York, NY:
Oxford University Press, 2010.

[7] F. A. N. Verri and L. Zhao, “Random walk in feature-sample networks
for semi-supervised classification,” in 2016 5th Brazilian Conference on
Intelligent Systems (BRACIS), 2016, pp. 235–240.

[8] J. Mũnoz Marı́, F. Bovolo, L. Gómez-Chova, L. Bruzzone, and G. Camp-
Valls, “Semisupervised One-Class Support Vector Machines for Classi-
fication of Remote Sensing Data,” IEEE Trans. Geosci. Remote Sens.,
vol. 48, no. 8, pp. 3188–3197, 2010.

[9] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[10] T. M. Cover, “Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition,” IEEE Transactions
on Electronic Computers, vol. EC-14, no. 3, pp. 326–334, 1965.

[11] A. A. Freitas, “A critical review of multi-objective optimization in data
mining: A position paper,” SIGKDD Explor. Newsl., vol. 6, no. 2, pp.
77–86, 2004.

[12] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength pareto evolutionary algorithm for multiobjective optimization,”
in Evolutionary Methods for Design Optimization and Control with
Applications to Industrial Problems. Athens, Greece: International
Center for Numerical Methods in Engineering, 2001, pp. 95–100.

[13] M. Srinivas and L. M. Patnaik, “Genetic algorithms: a survey,” Com-
puter, vol. 27, no. 6, pp. 17–26, 1994.

[14] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont, Evo-
lutionary Algorithms for Solving Multi-Objective Problems. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 2002.

[15] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[16] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical Review E, vol. 70, no. 6,
pp. 1–6, 2004.

2018 IEEE Congress on Evolutionary Computation (CEC)

		2018-09-27T07:31:58-0400
	Preflight Ticket Signature

