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ABSTRACT ARTICLE HISTORY
The interest for nonlinear mixed-effects models comes from applica- Received 8 December 2018
tion areas as pharmacokinetics, growth curves and HIV viral dynam- Accepted 19 January 2022

ics. However, the modeling procedure usually leads to many diffi- KEYWORDS

culties, as the inclusion of random effects, the estimation process Nonlinear mixed-effects
and the model sensitivity to atypical or nonnormal data. The scale models; scale mixture of
mixture of normal distributions include heavy-tailed models, as the normal distributions; Monte
Student-t, slash and contaminated normal distributions, and provide Carlo EM; likelihood-based
competitive alternatives to the usual models, enabling the obtention approximation;

of robust estimates against outlying observations. Our proposal is to computational efficiency
compare two estimation methods in nonlinear mixed-effects models

where the random components follow a multivariate scale mixture

of normal distributions. For this purpose, a Monte Carlo expectation-

maximization algorithm (MCEM) and an efficient likelihood-based

approximate method are developed. Results show that the approxi-

mate method is much faster and enables a fairly efficient likelihood

maximization, although a slightly larger bias may be produced, espe-

cially for the fixed-effects parameters. A discussion on the robustness

aspects of the proposed models are also provided. Two real nonlinear

applications are discussed and a brief simulation study is presented.

1. Introduction

Nonlinear mixed-effects models (NLMEMs) provide a number of possibilities to dealing
with correlated data, such as growth curves or pharmacokinetic data, for example. The
most common assumption for the distribution of errors and random effects in NLMEMs
is the normality (see, for instance, [8,12,30]), which may not be the most appropriate choice
in cases of heavy-tailed data or in the presence of outliers. Moreover, it is extensively dis-
cussed in the literature that, even under the normality assumption, the estimation process
in NLMEM may require additional tools as numerical integration, Monte Carlo methods
or linear approximations based on Taylor expansion or Laplace approximations (see, for
instance, [30]).
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Recently, heavy-tailed distributions have been used to avoid the disproportional influ-
ence of outlying observations or heavy-tailed data, and some results in linear mixed-effects
models are presented, for example, in Savalli et al. [23] and Osorio et al. [17]. However, it
is not straightforward to extend the developed theory for nonlinear mixed-effects mod-
els, mainly because it requires numerical integration to obtain the marginal model. One
possibility to avoid this problem is to add the random effects to the nonlinear model in an
adequate linear form, which allows for obtaining the marginal model directly by applying
properties from elliptical distributions (see, for example, [22]).

An alternative is to consider a subclass of the elliptical distributions, known as the scale
mixture of normal distributions, which covers important heavy-tailed elliptical families,
such as the multivariate Student-t (MSt), multivariate slash (MSI]), multivariate contami-
nated normal (MCN), among others. A likelihood-based approach was recently presented
for linear and nonlinear mixed-effects models for censored data using Student-¢ distribu-
tions (see [15]). A relevant discussion is presented in Meza et al. [16], with a proposal of
using a stochastic approximation of the EM algorithm in nonlinear mixed-effects mod-
els. However, an unanswered question still remains about how to compare the estimation
under exact- or approximate-based likelihood, since the approximate method has been
applied in many papers (see, for instance, [9]). Another important point refers to the inter-
pretation of the random effects in nonlinear models, rarely discussed in the literature, but
which is crucial in these models.

Aiming to elucidate these points, we propose the comparison of two estimation methods
in nonlinear mixed-effects models with a scale mixture of normal distributions supposed
for the random effects and errors. The first method is a Monte Carlo EM method (MCEM),
based on the exact likelihood, and the second one is an approximate method based on
iterative approximations to a linear mixed-effects model. This comparison was consid-
ered under normality by Wu [30] and approximate inferences for nonlinear mixed-effects
models with scale mixtures of skew-normal distributions were addressed recently by Schu-
macher et al. [24]. We provide a discussion on the inclusion and interpretation of random
effects in nonlinear mixed-effects models and discuss the results from a simulation study,
which showed that the approximate method may be a fairly efficient alternative, though it
adds a larger bias in some situations.

The article is organized as follows. Two real-data motivating examples are described in
Section 2. Nonlinear mixed-effects models with a scale mixture of normal distributions
are discussed in Section 3 and the two estimation methods are proposed in Section 4. In
Section 5 the methodology is illustrated with the two motivating examples, and a brief
analysis about the robustness aspects of the proposed models is presented. In Section 6
we present a compact Monte Carlo simulation study to compare the two methodologies.
Finally, the results are discussed in Section 7.

2. Motivation

In this section, two motivating examples of nonlinear correlated data are presented, as well
as a brief discussion about the inclusion of random effects in nonlinear problems.
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Figure 1. Leaf weight versus the time for the soybean plants data set.

2.1. Growth curve problem

The three-parameter logistic model is frequently used to model growth curve data where
the mean of a response variate Y is related to a covariate T (frequently the time) according
to the nonlinear function g as follows:

A1

E(Y) :g(ﬂl’ ﬁZ’ :33’ T) = 1+ eXp{—[T - :32]/133}

One example is the growth of soybean plants (see, for instance, [19]), where Y is the average
leaf weight per plant (in g) and T is the time after planting (in days). The parameters B,
B2 and B3 have physical interpretations according to the response variable, in the example
where Y represents the leaf weight, the parameters 8;, 8, and B3 represent the asymptotic
leaf weight, the time at which the leaf reaches half of its asymptotic weight and the time
elapsed between the leaf reaching half and 1/(1 + e~!) &~ 3/4 of its asymptotic weight,
respectively. The observed data set is presented in Figure 1, where the points indicate the
measurements and line segments illustrate subsequent measurements taken in the same
plot. This data set is available in the computational package R under the name Soybean
{nlme}. Further details on the data set will be discussed in Subsection 5.1.

2.2. Pharmacokinetic problem

Another nonlinear problem considered here is the pharmacokinetics of a substance in the
body. This type of problem involves the absorption and elimination of a substance, and
it is usual to model the mean concentration of the substance, Y, by using the nonlinear
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Figure 2. Theophylline dataset.

function g of time, T, and dose, D, as follows

[exp(—eeT) — exp(—e™T)]
elKa _ elKe :

E(Y) = g(Ke, Ky, IC, T, D) = Dexp(IKe + IK, — IC))

An example is described by Pinheiro and Bates [19] on the anti-asthmatic agent theo-
phylline, where the serum concentration of the substance, Y (in mg/L), was measured at
eleven times (in h) after administering D dose (in mg/kg) in each of the 12 patients. The
nonlinearity of the data can be observed in Figure 2. This dataset is available in R under
the name Theoph {datasets}.

It is usual to call this nonlinear model a first-order compartment model, with the fol-
lowing interpretation for the parameters: IK, represents the logarithm of the substance
absorption rate, IK. is the logarithm of the substance elimination rate and IC; represents
the logarithm of plasma clearance. For more details, refer to Section 5.2.

2.3. Random effects interpretation in nonlinear mixed-effects models

One of the purposes of including random effects to a regression model is to enable dif-
ferent fitted models to distinct experimental units. In linear mixed-effects models, random
effects are usually related to the intercept and slope of the regression lines. Furthermore, the
inclusion of random effects in nonlinear models provide markedly different fitted curves,
according to the distinct interpretation of each parameter. Moreover, it is worth analyzing
the result of each random effect included in the model, since including a large number of
random effects may increase significantly the computational cost without bringing much
benefits.
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Figure 3. Result of the random effects in soybean plants hypothetical example.

2.3.1. Three parameters logistic model

For an illustration, let us suppose that different random effects would be included to a
three-parameter logistic model for modeling the leaf weight (g) with time after planting
(days). Let us consider a theoretical model with three random effects, given by

Y — B1+ by
1+ exp{—[T — (B2 + b2)]/(B3 + b3)}
and assume the values 8 = (19,55,9)", T = (14,21, 28, 35,42,49,56,63,70,77) | . An

illustration of the effect of individually including the random effects b;, b, and b3 can be
observed in Figure 3.

2.3.2. First-order one compartment model

For the theoretical first-order compartment model, consider the inclusion of different

random effects as it follows

{exp(_e(lKe—I—hl)T) _ exp[_e(lKa+b2) T}
e(lKa-‘rhz) _ e(lKe-‘rbl)

Y = Dexp[(IKe + b1) + (IKa + b2) — (IG + b3)]

and assume the values (IK, IK,, IC)) = (=2.4,0.4,—3)T, T = (0,1,2,...,25) . An illus-
tration of the effect of individually including the random effects by, b, and b3 can be
observed in Figure 4. As it can be seen in the graph, including random effects in each
fixed-effect parameter enables the model to take into account different variability patterns
for the absortion and elimination of the substance in the body.

3. Nonlinear mixed-effects models

In this section, we discuss briefly some properties of the scale mixture of normal dis-
tributions and then propose the nonlinear mixed-effects models with the appropriate
assumptions.

3.1. Scale mixture of normal distributions (SMN)

The symmetrical class of SMN distributions is known by their robustness properties and
it includes important distributions as Student-t, slash and contaminated normal (see, for
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Figure 4. Result of the random effects in first order, one compartment model.

example, [1,10]). It is frequently advantageous to represent an m—dimensional random
vector Y following a SMN distribution in its stochastic form

Y = p +«(U)?Z,

where p is the location vector, U is a positive random variable with cumulative distribution
function (cdf) H(v) and probability density function (pdf) h(v), where v is a scalar or
vector parameter indexing the distribution of U, « (U) is the weight function, Z ~ N(0, X)
with Z and U independent. Given U = u, Y follows a multivariate normal distribution
with mean g and variance-covariance « (1) X. In other words, the SMN distribution is a
scale mixture of normal distributions, where the distribution of the scale factor U is the
mixing distribution. The marginal pdf of Y may be written as

fy =/O Gm(y | 1, & (W) X) dH(v), (1)

where ¢, (- | 1, X) stands for the probability density function of the m-variate normal

distribution with mean vector u and covariance matrix X. We will use the notation
Y ~ SMN,,,(u, X; H).

3.2. Robust nonlinear mixed-effects models
Suppose thaty = (y{,...,y, )T isa vector of observed continuous multivariate responses
with y; a (n; x 1) vector containing the observations for the experimental unit i, i =

1,...,n, such that

yi=g((ol~,Xi)+€i, i=1,...,n, @)

9= Alﬁ + bir
in which X; = (X;1,. .. ,X,-,,i)T is a matrix of explanatory variables for the ith unit, b; is a
(g x 1) vector of random effects, €; is an (n; x 1) vector of random errorsfori =1,...,n,
Bisa (p x 1) location vector and A; is a full rank (q x p) matrix of known constants. This
nonlinear model was considered by Lee and Xu [11], for instance, under normality. In this
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Table 1. Characterization of some SMN distributions.

Distribution Kk (u) U Density function f(y)
m+v m+v
I'( ) -
1 d
MStm, (i, X, v) - Gamma (E, E), vizv”"/zmrl/z (1 + 7) 2
u 2 2 F(i)ﬂm/z v
2
u>0v>0
1 1
MSln (e, 2, v) - Beta(v, 1), v/nlﬂ‘4¢m(yULu71Z)du
0

O<u<1lv>0

withd=(y—mw) " =7 (y—p).

paper, we will assume that

€; ind. 0 Y, 0 .
(5) ¢ 9susa ((0)- (5 0)o70) g

where D and X; are positive-definite dispersion matrices. We assume that D = D(t) =

diag(7) is a diagonal matrix and denote its elements by T = (71, 72, . . ., rq)T. The matrix
X; with dimension (n; x ;) is typically dependent upon i through its dimension, and it
will be considered, for example, X; = Gzlm fori=1,...,nand o > 0 a scalar. Since A;

and X; are known matrices, we will simplify the notation by writing g(8,b;) to represent
g(9,,Xi) = g(A;B + b;, X;). Finally, as it was indicated in the previous section, H = H(v)
is the cdf generator that determines the specific SMN model that was assumed.

Remarks: (i) From (3), it follows that marginally

ind. iid.
€i ~ SMN,,(0,%;H) and b; ~ SMN,(0,D;H) i=1,...,n. (4)
(ii) Since for each i =1,...,n, b; and €; are indexed by the same scale mixing fac-

tor Uj, they are not independent in general. The independence corresponds to the
case where U; =1, i=1,...,n, so that the SMN-NLMEM reduces to the nor-
mal NLMEM as defined in Walker [27]. However, conditional on Uj;, b; and ¢;
are independent for each i = 1,...,n, which implies that b; and €; are not corre-
lated, once Cov(b;, €;) = E[bie;r] = Ey, [E[b,-elT | U;]] = 0. Therefore, an attractive
and convenient way to specify (2) and (3) is the following hierarchical representation:

ind. ind.
bi | Ui = u; ~ Ng(0,k(u)D) and €; | Ui = 1 ~ Ny, (0, (u)Z)), i=1,...,n,

b; | U; = u; and €;|U; = u; are independent, where Uj i h(v), and « (-) is the weight
function,i=1,...,n.

(iii) Aiming to choose between the different fitted models, we use the Akaike informa-
tion criterion (AIC), which also provide an alternative to select the parameter v from
the scale mixture of normal distributions. To obtain an approximation for the log-
likelihood, the importance sampling method is considered, following the suggestion
of Meza et al. [16]. Further discussion about fixing or estimating the extra parame-
ters may be found in the literature (for more details, see [14]), taking into account
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the possible sensitivity added by unbounded behavior of the influence and change-
of-variance functions of the location parameter. However, the methodology proposed
here could be easily adapted for the case in which v is estimated.

(iv) The hierarchical representation (three-stage) to the NLMEM defined in (2) and (3)

is given by
ind.
¥ilbi Ui = u; ~ Ny, (8(8, b)),k (u) X)), (5)
bi | U = u; ™ Ny(0, x (u;)D), and (6)
U % hw). 7)

Classical inference of the parameter vector § = (f T.77,6%) T isbased on the marginal
distribution of y;, particularly by the frequentist approach, and the maximum likelihood
estimates (MLEs) of the parameters can be obtained from the joint distribution

7510e9) = [T [ 60311 88.50.k ) 206,010, u)D) by i), (9
i=1

which generally does not have a closed form expression because the model function is not
linear in the random effect. In the next section, we propose a Monte Carlo EM algorithm
that facilitates the likelihood inference and also an approximate method based on iterative
approximations to the linear mixed-effects model.

4. Maximum likelihood estimation
4.1. Monte Carlo EM method

Initially proposed by Dempster et al. [3], the EM algorithm represents an efficient tool to
obtain the maximum likelihood estimates in problems with incomplete data, for instance.
By augmenting the observed data with a ‘missing’ quantity, it is worth using this itera-
tive procedure when the maximization of the complete data likelihood is easier than the
original data. Basically, the process consists of repeating the steps of expectation and max-
imization of the complete data likelihood until the convergence is achieved. These steps
are known in the literature as the E-step and M-step, respectively. Since it is not always
straightforward to obtain the E-step expressions explicitly, additional tools may be required
to estimate the expected values numerically. In particular, the Monte Carlo EM algorithm
(MCEM) has been used for mixed-effects models by treating the random effects as latent
data (see, for instance, [27,28]) and it will be used here to obtain the maximum likelihood
estimates for the NLMEM parameters. Modified versions of the EM algorithm for NLMEM
are presented in the literature, as for instance the SEM or SAEM algorithms [8]. However,
previous papers, for instance [16], have shown that the results considering these different
methods are very close to each other, therefore in this paper we only consider the MCEM
method.

Considering the model defined in (2)-(3), the unobserved random effect b; and the
scale factor U; are considered as missing data, so that the ‘complete data’ is given by
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{(yi»bi» Ui),i = 1,...,n}. Therefore, the complete-data log-likelihood for all individuals
can be written as

n
£c(0) =) £(B:yi,bi ui)
i=1

=Y _{logf(yilbi, ui, B,0%) + log f (bj|u;, T) + log h(v)},

i=1

where 7 is the parameter vector of the scale matrix Dand X; = oI, . Letd ® e the param-
eter estimates from the tth EM iteration. The Expectation step (‘E step’) from individual i
at the (¢ 4+ 1)th iteration can be written as

Qi(0 10" = E[£(B;yi, b, ) |y, 0]
= // {10g ¢n,~ (YI | g(ﬂ’bi)’ K(ui)O'ZIni) + log ¢q(bi | 0, K(ui)D) + log h(V)}
X f(u,-, bi | Yi» 0“)) dui dbi. (9)

It is well known that the foregoing integral does not have a closed form in general and the
evaluation of the integral by numerical quadrature is in general unfeasible except for simple
cases. However, note that expression (9) is an expectation with respect to f(u;, b; | yi, 8®),
so it may be evaluated by using the Monte Carlo EM algorithm by Wei and Tanner [28],
as discussed by Wu [30]. Specifically, we may use the Gibbs sampler with a Metropolis-
Hastings step (see, for instance, [7]) to generate samples from [Uj, b; | yi, 0" by sampling
from the full conditionals [U; | b;, v, 0] and [b; | Ui, Vi, 0]. Note that

F(ui 1b3,y:,0) o< h(v) B, (yi | §(B, b)), k (ui) oLy, g (b; | 0, ke (1) D)

R A2
o h(v)e™ D2 () exp (‘%x%ui) [b?nlbi + w])

o2
and

Fi | uiyi 1) o ¢y, (yi | 8B, bi), & ()0 L) g (b; | 0, & () D). (10)

Monte Carlo samples can be generated from these full conditionals by using rejection
sampling methods, in this case we will consider the Gibbs sampler (see, for instance, [5]).
It can be seen that the full conditional distribution of U; under the Student-t model follows
a gamma distribution and under the slash case it follows a truncated gamma (TGamma)
distribution (see Table 2), in which the notation tgamma(a, b, t) represents a random vari-
able with Gamma(a, b) distribution with right truncation at value t. Meanwhile, the full
conditional distribution of b; does not have a closed form as it appears inside the nonlin-
ear function g(B8, b;), and one alternative would be to implement the Metropolis-Hastings
algorithm (see, for instance, [7]) to obtain samples from b;. Notice that if g(8, b;) is linear
with respect to b;, for instance g(8,b;) = ¢; = A;B + b;, then depending on the distri-
bution of U; the full conditional distribution of b; could also be written in a closed form
expression.



10 J.C.B. GOMES ET AL.

Table 2. Full conditional distributions of (U; | b, y;, 8).

Distribution f(u; | by, yi, 0)
v4+n+q v+G;
2 2

MSt, (i, X, v) Gamma ( ),with ui >0andv >0

n'—;q, 2’,1),with0<u,~ <landv >0

MSlp (i, X, v) TGamma <v

with G; = [b] D~ + Y=8BLII%

For individual i, let {(b(l) Ui(l)), s (bl(M), UZ-(M))} denote a random sample of size M
generated from [Uj, b; | vi, 0(0] then the E step at the (t + 1)th EM iteration can be written
as

QB 109 =3 Q8 16") = Z Zao yi b, ul)

i=1 i=1

1( (,/)) 0
ocZZ [——1 —||y, g(B,b; >||]

i=1 j=1
n M —1.,,()
1 1 e (700 e T
DI |:—510ng| - T’b?) D lbf’)]
i=1 j=1

The Maximization step (‘M step’) of the Monte Carlo EM algorithm (MCEM) maximizes
Q(# 109) to produce an updated estimate 1), and therefore it is like a complete-data
maximization. From Q(0 | 8®) it can be easily seen that the unique solution is given by

G = = ZZ k@)l — 8B b N = Zﬂ»

i=1 j=1
n
pe+y = 1§ Z L1 @) diagb9T))
- M i gb; b; :
i=1 j=1

The estimation of B is obtained via a Newton-Raphson type algorithm inside the M step.
First, the Q function is derived with respect to 3,

300 16® . .
Uip) = o - ZZZ w1y - g8 b1,
i=1 j=1

with J; = 9g(B,b;)/ 9B ". Then the (negative) derivative of U(f8) with respect to BT is
obtained as

dU(B) &
HB) =57 =a—222 keI — 1Py — 880,61,
i=1 j=1

where J; = 3] /0BT = [3]] /3B1; )] /9Bas . . .5 3)] /3B,
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So the B estimates are obtained by iterating the steps

A (1)

B = Y B u ™).

4.2. An approximate method to MLE

In this section, we discuss using an approximate method proposed by Wu [30] in the nor-
mal case, which represents an alternative to the MCEM method and avoid some challenges
found in the MCEM approach, such as the difficulty of convergence, for instance. As it is
stated by Wu [30], the approximate method may involve less computational effort than the
MCEM method, specially when the dimension of the random effects vector is high. The
main advantages of the approximate method are that sampling the random effects in the
E step is not necessary and the explicit M step expressions may be obtained trivially. On
the other hand, the approximation of the model may also provide additional errors to the
problem.

The most frequently approximate methods found in the literature are based on Tay-
lor expansions of the nonlinear function or Laplace approximations. Here we consider a
method which is similar to the one used by Wolfinger [29] and consists of iteratively solv-
ing the linear mixed-effects (LME) model and proceeds in the standard way to estimate the
parameters.

First, we rewrite the SMN-NLMEM (2) and (3) as a single equation by combining the
first two stages

yi =gi(B,b) +e; fori=1,...,nandj=1,...,n,

Denote the current estimates of (8,b;) by (8, b)). Taking the first-order Taylor expansion
of Sij around the current parameter estimate § and the random effect estimates b;, the
approximate method consists of iteratively solving the LME response model

yi=W;B +Tb; + €, (11)

where y; =y, — gi(ﬁ,f),') + W,ﬁ + T,']A)i with g = (gi1,- .- ,gin,.)T, W; = (W;'l—, ce
Wl;rli)—r, T, = (T;'l—, .. ,T;i)—r andy; = Jit, - - - ,}inl.)T, in which

9g;i(B,b;)
BT

_ 0gi(B,by)

Wi = and T = BbiT

B=5 bi=b;

fori=1,...,n,andj=1,...,n;.

Note that the dimensions of W; and T; are (n; x p) and (n; X q), respectively.

Now we combine the LME response model (11) with (3). Therefore, by standard argu-
ments of scale mixture of normal distributions and matrix algebra, it is not difficult to see
that

b; ¥, 0, ui ~ Ng(bi, k (u) ), (12)

with 21‘ = (]’\)71 + 6’72T,'TT1')71 and f),’ = 6’7221'TIT(§',' — W,B) Observe that f)i is
obtained by the empirical Bayes method (see [26, Chap 7]).
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Table 3. Characterization of & = Elx ' (U;) |y;, 0]
for some distributions.

Distribution uj
v+ nj
MStp, (1, Z,
m( V) vtd
2 i P1(n;/2 1,di/2
Sl (s, %, v) v+ni Pr(ni/2+v+ i/2)

d; P1(ni/2 4 v,d;/2)
with — di=@—mw 7y —p) and  Py(a,b) =

rb([;) 5% 'e % ds is the cdf of a random variable with

distribution Gamma(a, b).

After some algebra, we can then integrate out b; and U; from (9) and obtain the following
E step

QO16Y) =Y "o |0V),

i1
where
Qi®16) = E[¢(:¥: i) 716) o« —= logo?
1 o 5 N
- ﬁ[ui(}’i —W;B —Tib)) " Fi — Wi — Tib;) + tr(Z;T; T))]

1 1 ~ ~ ~
— E log |D| — 5 tr((X; + ljlib,‘b;r)D_l),

with &; = E[x =" (Uy) | §:,0].
Finally, we can update the parameter estimates as follows:

n -1 n
B= (Z ﬂiW,TWi> |:Z W/ 3 — Tif)i):| ;
i=1

i=1

v I o S N -
o _Ng[”i(yi_wiﬁ_Tibi) Fi — WiB — Tib)) + tr(X,T; ' Ty)],

lwh
Il

| .
=Y (T +ibb, ).
n i=1

It can be shown that y; ~ SMN,,(W;B, TiDTiT + azlni; H) and the values of u; =
El«~Y(U)) | yi, 0 ] for some distributions are given in Table 3. It is important to note in the
same table that the maximum likelihood estimates bring a type of robustness to the model
as the iterative processes encompass terms to control the influence of large Mahalanobis
distances. Further discussion about the robustness in heavy-tailed mixed-effects models
can be found in Paula et al. [18], Osorio et al. [17] and Russo et al. [21] for example.
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4.2.1. Standard error estimates
Following the expressions developed in Louis [13] and used by Tan et al. [25], the observed
information matrix may be written as

92¢(8;v,b, 0£(0;vy,b,
_E:—( YTu)} —Var{—( Y u)} , (13)
0006 P a0 9=0
in whichy = (le,. .. ,y,I)T, b=(b/,... ,b;r)T andu = (uy,...,u,) " and the expecta-

tion and variance are computed with respect to f(u;, b; | y;, 8®). Since the expressions in
Equation (13) may not be easily evaluated analytically, one alternative is to obtain estimates
of these quantities by using the samples generated in the Monte Carlo method, and the
standard errors are obtained from the square roots of the diagonal elements of the inverse
of the estimated information matrix.

5. Application

Two real applications are discussed in this section; the first one about a growth curve
problem and the second one about a pharmacokinetic problem.

5.1. Growth curve data

Considering the growth soybean data set analyzed by Pinheiro and Bates [19, Chap. 6] and
Davidian and Giltinan [2, Chap. 1], it is usual to consider a mixed-effects model with the
random effect in the three fixed effects parameters, which leads to the model
_ $1i

1 + exp{—[xij — ¢2i]/ @3}

Yij +E,‘j, j:l,...,ni,izl,...,n, (14)
where ¢1; = B1 + bii, ¢21 = B + bai, 93 = B3 + bs; and n; assumes the values 8, 9 or 10
depending on the value of i € {1,...,n = 48}.

The measurements of leaf weights were taken within approximately weekly intervals
after planting, over three years, 1988, 1989 and 1990, and two genotypes, P (plant intro-
duction) and F (forrest). The observed value y;; represents the jth mean weight (in g) of
leafs from soybean plants in the ith plot, after t days of being planted, where for each of the
6 year-genotype combination there were 8 plots. In this case, 81, B, and 3 represent the
asymptotic leaf weight, the time at which the leaf reaches half of its asymptotic weight and
the time elapsed between the leaf reaching half and 1/(1 + e~!) of its asymptotic weight,
respectively.

The maximum likelihood estimates of the parameters obtained by the MCEM and the
approximate method with standard errors considering the normal, Student-f and slash dis-
tribution are given in Table 4. Parameter v was selected from a range of integer values,
according to the lower AIC achieved. The parameter estimates and the values of the asymp-
totic standard errors of the parameters are close considering these two methodologies, but
it is worth noting that the approximate method is much faster than the MCEM method. A
brief study on the computational performance can be seen in Section 6. The fitted profiles
under the Student-t model with 4 degrees of freedom for one plant randomly chosen for
each combination of variety and year are presented in Figure 5. The model seems to deliver
an adequate fit to the data set.



Table 4. Maximum likelihood estimates of the parameters for the soybean plants growth curve problem using the MCEM and the approximate
method.

Normal Student-t, Slashy
MCEM Approximate MCEM Approximate MCEM Approximate
Estim. SE Estim. SE Estim. SE Estim. SE Estim. SE Estim. SE

B 19.2160 0.2621 18.9530 0.2311 19.5070 0.1810 19.3440 0.1635 18.9880 0.2078 18.8290 0.1850
B 55.516 0.3805 55.1360 0.3392 55.9590 0.2625 55.6150 0.2391 55.3890 0.3083 55.0190 0.2771
B3 8.7767 0.2420 8.5291 0.2247 8.8708 0.1699 8.6275 0.1569 8.7239 0.1930 8.4812 0.1849
o? 1.4055 0.1009 1.3985 0.0974 0.6360 0.0485 0.6504 0.0454 0.7004 0.0523 0.6991 0.0488
T 17.2610 3.5755 16.7190 2.5303 15.2780 3.2994 15.0170 2.0979 12.9550 2.6967 12.4940 1.7537
73 6.6926 1.3692 6.6606 0.5515 8.0256 1.6650 8.0636 0.7483 6.5294 1.3396 6.5989 0.6087
73 0.1248 0.0255 0.1892 0.0025 0.4426 0.0904 0.4661 0.0095 0.3122 0.0637 0.3686 0.0074
Log-lik —755.381 —755.619 —707.923 —708.698 —725.562 —726.589

AIC 1524.763 1525.237 1429.845 1431.396 1465.124 1467.1708

TV 13SINOD'd DT Q 4!
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Figure 5. Fitted profiles for randomly chosen plants under the Student-t model with 4 degrees of
freedom for the growth curves problem.

5.2. Pharmacokinetic data

In the experiment described by Pinheiro and Bates [19] on the agent theophylline, serum
concentration (in mg/L) of the substance was measured at eleven times (in h) after admin-
istering D dose (in mg/kg) in each of the twelve patients. First, nonlinear mixed-effects
models with three random effects were considered, namely

[exp(—e?!'T) — exp(—e®T)]
eP2i — e¥li

yii = Dexp(¢1i + ¢2i — ¢3i) + €ijs
where ¢1; = IKe + b1i, 921 = IK, + byj and ¢3; = I + b3;, where IK,, IK, and IC) are the
fixed-effects and by;, by; and bs; are the random effects.

The estimates and standard errors for the parameters in the normal selected models,
Student-¢ with v = 4 and the slash with v = 4 are presented in Table 5 and the fitted pro-
files for the chosen model (Student-t with 4 degrees of freedom) are illustrated in Figure 6.
Note that the model delivers an adequate fit for most of the individuals. A further inves-
tigation could be developed on the significance of the variance components, which is not
straightforward in nonlinear mixed-effects models, as discussed by Russo et al. [21].

5.2.1. Computational aspects

For the estimation process based on MCEM, samples of size M > 10,000 of the full con-
ditionals of [U; | b;, yi, 0®] and [b; | Ui, yi 0®] were generated by using the Monte Carlo
EM method, with Metropolis Hastings within Gibbs algorithm for the E-step. Initially we
made M = 10,000 and for the following iterations, we increment M with more 1000 until
reaching convergence. Four parallel runs were generated in each case; the first 80% were
discarded and, with a spacing of size 100, four samples with the remaining elements were
used. The convergence was monitored by using the ANOVA diagnostic method proposed



Table 5. Maximum likelihood estimates of the parameters for the theophylline data set using the MCEM and approximate method.

Normal Student-t, Slashy
MCEM Approximate MCEM Approximate MCEM Approximate
Estim. SE Estim. SE Estim. SE Estim. SE Estim. SE Estim. SE

IKe —2.4590 0.0465 —2.4546 0.0497 —2.4379 0.0364 —24319 0.0393 —24413 0.0431 —2.4383 0.0462
1K, 0.4608 0.0534 0.4541 0.0505 0.4617 0.0444 0.4202 0.0414 0.4571 0.0519 0.4301 0.0475
Iq —3.2283 0.0328 —3.2246 0.0336 —3.1689 0.0263 —3.1617 0.0264 —3.1977 0.0313 —3.2000 0.0311
o? 0.4998 0.0632 0.5022 0.0618 0.2968 0.0400 0.2992 0.0368 0.3245 0.0432 0.3244 0.0399
T 0.0004 0.0001 0.0005 < 0.0001 0.0002 < 0.0001 0.0003 < 0.0001 0.0003 0.0001 0.0003 < 0.0001
) 0.4361 0.0115 0.4136 0.1582 0.4919 0.0090 0.4686 0.1827 0.3667 0.0082 0.3515 0.1359
3 0.0283 0.0115 0.0281 0.0021 0.0222 0.0090 0.0223 0.0014 0.0201 0.0082 0.0200 0.0014
Log-lik —177.859 —177.778 —170.027 —170.079 —174.739 —174.687

AlC 369.718 369.555 354.055 354.158 363.478 363.374

TV 13SINOD'd DT O 9L
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Figure 6. Fitted profiles under Student-t model with 4 degrees of freedom for the pharmacokinetic
problem.

by Gelman and Rubin [6], observing that the estimated potential scale reduction factor R
was smaller than 1.1 in all the cases.

An important discussion concerns the computational aspects of the two estimation
methods. Although the Monte Carlo EM may deliver slightly better estimates to the
parameters, it is significantly more expensive than the approximate method, as it requires
sampling from the distribution of [U;, b; | y;, 0]. This computational effort increases with
the inclusion of more random effects, the number of individuals and depends on initial
values. On the other hand, the approximate method provides sufficiently good estimates
for the parameters in few seconds. For the pharmacokinetic application, for instance, the
MCEM method takes around one hour (3600s) and the approximate method takes around
2s to reach convergence. Moreover, it is worth noting that the approximate method can be
easily implemented. The routines were implemented in Ox [4] and run in a DELL Pow-
erEdge 1950 server, with 2 Xeon 5430 with 2.66 GHz and 16 GB of RAM. The figures were
produced using R [20].

5.2.2. Robustness aspects

It is widely discussed in the literature that heavy-tailed distributions may deliver robust
estimates for the parameters (see, for instance, [17,18,21]). For models with scale-mixture
of normal distributions, this robustness is due to Uj, included in the model according
to Equations (5)-(7) through the function « (u;). It is worth noting that « (4;) appears
as weights on the expressions of the maximization step for the Monte Carlo EM estima-
tion. For the approximate method, the weights are defined by #; in the iterative procedure
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Figure 7. Posterior means of «(U;) given bj,y;, # (MCEM) and 1/0; (approximate method) under
Student-t model with 4 degrees of freedom for the soybean application.
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Figure 8. Posterior means of «(U;) given bj,y;, # (MCEM) and 1/0; (approximate method) under
Student-t model with 4 degrees of freedom for the theophylline application.

expressions, and the robustness may be achieved due to the characterization of this
quantity, according to Table 3.

For the presented models, the observations with bigger Mahalanobis distance receive the
lowest weights in the iterative procedure. Thus, a possible procedure to identify outlying
observations would be the graphs of the posterior mean of « (U;) | b;, y;, 8 for the Monte
Carlo EM method and #; for the approximate method, as shown in Figures 7 and 8 for the
growth curves and pharmacokinetic applications considering the Student-¢ with 4 degrees
of freedom. Both estimation methods lead to the identification of the same observations.
For the growth curves problem, observations 10, 14 and 32 are identified as outliers and
for the pharmacokinetic application, individuals 1, 2 and 5 are pointed out as outlying
observations.

In the growth curve application, the three experimental units identified (Figure 7)
present a non-expected behavior, as it can be observed in Figure 9. Although the leaf weight
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Figure 9. Leaf weight measurements and fitted profiles for the observations identified in the robustness
analysis.

measurements are expected to grow between two subsequent observing times, the oppo-
site situation occurs for some experimental units including the three identified, namely the
observations 10, 14 and 32. When compared to the other data collected in 1988 from variety
P, observation 10 has the smallest of the measurements and the second-largest measure-
ment of that group. Observation 14 has the biggest of the measurements when compared
to the data collected in 1988 from variety P and that measurement has a large distance of
the previous point. Observation 32 has a high growth curve when compared with the data
collected in 1989 from variety P. For that observation, the 7th and 8th measurements are
the biggest and the smallest of the group, respectively, indicating an unexpected decrease
in the mean leaf weight.

For the theophylline application, patient 1 presented a slower substance elimination
than predicted by the model (see Figure 6). Moreover, the highest dose of theophylline
was administered to individual 5, who also presented the highest substance concentration
among all the individuals. It is important to observe that the substance doses administered
were 4.02, 4.40, 4.53, 4.40, 5.86, 4.00, 4.95, 4.53, 3.10, 5.50, 4.92 and 5.30 for the twelve
subjects.

The case deletion diagnostics was performed and indicated a larger variation in the
estimates under a normal model than under Student-¢ and slash models for the fixed-
effects parameters, which confirms the robustness of heavy-tailed models. For the variance
components, in some cases, the Student-t and slash distributions led to larger variations.

In the next section, we present a simulation study to compare the two methodologies.

6. Simulation study

A Monte Carlo simulation study was conducted to compare the MCEM and approximate
methods considering the normal, Student-t and slash distributions. In each of the scenarios
considered, 2000 samples were generated according to the growth curves model or to the
pharmacokinetic model and the bias and the mean squared error (MSE) were computed.
For the fixed-effects parameters, theoretical values were fixed close to the maximum like-
lihood estimates since they provide an interpretation to the physical phenomenon in the
two datasets. For the variance components, we have considered some variations, as follows.
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Table 6. Simulation results for the growth curves model with theoretical fixed effects parameters
(B, B2 B3) T = (19,55,9) T, theoretical variance components (t |, %) = (16,6,0.1,1) " and Monte
Carlo standard deviation (MC-SD), Monte Carlo mean of the approximate standard error obtained
through the information-based method described in Section 4.2.1 (IM-SE).

MCEM Approximate

Bias MSE MC-SD IM-SE Bias MSE MC-SD IM-SE

Normal B 0.504 0.443 0.434 0.219 0.536 0.592 0.552 0.199
B2 0.012 0.271 0.520 0.328 —0.340 0.384 0.518 0.301

B3 0.579 0.394 0.244 0.208 0.381 0.201 0.235 0.197

2 0.055 13.368 3.657 3322 —0.371 12.921 3.576 2425

193 —0.037 3.764 1.940 1.222 —0.212 3.570 1.878 0.484

3 0.119 0.095 0.285 0.045 0.113 0.079 0.258 0.005

o? —0.141 0.025 0.072 0.062 —0.140 0.025 0.072 0.060

Student-ts B 0.613 0.602 0.476 0.207 0.619 0.731 0.590 0.196
B 0.031 0.322 0.566 0.301 —0.384 0.468 0.567 0.297

B3 0.643 0.488 0.275 0.194 0.408 0.232 0.256 0.194

T 0.058 18.444 4.295 3.409 —0.479 17.229 4.124 2339

%) 0.761 6.278 2.388 1.397 0.605 5.640 2.297 0.584

3 0.187 0.167 0.364 0.059 0.129 0.097 0.284 0.005

o? —0.157 0.039 0.121 0.065 —0.155 0.039 0.122 0.059

Slashg B 0.694 0.747 0.516 0.242 0.729 0.934 0.635 0.218
B2 0.020 0.331 0.575 0.358 —0.445 0.515 0.563 0.327

B3 0.733 0.617 0.280 0.227 0.474 0.295 0.263 0.215

7 —0.062 13.736 3.707 3325 —0.586 12.882 3.542 2373

) 0.123 4118 2.026 1.257 —0.081 3.713 1.926 0.502

73 0.150 0.124 0.319 0.051 0.122 0.087 0.269 0.005

o? —0.154 0.030 0.082 0.062 —0.152 0.030 0.081 0.059

e Growth curves model: the theoretical values for the variance components were
(T, 0?)] =(16,6,0.,1)T, (7,04 =(10,10,1,1)T and (z',0%)] = (16,6,
0.1,5)7. The theoretical fixed-effects parameters were taken as (B, B, B =
(19,55,9) " for the three scenarios.

e Pharmacokinetic model: the theoretical values for the variance components were
(rT,02)] =(0.02,0.05,0.5,0.5)",(z",0%), =(0.05,0.05,0.053)"and(z",02)] =
(0.02,0.05,0.5,1) ". For the fixed-effects parameters, theoretical values were taken as
(IKe, IK,, IC) T = (—=2.5,0.5,—3) T for the three scenarios.

The results presented in Table 6 were obtained considering the growth curves model in
the first scenarios. In all the scenarios, n = 48 and the sizes of the groups were the same
as in soybean application. The normal distributions, Student-t with v € {4,5,6,7, 8} and
slash with v € {4,5,6,7,8} were considered and we present here the results for normal,
Student-¢ with v = 4 and slash with v = 4. No significant differences were observed for
the other cases. The obtained results in the second and third scenario, where (t T, (72)2T =
(10,10,1,1)" and (z T, (72)3T = (16,6,0.1,5) T, respectively, were similar to the other one
and will be omitted here. In general, the methods are equivalent, but in some cases
the estimates presented a slightly larger bias under the MCEM method. Regarding the
MSE, in most cases the MCEM method also performed worse than the approximate
method.

The results presented in Table 7 were obtained considering the pharmacokinetic
model and the theoretical values (7 ', 02)1'— = (0.02,0.05,0.5,0.5) . In the three scenarios,
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Table 7. Simulation results for the pharmacokinetic model with theoretical fixed-effects
parameters (IKe, IK, IC)T = (—=2.5,0.5,—3)T, theoretical variance components (t',0%)] =
(0.02,0.05,0.5,0.5) T and Monte Carlo standard deviation (MC-SD), Monte Carlo mean of the approx-
imate standard error obtained through the information-based method described in Section 4.2.1
(IM-SE).

MCEM Approximate

Bias MSE MC-SD IM-SE Bias MSE MC-SD IM-SE

Normal IKe —0.016 0.006 0.074 0.048 —0.010 0.006 0.074 0.047
1K, 0.003 0.009 0.093 0.054 —0.006 0.009 0.094 0.052

I —0.012 0.003 0.056 0.033 —0.012 0.006 0.077 0.032

0 —0.009 0.000 0.019 0.005 —0.010 0.000 0.018 0.001

1) 0.007 0.001 0.037 0.022 0.006 0.001 0.036 0.008

3 —0.180 0.048 0.125 0.022 —0.191 0.051 0.123 0.108

o? —0.020 0.005 0.066 0.061 —0.019 0.005 0.067 0.059

Student-ts IKe —0.027 0.007 0.082 0.047 —0.020 0.007 0.082 0.049
1K, 0.009 0.010 0.100 0.053 —0.002 0.010 0.101 0.054

IG —0.024 0.005 0.066 0.032 —0.026 0.008 0.088 0.034

2 —0.007 0.001 0.023 0.006 —0.008 0.001 0.022 0.001

12) 0.013 0.002 0.046 0.024 0.010 0.002 0.043 0.009

3 —0.225 0.066 0.125 0.025 —0.236 0.070 0.121 0.089

o? 0.010 0.019 0.138 0.070 0.011 0.020 0.140 0.063

Slashg IKe —0.022 0.008 0.085 0.051 —0.014 0.007 0.085 0.051
1K, 0.006 0.011 0.103 0.058 —0.006 0.011 0.103 0.056

IG —0.021 0.005 0.066 0.035 —0.022 0.008 0.088 0.035

2 —0.007 0.000 0.022 0.006 —0.009 0.000 0.021 0.001

) 0.010 0.002 0.039 0.023 0.008 0.002 0.038 0.009

3 —0.226 0.063 0.109 0.025 —0.236 0.067 0.106 0.089

o? —0.017 0.006 0.076 0.063 —0.015 0.006 0.076 0.060

n = 12 and the sizes of the groups are n; = 11,i = 1,..., 12, the same as in the theo-
phylline application. The obtained results for the other cases were similar to the results
in Table 7 and they will be omitted here.

As the results of the simulation study, we highlight that the MCEM method produced
slightly larger bias in some of the cases but as a general result, this method does not seem
to produce important deviations from the results obtained in the approximate method.

Tables 6 and 7 also show the Monte Carlo standard deviation (MC-SD) and the
Information-based standard errors (IM-SE) of the estimates considering the growth curve
and pharmacokinetics models, respectively, with MCEM and approximated methods. The
IM-SE are mean standard errors based on the observed information matrix obtained in
Section 4.2.1. For the considered cases, the MC-SD is, in general, greater than the IM-
SE, and both MC-SD and IM-SE are greater for the MCEM method in comparison to
the approximate method. These results are expected since MC-SD depicts the random-
ness involved in the Monte Carlo simulation, and a similar conclusion can be obtained
when comparing MCEM to the approximate method.

In order to evaluate the computational performance of both proposed methods,
a simulation study was conducted with 100 artificial replicates for the first scenario
of the dataset, the growth curve problem, namely theoretical parameters of fixed
effects (B1, B2, B3) T = (19,55,9) " and theoretical parameters of variance components
(t', 02)1'— = (16,6,0.1,1) ". A second scenario was considered for the pharmacokinetics
model with theoretical values for fixed-effects (IKe, IK,, IC)) T = (—=2.5,0.5, —3) | and the-
oretical variance components (', 02)1'— = (0.02,0.05,0.5,0.5) ". The results are presented
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Table 8. Computational average cost (in one 100th of a sec-
ond) of the two methods based on 100 artificial datasets from
the Theoph and Soybean scenarios.

Theoph Soybean
MCEM Approximate MCEM Approximate
Normal 18572.75 0.113 22813.76 0.201
Studenty 23981.36 0.121 26844.01 0.235
Slashg 23918.42 0.118 29625.71 0.228

in Table 8. The simulation study was conducted using Ox [4] and run in a two CPUs Linux
system with 24 GB RAM each.

7. Discussion

The assumption of the scale mixture of normal distributions for the joint distribution of the
random effects and errors in nonlinear mixed-effects models represent an important tool to
fit nonlinear correlated data as it may provide robust estimates to the involved parameters.
In this paper, we compare two approaches to obtain the maximum likelihood estimates in
these models, and perform a simulation study to compare the MCEM and approximate
method. It was observed that in general the approximate method may perform well when
compared to the MCEM method and it is computationally efficient. Although there are
no important differences in the bias of the estimates of the parameters related to the fixed
effects and to the variance of the random errors, there is a significant gain in the computa-
tional time when the approximate method is applied. In conclusion, we recommend using
the approximate method to reach reasonably good estimates for the parameters in nonlin-
ear mixed-effects models, and if the researcher aims to obtain more accurate estimates, the
approximate method can also provide fairly good initial values to the MCEM algorithm.
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