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Superalgebras
Polynomial identities

1. Introduction

Let F' be any field of characteristic different from two and let L be a vector space
over F with basis {ej1, €2, ...}. The infinite dimensional Grassmann algebra E of L over
F is the vector space with a basis consisting of 1 and all products e;, e;, - - - €;,, where
i1 <12 < ... < ik, k> 1. The length of e;,e;, - - - €;, is the number k that is denoted
by |ei, s, - - - €;,|. The multiplication in E is induced by e;e; = —eje; for all 4 and j.
We shall denote the above canonical basis of E by Bg. The Grassmann algebra has a
natural Zs-grading Ecan = E () ® E(1), where E(q) is the vector space spanned by 1 and
all products e;, - - - e;, with even k while F(;) is the vector space spanned by the products
with odd k. It is well known that Eg) = Z(E) (here Z(E) denotes the center of E), and
E(1) is the “anticommuting” part of F.

The study of the Grassmann algebra E with its natural grading by the cyclic group
Zs is an important part of the theory of algebras with polynomial identities. In [11,12]
Kemer developed a deep and far-reaching theory of varieties of associative algebras with
polynomial identities. More precisely, the algebra E is the most powerful tool (and,
at the moment, the only one) to construct a general T-ideal from the one of a finite
dimensional one via the Grassmann envelope. Thus, in Kemer’s theory the natural Zo-
grading on E and the corresponding Zs-graded polynomial identities satisfied by F
were of crucial importance. Consequently, gradings of the Grassmann algebra may shed
light on what kind of mathematical construction should be investigated in order to find
out how to cover identities from weaker ones. When the field is infinite and of positive
characteristic, they turned out to be crucial too (see, for example, [13-15]). Apart from
it, the Grassmann algebra arises naturally in many fields of physical and mathematical
sciences, and the interested reader can consult [1] for a treatment of this topic. This
highlights the importance of the algebra E in the science.

A natural question arises: Describe all possible Zs-gradings on E. The first studies on
this direction were conducted by Anisimov, in 2001-2002, see [4,5]. When the field F is
of characteristic 0 this was done by Di Vincenzo and Da Silva [6], and if F is infinite and
of characteristic different from 2, by Centrone [2]. In those two last papers the authors
assumed that the underlying vector space L of E is homogeneous in the grading. The
way to define a homogeneous Z,-grading on F is relatively simple. For this, it is enough
to choose the degrees of a basis of L. In [2,6,9] the authors studied the graded identities
for such Zs-gradings on E. Furthermore, in [3,7], some cases of gradings on E by finite
abelian groups of order greater than 2 were also investigated.

The construction of non-homogeneous Zs-gradings is more complicated, see [10]. Ac-
tually there is not a complete classification for such gradings of E, but it can be done
via duality with automorphisms of order at most 2 on E. This duality is well known. It
relies on the fact that if G is a finite abelian group then G is isomorphic to its dual group
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assuming that the field is large enough. As we are interested in gradings by the group
Zo we need no further assumptions on the base field (apart from its characteristic being
different from 2). Thus if ¢ € Aut(A) is an automorphism of an algebra A of order at
most two, then one has a Z,-grading on A given by A = Ay, ® A1,,. Here Ag, and Ay,
are the eigenspaces in A associated to eigenvalues 1 and —1 of the linear transformation
. Reciprocally to each Zs-grading on A one associates an automorphism of A of order
< 2 as follows. If A = Ay @ A; is the Zs-grading the automorphism ¢ is defined by
p(ag+a1) = ag —ay for every a; € A;, i =0, 1. We shall need this duality in the form of
a duality between group gradings and group actions, see for example [8] for a discussion
in the general case.

In this paper we investigate the problem whether in every Zs-grading of E there
is at least one element of the underlying vector space L that is homogeneous in the
grading. This was posed in [10] as a conjecture. To this end our paper is organized as
follows. In Section 2 we give the necessary background concerning Zs-gradings on the
Grassmann algebra and their graded identities. In Section 3 we prove a weak version of
the conjecture. As a consequence, we will provide a condition for a Zs-grading on E to
behave as F.4,. In other words, we obtain a characterization of E.,, by means of its
Zo-graded polynomial identities. Furthermore, in Section 4 we construct a Zs-grading
on F that gives a negative answer to this conjecture.

We hope that our results about the natural grading of £ may shed additional light
on the construction of T-ideals, and consequently on the polynomial identities of PI-
algebras.

2. Preliminaries

Let A be an unitary associative F-algebra. We say that A is a Zs-graded algebra
(or superalgebra) whenever A = Ay @ A; where Ay, A; are F-subspaces of A satisfying
AjA; C Ay for 4, j € Zy. For each Zj-grading on A, we will denote it by a specific
symbol, for example I'. The vector subspace A; is called homogeneous component of
degree ¢ and a non-zero element a in it is homogeneous; we denote it by |la|| = i. A
vector subspace (subalgebra, ideal) W C A is graded if W = (W N Ap) & (W N Ay).

We point out that we use freely the terms superalgebra and Zo-graded algebra as
synonymous although this is an abuse of terminology. In the associative case they are
indeed synonymous while in the nonassociative setting they are not. Indeed, a Lie or
a Jordan superalgebra is not, as a rule, a Lie or a Jordan algebra. The correct setting
in the general case should be as follows. Let A = Ay @ A; be a Zo-graded algebra and
let U be a variety of algebras (not necessarily associative). Then A is a 2U-superalgebra
whenever Ay ® Eg) ® A1 ® E(q) is an algebra belonging to . Since we shall deal with
associative algebras only such a distinction is not relevant for our purposes, and we are
not going to make any difference between superalgebras and Zs-graded algebras.

In what follows we assume that the reader knows the definitions of homomorphism,
endomorphism and automorphism of algebras. Let A and B be superalgebras, a ho-
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momorphism f: A — B is a Zs-graded homomorphism if f(A;) C B; for all i € Zs.
When there exists a Zs-graded isomorphism between A and B we say that A and B are
isomorphic superalgebras and we denote it by A ~ B.

One defines a free object in the class of superalgebras by considering the free F-
algebra over the disjoint union of two countable sets of variables, denoted by Y and Z.
We assume further that the elements of Y are of degree zero and the elements of Z are of
degree 1. This algebra is denoted by F(Y U Z). Its even part is the vector space spanned
by all monomials whose degree counting only the elements of Z, is an even integer. The
remaining monomials span the odd component. The elements of F(Y U Z) are called Zo-
graded polynomials (or simply polynomials). It is straightforward that F(YUZ) is a free
algebra in the sense that for every superalgebra A and for every map ¢: Y UZ — A such
that ©(Y) C Ap and ¢(Z) C A; there exists unique homomorphism of superalgebras
F(Y UZ) — A that extends ¢.

Let I': A = Ay @ A; be a superalgebra. We say that the polynomial f(y1,...,u, 21,
.oy2Zm) € F(YUZ) is a Za-graded polynomial identity for T if f(a1,...,a;,b1,...,by) =
0 for all admissible substitution aq,...,a; € Ag and by,...,b, € A;. The set of all Zo-
graded polynomial identities of A is a graded ideal of F(Y U Z). Tt is called T-ideal,
and denoted by T>(T"). Given a superalgebra I'V: B = By @ By, we say that A and B are
PI-equivalent as superalgebras if T5(T') = To(IV).

As already mentioned in the introduction, to define a homogeneous Zs-grading on E
is enough to choose the degrees of a basis of L. More specifically, according to [6], given
k € No = N U {0}, there are the following possibilities:

0,ifi=1,...,k
leillr = ) :
1, otherwise

1, ifi=1,...,k
k* = )
0, otherwise

[lei

and
0, if 7 is even
leilloo = .
1, otherwise
The degree of a monomial e;, e;, - - - €;, is ||€;, €, - - €5, || = |l€i; ||+ ]|es, ||+ - -+ ]€s, ||, where

the latter is taken in Z,. These gradings are denoted by Ej, Fi«, and E,, respectively.
When ||e;|| = 1 for all 4, we recover E.qy,. Thus, we have three structures of homogeneous
superalgebra on F, up to an isomorphism. Notice that all homogeneous Zs-gradings on
E correspond to the automorphisms ¢ on E satisfying, for an appropriate basis of FE,
the conditions

(e;) = *e,.
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In general, for each automorphism ¢ on E of order at most 2, we have a structure of
Za-grading on F, denoted by E, = Eg , ® E1 .

3. A characterization of F.,,,

The goal of this section is to prove a weak version of the conjecture formulated in
[10]. As a consequence, we obtain a characterization of E.q, by means of its Zo-graded
polynomial identities.

Let ¢ be an automorphism on E of order at most 2, i.e., ¢? = id. Here the automor-
phism identity of £ is denoted by id. As in the above section, E, = Ey , ® E1 , denotes
the Zs-grading on E induced by ¢. We observe that

e; = (e; +¢(e)/2+ (ei —p(e;))/2, for i € N.

If we set Vo = {(e; + ¢(e;))/2 | i € N} and Vi = {(e; — ¢(e;))/2 | i € N}, then each
element of Bg is written as a sum of products of elements in VU V7.
The next lemma is of easy deduction, and for this reason we omit its proof.

Lemma 1. The component Ey , is spanned by all products of elements in Vo and Vi with
an even number of factors in Vi, and E , is spanned by all products of elements in Vg
and Vi with an odd number of factors in V7.

Now, we define Iy = {n € N | p(e,) = £e,}. We distinguish the following possibili-
ties:

(1) Is = N.
(2) Is # N is infinite.
(3) I is finite and non-empty.

Pay attention there might be a basis 3 of L such that Iz = () but Iz # () for some
other basis 8’ of L. Hence the fourth possibility is

(4) I, = 0 for every basis ~y of the vector space L.
We shall call these automorphisms (and also the corresponding Zo-gradings), auto-

morphisms (Zs-grading) of type (1), (2), (3), and (4), respectively.
Now we obtain the following lemma.

Lemma 2. Let ¢ be an automorphism on E of order at most 2. If To(Ey,) = To(Ecan),
then Ey., C Z(E). In particular, e; + p(e;) € Z(E), for all i.
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Proof. It is known that
[y,m] € TQ(Ecan) = TQ(Ego)v

where z € Y U Z. It implies immediately that Ey , C Z(E). From e; + ¢(e;) € Ey ,, the
latter part follows. M

The next steps to obtain the main result of this section are to analyze the automor-
phisms ¢ of E according to its type. To this end we need a series of results.

Proposition 3. Let E4 be a homogeneous Zso-grading on the Grassmann algebra E and
let ¢ be an automorphism on E of order at most 2. If ¢ is of type (1), the following
statements hold:

(a) To(Eq) =To(E,) if and only if Eq ~ E,.
(b) If To(Ey) D To(Eecan), then E, ~ Ecqp.

Proof. The fact that ¢ is an automorphism of type (1) implies that E, is a homogeneous
Zy-grading on E. Item (a) follows as a straightforward consequence of [2,6,9]. For the
statement in (b), notice that T5(E,) O T5(Ecqn) implies [y, z] lies in Th(E,,), for any
x € Y U Z. Since the gradings Fi~ and E,, do not satisfy such identity, it follows that
E, ~ E, for some k € Ng. Furthermore there exists a homogeneous subalgebra of Ej,
which is isomorphic to E..,. Hence,

T2(Egp) - TQ(Ecan)a
so we conclude T5(E,) = To(Eecqn). Applying statement (a), we obtain E, ~ E.qn,. B
Proposition 4. There does not exist ¢ € Aut(E) of type (2) such that To(Ey) = To(Ecan)-

Proof. Due to Lemma 2, e;+¢(e;) € E(gy. On the other hand, if ¢ is of type (2), according
to [10, Proposition 1], ¢ satisfies p(e;) € E(1y, for all i. Hence e; + ¢(e;) € E(1), which
gives us

ei +p(ei) € By N Eqy,

and then @(e;) = —e;, for all i € N. The latter statement implies ¢ of type (1) which is
a contradiction. This completes the proof. W

Lemma 5. Let ¢ be an automorphism on E of type (3). If To(E,) = T2(Ecen), then:

(a) there exists a natural number k such that o is defined by

plen) =
—en +eper--epWy, ifn >k

{en, ifn<k
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Moreover, k even implies W, € E(1y and k odd implies Wy, € Z(E), for all n > k.
() Eo, = Z(E).

Proof. Statement (a): As ¢ is of type (3), there exists a finite number of homogeneous
generators in the grading, namely ey, ..., e, for some k.

From Lemma 2 it follows that ei,...,ex € Ej,, which implies p(e,) = —e,, for
n=1,...,k Given n > k, using again Lemma 2, we have that Z, = p(e,) + e, € Z(F)
is non-zero. Since (e, )? = 0, we obtain that —2e,, Z,, + Z2 = 0. Comparing the lengths
of each parcel, we conclude Z,, = e, Z/,, where Z! € E(1y. Now, given j = 1,...,k, due
to (en)p(ej) + @(ej)p(en) = 0, it follows Z), = ey - - - e, W,,. The last part is immediate
by the previous equality.

Statement (b): Lemma 2 implies the inclusion Ey, C Z(E). To prove the reverse
inclusion, it is enough to show that e;e; € Ey, for all i, j. When 4,5 € {1,...,k},
e;ej € Ey , is immediate. If ¢; € Ey, and

plej) —ej = —2e; +ejer---exW; € Ey g,
for every j ¢ {1,...,k}, then e;e; € Ey . Finally, when 4,5 ¢ {1,...,k}, notice that
(plei) —ei)(ples) —ej) € Eogp,
ie.,
(—2e; + ejer - e, Ws)(—2ej + ejer ---exW;) € Ey ., C Z(E).

Therefore, e;e; € Eg, since ejeer---exW; + eejer---e W, € E(qy, and we are
done. W

The following proposition is an important tool to prove the main result of this section.

Proposition 6. Let ¢ be an automorphism on E of order at most 2. If v is of type (3)
and Ty(Ey) = T5(Ecan), then Ey, ~ Egqp.

Proof. Following the notation of the previous lemma, the set Vi, defined before of
Lemma 1, is {v, | v, = e, if n < k, v, = uy, if n > k}, where u, = —2e,+eneq - - e W,
According to item (b) of Lemma 5 and Lemma 1, we conclude that

Eo,, = Z(E) = spanp{vi, --- v, | 11 < ... <z},
for t even, and

Ei ., = spanp{vi, ---v;, |11 < ... <i},

for t odd. The map f, : Ecan — E,, defined by
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—2e,, ifn<k
fga(en) =

Up, ifn >k

can be extended to a Zs-graded homomorphism, since it satisfies f,(e;)f,(e;) +
fole;) folei) =0, for all 4, 5. It is also clear that f, is surjective. Therefore,

where Z = ker(f,) is a graded ideal of Eq,.
We claim that Z = {0}. Indeed, given e;, - --¢;, € B, we have

folew i) = (~Dles, e+ Y ;P
P;€Bg,|P;|>t

where «; € F'.
Let wq,...,ws € Bg be distinct monomials and A1,...,A; € F, with each A; # 0,
satisfying

Awy + -+ Asws € T
We can assume |w| < ... < |wg|. It follows that

0= ftp(>\lw1 +-- Asws)
= (=2)" I\, + > 0;Qj>

Q;€BE,|Q;|>|wi]

where each Q; # w; and o; € F. The last equality implies A\; = 0, which is a contradic-
tion. Therefore, Z = {0} and we are done. W

Remark 7. We draw the reader’s attention that there exists at least one automorphism
¢ on E of type (3) such that T5(E,) = T2(Ecan), see [10, Proposition 11].

From now on, we will deal with automorphisms of type (4). As promised at the
beginning of the section, the next result is a weak version of the conjecture presented in
[10].

Theorem 8. Let ¢ be an automorphism on the Grassmann algebra E of order at most
2. If To(Ey) = To(Eecan), then there exists a non-zero vector v € L homogeneous in the
Zy-grading E,. Consequently, ¢ is not of type (4).

Proof. By Lemma 2, it is known that e; + ¢(e;) € E(g). Following word by word the
argument presented in item (a) of Lemma 5, for each natural number 7, we may write
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go(ei) = —e; +e;W;, (1)
where W; = Alw! + -+ + XV¥w™, eqw!™ # 0, for 1 < 7 < i, and the set {w! | j =
1,...,n;} C E(y) is linearly independent.

Next we consider the following notations. Given a basic element (or monomial) w =
€i, - €i, in B, the set supp(w) = {e;,,...,e;, } is called support of w. For any monomial
wy = €j, - - €, in By, we say that w and w; have pairwise disjoint supports if supp(w) N
supp(wi) = @ and, consequently, ww; # 0. And to finish, for each W = Ajwi+- - -+ Apwy,
in E, denote by S(W) the set formed by the union of supp(w;), with 1 < ¢ < n. Here
each w; lies in B and A\; € F. In particular, if W = W; given in (1), then e; ¢ S(W;),
for all i.

Since

pler)ple) + pleipler) =0,
for all i,k € N, we have
(—epeiW; — e Wie; + exWieiW;) + (—ejex Wy, — e, Wier, + e,Wiep Wy) = 0.
It follows from the latter equality that
—epeiW; — e;epx Wy, + epx Wire, W, = 0.

Due to both exe;Wi+e;e, Wi, € E(1y and exe; Wi W; € E gy, we conclude that ege; W;+
eiexWy =0 and egpe; W W,; = 0. Consequently,

epe;W; = epe; Wi, (2)

Moreover, for any ¢ and j, we can write
Wi =e; P+ Ty, (3)
where P; € E(y), T; € E(1) and e; ¢ S(T3). By (2), if e; ¢ S(W;), we then have
W, =T, (4)

Recall that n; is the number of parcels that occur in W;. Let ng = min{n; | i € N}.
If ny = 0, then p(er) = —ex and the result follows. Hence we may assume that ng > 0.
We will prove that W; = Wy, for all i. If e}, ¢ S(W;), for some i, then T}, = W;. By the
minimality of k, we obtain W), = W;. Thus, we suppose that there exists at least one j
such that e € S(W;). As the set S(W;) US(Wy) is finite, we take e; ¢ S(W;) US(Wy).
Due to (4), it follows that W; = T; = W},. Therefore, there exists a non-zero Q € Ey)
such that W; = @, for all i.
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ple;) = —e; +€;,Q,

where Q = W, and e; ¢ S(W;). Assuming e; € §(Q), we obtain

pler) = —er + eQ,

where @Q = W;, which contradicts the fact that e; ¢ S(W;) = S(Q). We conclude that
ng = 0, and ey is a homogeneous element in the Z,-grading £,. W

Due to our results, we obtain a characterization of E.q, via To(FEeqn). The next is one
of the main results of this section.

Theorem 9. Let ¢ be an automorphism on the Grassmann algebra E of order at most 2.
If T5(E,) = T5(Ecan), then E, and Ecqy, are Zo-isomorphic.

Proof. As E, is Pl-equivalent to E.,,, Proposition 4 and Theorem 8 imply that ¢ is of
type (1) or (3). If ¢ is of type (1), we apply item (b) of Proposition 3. If ¢ is of type (3),
we apply Proposition 6. So we are done. H

The arguments applied in Proposition 4, Proposition 6 and Theorem 8 work with
a weaker assumption. More specifically, assuming ¢ € Aut(E) such that ©? = id, the
hypothesis T5(E,) = T2(FEcqn) can be replaced for

[ya ‘T] S TZ(EQD)a

where x € Y U Z.
In the light of the last comment, we have a better characterization for the structure
ECG/I’L'

Theorem 10. Let ¢ be an automorphism on the Grassmann algebra E of order at most 2,
and let B, = Ey,,®FE , be the Zo-grading on E induced by ¢. The following statements
are equivalent:

(1)

(2)

(3) Eo, = Z(E).
(4) E

Proof. Notice that (1) = (2) and (4) = (1) are immediate. Already for (2) = (3) and
(3) = (4) we use similar arguments contained in the proof of Lemma 5. H
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4. Concrete Zo-gradings of type (4)

In the paper [10], the authors conjectured the non-existence of automorphisms of type
(4), and it was strengthened by Theorem 8. The goal of this section is to construct a
kind of automorphism that gives a negative answer to the conjecture.

First we will introduce some notations that will be useful.

Definition 11. Let / = {2n € N,n > 1 | 3m € N such that 2™ < n < 2™ 4+ 2m~1} We
define the sequence {¢;};en by

€on_1 = —1, if 2n € I;

€on_1 =1, if2n € N \I;

€2, = 1, for all n.

Remark 12. According to Definition 11, we have e =1, ea =1, e3=—1, ¢4 =1, ¢5 = 1,
g = 1, e = —1, and so on.
Lemma 13. Given a natural number n, we have €1 - - €241 = —€5.

Proof. We use induction on n. In the proof we omit the scalars with even indexes in
the product. By Remark 12, we have that e;e3 = —e;. So the result holds for n = 1.
From now on, assume the validity of the result for n > 1. We take into consideration the
following cases:

If n is even, there exists k € N such that n = 2k. In this case, by induction hypothesis

€1€3 " €4k —1€4k11 = —1,
and we need to show
€1€3 ' " " €4k +1€4k+3 = —€2k+1,
which is equivalent to show that eqp13 = €apt1. If €a541 = —1, then 2(k+1) € I. Hence,

there exists a natural number m such that

M < k41<2m4omh

Therefore,

Mt <ok 42 < 2mFL 4 o™,
This implies 2k + 2 € I, hence €443 = —1. Similarly €543 = —1 implies €g54+1 = —1,
since k > 0. Therefore, we proved that egp43 = —1 if and only if €zx4+1 = —1 and the

result follows for n even.
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Now, we analyze the case n odd, in other words, there exists k¥ € N such that n =
2k + 1. By induction, we assume

€1 €443 = —€2k+1.
As it was done before
€1 €qp45 = —1
is equivalent to show that €45 = €ar11. If €11 = —1, then 2(k + 1) € I. Hence, there

exists natural number m such that
2" <k4+1<2m42m L
As2m 4 2m=1 1 < 2m 4 2m~1 we have
2Mm < k4+1<2mpomt
SO
2mtl <2k +2 <2mFl pom 2
Due to this last inequality, it follows that

omtl < omtl 4 | <ok 43 < omtlpom 1 < omtl 4 om

Hence 2k+3 € I and it implies €45+5 = —1. Analogously, if €45+5 = —1, then g1 = —1.
The result is proved for n odd, and we are done. W

Let w, = ejea---ea,11. We define the linear transformation A\ : L — L by
Aei) = €ieq,

where the sequence {¢;};en was presented in Definition 11. We extend A to an unique
automorphism of E. According to the previous lemma, we have

Mwy) = €1+ €21 1Wy = —€EpWh.

Next, we will construct an automorphism of type (4) of the Grassmann algebra E.
For this, we define the linear transformation ¢ : E — E by

wle;) = €e; + w;.

The following theorem is the main result of this section.
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Theorem 14. The linear transformation ¢ defined above is an automorphism of type (4)
of the Grassmann algebra.

Proof. It is well known that any linear transformation ¢ on E satisfying

d(ei)d(e;) + ¢(ej)d(ei) = 0,

for any i, j € N, can be extended to an unique endomorphism of E. As €;e; +w; € E(y),
it follows that ¢ can be extended to an endomorphism of the algebra E. Besides,

©*(ei) = eieiei +wi) + p(w;).

Notice that

So(wz) = <,0(61) cee 90(62i+1) = €1 €2i41W; = —EW;.

The last equality follows from Lemma 13. Thus, ¢ is an automorphism of order 2.
Now we claim that ¢ is of type (4). Assume v € L such that ¢(v) = +v. There exist
Qa1,y...,an € F so that v = aqe;, + -+ ane;, . Thus,

:E(Z age;, ) = tv=pW) = Z ak(€exes, +w;,).
k=1 k=1

Comparing the lengths of the parcels in the last equality, we conclude that Y _;'_, ayw;, =
0. As the set {w; | ¢ € N} is linearly independent, we have ay = - -+ = a, = 0. Therefore,
we have the result. W

Let E, be the Zy-grading on F induced by the automorphism ¢ constructed above.
As a consequence of Theorem 8, we conclude immediately that

T2 (Ecp) 7é T2 (Ecan) .

A natural question arises. What are the generators of the T-ideal of the Zs-graded
polynomial identities of E,? The following result answers such question.

Proposition 15. The Zg-graded algebras E, and Es are isomorphic superalgebras.
Proof. Let {¢;};en be the sequence given in Definition 11. We consider A = {i € N |

¢, =1} and B={i € N | ¢ = —1}. Assume that E}, is the homogeneous Zs-grading on
E given by

0,ifieA
leill =9, ...
1, ifie B
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Since both A and B are infinite, we conclude that Ej and F., are isomorphic superal-
gebras. Now we define the map f : £}, — E, by

61'<Fu}i/27 leEA
fle:) = o
e; —w;/2, ifieB

It follows that f can be extended to an endomorphism of E, once w; € Ey), for each
i € N. Moreover, f is a Zs-graded endomorphism.
For each i, notice that

flwi) = fler---e2it1) = (e1 £ %) (g £ 2Ly —

We claim that f is an isomorphism, for this it is enough to provide the inverse map for
f. Let g : E, — Ej, be the map given by

ei—wi/Q, leEA
g(ei) = o
e; +w;/2, ifie B

As it was done for f, it follows that g(w;) = w;, for each i € N. When i € A, we have
go f(ez) = g(ei + w1/2) =e; — ’LUZ/Q —|—wi/2 =e;.
Similarly, go f(e;) = e;, if i € B. Therefore, we have g = f~1, and the result follows. B
In [10], the authors constructed Zs-gradings on E of types (2) and (3). In the present
section, we provide a concrete Zs-grading of type (4). It turns out that all these structures
are Zo-isomorphic to some homogeneous Zo-grading of E. These statements provide us

with the ground to pose the following conjecture.

Conjecture 1. Every Zs-grading of E is Zs-graded isomorphic to some homogeneous
Zo-grading of E.
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