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. Ab•tract: llere we are dealing with the linear Vollerra-SLielLjea 

integral equaLion or Lype (/() with kernel K and reaolvenL R. A bound 

on the sernivariation of K is done to get !or some cperator B, R = e8. 

Moreover, we will show that if K salisfies a special condiLion we can 

LakeB=K. 

Introduction 

It is exhaustively well known the importance in to get the operator-solution of an evo­ 

lutive system having the exponential form. 

In the frame of the linear integral equations of type ( K) we have, unti\ now, results 

yielding the resolvent being an exponential operator only for special kernels - the ones for 

which the equation (K) is a Stieltjes equation. (See remark 2.10, below). Hcre we get 

conditions for general kernels /(, enlarging our options. 

In the following section I we point general results in the theory of the linear integral 

equa.tions of type (/(), and in section 2, we give the results concerning the exponential 

exprcssion of the resolvent R. 
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1. Volterra-Stieltjes integral equations of typc (K). 

The Volterra-Stieltjes linear integral equation of type ( K) deals with the forcing and 

state terms being regulated mappings and is considered in many works. The main events in 

the development of the theory are due to D. B. Hinton, who originated it in 1966, and C. S. 

Honig and ~- Schwabik ( I 974 ), and others. For historical remarks and references, see Honig 

[4]. Here we work in the context by Honig. 

This type of equation encompasses very general classes of evolutive systema, as the linear 

ODE, PDE, Neutral Functional equations, equa.tions with impulsive action and the Stieltjes 

equations 

(L) y(t) - x+ J.' dA(-')Y(-') = f(t) 
(see [3, pp. 82-94), [2J, and in [5J, [91). 

Given [a, b) C R and a Banach space X, we define the .1emi-variation of g: !a, bJ -. L(X) 
as 

{ '"' } SVl.9] = sup .sup Llll.9(t;) -·g(t;_i)Jxdl E X, llx;II :S 1 
dED ;.,,1 

where D is the set of a.II finite partitions of the interval [a, b], d : t0 = a < t1 < ... < t,. = b, 
and jdj = n. Sometimes we will denote SV[gJ as Svja,bJ[g]. If SV[g] < oo, we say tha.t g is of 
bounded semivariation, and we write g E SV([a,b].L(X)). Note that SV is a. serninorrn. 

If o E SV([a, b], L(X)) and [c, d] C [a, b] we have: o E SV([c, d], L(X)), 

SY[,,cl}[o] 5 Slia,b}[o] and 

In the same way we define Svk.ii[o]. The following properties on the serni-variation of o 
will be useful: 

Propoaition 1.1 [l; 1.15) If o E SV([a,b),L(X)), then: 

(i) the function t E [a, bJ -. Svja,11[0] is increasing, 

(ii) if c E (a, b) then SvjaJJ[o] $ S\,'(0,,1[0] + SYj,,,i[o], 
(iii) o is bounded and llo(t)II $ llo(a)II + S\.'ia,1)[0]. 
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We say that J : [a, b] -+ X is requlated, and write J E G([a, bj, X) if J has discontinuitics 
only of the first kind. G([a, b], X) is a Banach space when endowed with the sup norm. 

For a E SV([a, b], L(X)) and J E G([a,b], X), there exists the interior(or Dushnik-type) 
,. ' ' 

integral 
b ldl 

Fc,(f) = J. ·da(t).f(t) == lim:Z:::)o(t;) - o(t;_1)]f(s;) E X 
0 deD. •=I 

where .;i E (l;-1,I;) (see [4, Theorem 1.111). 

The interior integral is an extension of the usual Riernann-Stieltjes integral as seen in: 

Proposition 1.2 ([3; Th. l.1.1]) Let be a: [a,b]-+ L(X) and/: [a,bj-+ X: 

(i) if J: do(t).f(t) exists then J: ·do(t).f(t) exists and has the same value, 

(ii) if o and J have no cornmon points of discontinuities and there exists J: ·do(t).f(t), 
then J: ·da(t) · J(t) = J: da(t).f(t). 

The following is true: 

Proposition 1.3 [5; Th. 2.4] If a E SV([a, bi, L(X)) and/ E G([a, bj, X), then 

11 J.b -da(t).f(t)ll'$'SV[a].llfll. (1.1) 

We will consider the operator interior integral J: -da(t) o {J(t) E L(X) with 

a, fi: [a, b] -+ L(X) being defined by: 

[1• ·da(t) o fJ(t)] x= 1• ·do(t).[fJ(t)x] 
Given l x the identity mapping of L(X), and the set 

(x E X). 

Q = {(t,s) E [a, b] x [a,b];a $ s $ t $ b} C Rl 

and a mapping T: Q-+ L(X), with T1(s) = T,(t) = T(t,s), we write T E G~.SV"(Q, L(X)) 

or shortly T E G~.sv~ if T satisfies: 

(6") T(t,t) = 0, 
'., ; " 

(Go) T,x E G([a,bj, L(X)) 
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where T.x(t) = T(t,s)x, for every t E [a,b] and x E X, and 

(SV") SV"[T] = sup SV[T'] < oo. 
•SISb 

If, instea.d of (t.0), T satisfies 

(t.') T(t, t) = lx 

we write T E G1.SV"(Q, L(X)), or shortly T E G1.SV". Note that SV" is a. seminorm. 

The operators T E Gg.SV" represent in the sense of the classical Riesz rcpresentation 

theorem - by using now the interior integral - (see [4, Th. 2.10]) . the non-a.ntccipa.tive [or 

causal] operators acting on the left continuous elements of G([a, b), X). The equation ( K) 

which we will be dealing with is 

x(t)- x(a) + 1' ·d,l((t,s).x(s):, ~(t) - u(a) (a$i$6) 
(K) u E G([a, b], X), and /( E Gg.SV". 

The following proposition define the resolvent R, associated to K: 

Proposition 1.4 ([4, Th. 3.4]) Suppose (/() and that there exists one and only one mapping 

R E c; .SV"(Q, L(X)) satisfying 

R(t,s)x - x+ J.' ·d.,K(t,T).R(T,.,)x = 0 

for every x E X and a :S s :S t $ b. Then the solution of (K) forced by u, is givcn by 

x(t) = u(t) + R(t,s)[x(a) - u(a)]-1
1 
·d,R(t,.,).u(.,). 

In the next propositions we give a necessary and sufficient conditioo oo K, for haviog 

the existence and unicity of such R. We need tl.e following definitions bcfore: 

Definition 1.5 For K E Gg.SV" and d E D we denote: 

c(l(,d) = sup sup{S\1i,,_1,,1[K1J;";-1 :S t :S .,;} 
ISiSldl 
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and 

«x,«, = JUp Jup{SV(,,_,,,1!K']iJi-J ~ t ~ J;}. 
15;51c11 

Let be, for all t E [a,b) ( t E (a,b], respectively ), K(t+,J) = limK(T,J) ( K(t-,J) = 
TII 

limK ( r, s), -espectively ) . The cxistence of such operators is released in a straigbtfcrward 
Tjl 

way by the Banach-Steinhaus theorem. 

Definition 1.6 If K E Gg · svu we define 1(- c Gg . svu by 

JC ( t, s) = J(( t - , s) (a<s<t) 

A result allowing the existence and unicity of the resolveot R is done by 

Proposition 1.7 ([5; Th. 3.4]) Let be k E L(G([a,b),X)) the operator defined by 

I( E G0 · SV": 
ky(t) = [ ·d.,K(t,u).y(u), 

being compact. Theo the fo!lowing properties are equivalent: 

(Pi): for every I E [a,b], [/x - l((t+,t)J-1 E L(X) 

(P1): there exists an unique R fulfilling (R"). 

A strictly more general result in this frame is possible: 

Proposition 1.8 [5; Th. 3.8] Let be J( E G0 · SVU, satisfying: 

(P3): there exists a division d E D with c(/(-, d") < l. 

Tben (Pi) is equivalent to (P1). 

After those preliminary results, the rnain section in this work can be done. 

2. Exponential representation of the resolvent 

Let be as in [l; p. 31] the operator 

· - G~ · SV"(Q, L(X)) 

defined by 

(rU)(t,s) = [ ·d.,K(t,u) o U(u,J) 
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The next result gives a condition for have R expressed as an exponential operator for a 

particular point (t,s) E Q: 

Theorem 2.1 Suppose I( E Gg · svu satisfying (PJ) and R being the resolvent operator 
associated to J( in (/(). 

If for (t,3) E Q we have 

(2. J) I 
sup IIR(a,.,)11 < SVi [i(t]' 

e1e(,,1J 1,.1) 

then there exists an operator B(t,s) E L(X) such that: 

(2.2) R(t,s) = eB(r,,)_ 

Proof: According a result by Nagumo in Banach algebra ([7, Th. 1.4.12]) using straightfor­ 

ward arguments - see for example [8; Lemma] - if we have, for all nonnegative real r, 

(2.3) (R(t,-') + r/)-1 E L(X), 

then we get (2.2). 

According (R"), the expression in (2.3) is true, provide 

[Mx - r RJ-1 e L(X), 

for all real ,\ ~ J . If 

(2.4) 11J
1

·d.,l((t,u)oR(u,s)II < l 

we get so (see [6; Ex. 1.4.5]). 

The inequality ( I. 1) applied to the left term .in (2.4) ends the proof. • 

We get immediately as a consequence of this theorem: 

Corollary 2.2 If u E [s, t], then: 

S\li,,ri[I<'] < IIR(~, s)II" 

Moreover, R(s,s) = lx gets: 
S\li,,11[K1

] < 1. 
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If R is done by a Neumann series in the sense of [5; Def. 3.3], we get a sufficient condition 

to have R being of the form (2.2) in a point (t,-') E Q, only by considerations directly on K. 

Let us state, 
Propoaition 2.3 [5; Th. 3.9] Suppose I< E G0 · SV" satisfying the property 

(P4): there exists a d E D such thal «tc: ,d) < I. 
Tben R associated to K in (I(), is done by the Neumann aeriea. 

(2.5) 
+oo 

R= l x + 1:(-l)"T"(/x), 

In the next theorem we state a result tha.t allows 

(2.6} R= e8 

in Q. 
Theorem 2.4 Suppose K E G0 .SV", and the operator 1.U = U for all 

V E 64: 
If SV"[K] < ¼ then there exists an operator BE G~.SV" such that for all (t,-') E Q: 

R( t, s) = e8<1,•I 

Proo(: According [l; 2.18 and 2.7] we have 

c(/(-, d) < SV"[J<-] < SV"{I<). 

This implies (P4). 

The expression (2.5} implies 

R=(l+Tr'rx, 

and then, according [6; 1.4.5] 

(2.7) 

By other hand we have, {1; 2.23.cj: 

(2.8) 
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Finally, svu(KI < ¾, (2.8) and (2.7) imply (2.3) and so (2.2) for every (t,.9) E Q. • 

If R has the exponential expression (2.6), we can get in some special ceses B(t,.,)((t,.,) E 

QJ, done in terms of K, as shown in the next theorem. Before, we need A definition: 

Definition 2.5 K E Gg.SV" satifies the property (P6) if 

00 

z)-1r+1r"(/x)(t,.,) = 0 
-2 

Tbeorem 2.6 Let be K E c;.SV" satisfying (P6) and with SV•[KJ < ¼­ 
Then B : Q - L(X) in (2.6) can be expressed by 

(2.9) B(t,-') = J<1(t,.,) - K1(t,.,) + J<l(t,.,) - ... 
2 3 

where K1(t,.9) = K(t,s) and K"+l(t,.,) = K(t,.,) o l<"(t,.,),n = 1,2 .... 
Proof: According the theorem 2.4 we get 

(2.10) 

K Atisfying (P6), and r(/x) = -K yield: 

e8 = l x -K 

The definition of log T, for a linear operator Tin (6; X.1.4] implies (2.9) for every (t, .,) e Q . 

• 
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