EXPONENTIAL SOLUTION FOR INFINITE
DIMENSIONAL VOLTERRA-STIELTJES LINEAR
INTEGRAL EQUATION OF TYPE (K)

L. Barbanti'

Abstract: Here we are dealing with the linear Volterra-Stieltjes
integral equation of type (/K) with kernel K and resolvent R. A bound
on the semivariation of K is done to get for some operator B, R = ¢eB.

Moreover, we will show that if K satisfies a special condition we can

take B = K.

Introduction

It is exhaustively well known the importance in to get the operator-solution of an evo-
lutive system having the exponential form.

In the frame of the linear integral equations of type (K) we have, until now, results
yielding the resolvent being an exponential operator only for special kernels - the ones for
which the equation (K') is a Stieltjes equation. (See remark 2.10, below). Here we get
conditions for general kernels /(, enlarging our options. .

In the following section 1 we point general results in the theory of the linear integral

equations of type (K), and in section 2, we give the results concerning the exponential

expression of the resolvent R.
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1. Volterra-Stieltjes integral equations of type (K).

The Volterra-Stieltjes linear integral equation of type (K') deals with the forcing and
state terms being regulated mappings and is considered in many works. The main events in
the development of the theory are due to D. B. Hinton, who originated it in 1966, and C. S.
Hénig and 8. Schwabik (1974), and others. For historical remarks and references, see Honig
[4]. Here we work in the context by Honig.

This type of equation encompasses very general classes of evolutive systems, as the linear
ODE, PDE, Neutral Functional equations, equations with impulsive action and the Stieltjes

equations

(L) v =2+ [ dAtts) = 100

(see (3, pp. 82-94], [2], and in [5], [9]).
Given [a,b] C R and a Banach space X, we define the semi-variation of g:[a,b] = L(X)

(1]

ld L
SVig) = sup sup { 2 Ms(e) = ot )zl € X, il < x}

where D is the set of all finite partitions of the interval [a,8), dito=a<t;<..<t, = b,
and d] = n. Sometimes we will denote 5V{g] as SVjo.lg]. If SV[g) < oo, we say that g is of
bounded semivariation, and we write g € SV/([a,b),L(X)). Note that SV is a seminorm.
If @ € SV([a,b],L(X)) and [c,d] C [a,8] we have: o € SV(ie,d), L(X)),
SVieala] £ SVayla] and
SVicala] = lim SV, 4/a]

In the same way we define SVicq)[a]. The following properties on the semi-variation of a
will be useful:
Proposition 1.1 (1; 1.15] If a € SV([a, b}, L(X)), then:
(i) the function t € [a,b] — SV|,[a] is increasing,
(ii) if ¢ € (a, b) then SVay(a] < SViagla] + SVieylal,
 (iii) a is bounded and la(t)|| < |la(a)l| + $Vju.gla].
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We say that f : [a,b] — X is regulated, and write f € G([a, b}, X) if f has discontinuities
only of the first kind. G([a,b], X') is a Banach space when endowed with the sup norm.
For a € SV([a,b], L(X)) and f € G([a,b}, X), there exists the interior (or Dushnik-type)

integral

d
Ful) = [ date). 10 = gggla(t.-) - a(ti-1)}f () € X
where 3; € (ti-1,1) (see [4, Theorem 1.11]).
The interior integral is an extension of the usual Riemann-Stieltjes integral as seen in:
Proposition 1.2 ([3; Th. L.1.1]) Let be a: [a,b) = L(X) and [ : [a,b] — X:
(i) if f: da(t).f(t) exists then [*-da(t).f(t) exists and has the same value,

(i1) if @ and f have no common points of discontinuities and there exists f:-da(t).f(t),
then [ -da(t)- f(t) = [} da(t).f(1).

The following is true:

Proposition 1.3 [5; Th. 2.4) If a € SV([a,b). L(X)) and f € G([a,b], X), then

b
(L1) I / da(t).f()II'S SVIal Il

We will consider the operator interior integral [*-da(t) o A(t) € L(X) with
a,f : [a,b] = L(X) being defined by:

b b
[/. ‘da(t) o B(t)] zi= / -da(t).[B(t)z] (z € X).
Given /x the identity mapping of L(X), and '.l;e set
Q = {(t,s) € [a,b] x [a,b];a < s <t < b} CR?

and a mapping T : Q — L(X), with T'(s) = T,(t) = T(t,s), we write T € G§.5V*(Q, L(X))
or shortly T' € G§.SVY il T satisfies:

(A%) T(t,t) =0,

(G*) T,z € G([a, b, L(X))
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where T,z(t) = T(t,s)z, for every t € [a,b] and z € X, and

(SVY) SV¥[T) = sup SVIT'] < oo.

agt<h

If, instead of (A°), T satisfies
(a) T(t,1) = Iy

we write T € G7.5V¥(Q, L(X)), or shortly T € G7.SV¥. Note that SV* is a seminorm.
The operators T' € G§.SV" represent in the sense of the classical Riesz representation

theorem - by using now the interior integral - (see (4, Th. 2.10]) - the non-antecipative lor

causal] operators acting on the left continuous elements of G([a,b], X). The equation (K)

which we will be dealing with is

z(t) - z(a) + /‘ 4, K(t,s).2(s) = u(t) - u(a)  (a<t<b)
(K) u € G([a,b], X), and K € G5.SV*,

The following proposition define the resolvent R, associated to K:

Proposition 1.4 ([4, Th. 3.4]) Suppose (K') and that there exists one and only one mapping
R € G7.5V*(Q, L(X)) satisfying

t
(R*) R(t,8)z —z + / d. K(t,7).R(1,8)z = 0
forevery z € X and a < s <t < b. Then the solution of (K) forced by u, is given by
t
z(t) = u(t) + R(t, s)[z(a) — u(a)] - / d, R(t, s).u(s).

In the next propositions we give a necessary and sufficient condition on K, for having
the existence and unicity of such R. We need tl.e following definitions before:
Definition 1.5 For K € G§.5V* and d € D we denote:

co(K,d) = sup sup{SW,,_, 4[K'}isics St < o)
15ig1d)



-519-

and

o(K,d*) = sup sup{SV,,_, 4lK");8i-1 <t < 8.

1<igid|
Let be, for all t € [a,b) ( t € (a,b], respectively ), K(t+,s) = li;nK(-r,s) (K(t—=s) =
rit
1i|;r;_K(r,s), respectively ). The existence of such operators is released in a straightforward
Qi

way by the Banach-Steinhaus theorem.

Definition 1.8 If K € G7 - SV we define K~ € Gf - SV* by

O.AJ
K=(t,8) = K(t—,s) (a<s<t)

A result allowing the existence and unicity of the resoivent R is done by
Proposition 1.7 ([5; Th. 3.4]) Let be k € L(G([a, b}, X)) the operator defined by
K € G§ - SV

k) = [ 4K (,0)(0),
being compact. Then the following properties are equivalent:
(P,): for every t € [a,b], [Ix = K(t+,1))"" € L(X)
(P;): there exists an unique R fulfilling (R*).

A strictly more general result in this frame is possible:

Proposition 1.8 (5; Th. 3.8] Let be K € G§ - SV*| satisfying:
(Ps): there exists a division d € D with ¢(K~,d*) < 1.
Then (P,) is equivalent to (P;).

After those preliminary results, the main section in this work can be done.

2. Exponential representation of the resolvent

Let be as in [1; p. 31] the operator

TGy 1= G5 SVY(Q, L(X))
defined by

(rU)(t,s) = /‘ d,K(t,0) 0 U(a, s)
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The next result gives a condition for have R expressed as an exponential operator for a
particular point (¢,3) € Q:
Theorem 2.1 Suppose K € G§ - SV* satisfying (P;) and R being the resolvent operator
associated to A in (K).

If for (t,3) € Q we have

1
(2.1) ’semllﬂ(a.s)ll < SV lKT’

then there exists an operator B(t,s) € L(X) such that:
(2.2) R(t,s) = Bt

Proof: According a result by Nagumo in Banach algebra ({7, Th. 1.4.12]) using straightfor-

ward arguments - see for example (8; Lemma] - if we have, for all nonnegative real r,
(2.3) (R(t,s) +rI)™" € L(X),
then we get (2.2).
According (R"), the expression in (2.3) is true, provide
[Mx = 7R)™ € L(X),
for all real A > 1. If
(24) [ dek(t0)0 Rio, )l <

we get so (see [6; Ex. 1.4.5]).
The inequality (1.1) applied to the lelt term in (2.4) ends the proof. &
We get immediately as a consequence of this theorem:

Corollary 2.2 If o € [s,1), then:

1
SV, alK* s
il ') < TRGaM

Moreover, R(s,s) = Ix gets:

S‘/‘,J][Kl] < l.
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If R is done by a Neumann series in the sense of [5; Def. 3.3), we get a sufficient condition

to have R being of the form (2.2) in a point (t,s) € Q, only by considerations directly on K.
Let us state,

Proposition 2.3 [5; Th. 3.9] Suppose K € G§ - SV* satisfying the property
(Ps): there exists a d € D such that ¢(K~,d) < 1.

Then R associated to K in (K), is done by the Neumann series.

400
(2.5) R=Ix+Y (-1)"r"(Ix).

n=]

In the next theorem we state a result that allows
(2.6) R=¢°

in Q.
Theorem 2.4 Suppose K € Gj.SV¥, and the operator W = U for al
U e€eGg..

A

If SV¥[K] < i then therc exists an operator B € G5.SV* such that for all (t,3) € Q:
R(t,s) = B

Proof: According {I; 2.18 and 2.7] we have

oK™, d) < SVY[K™) < SVV[K].
This implies (Pq).
The expression (2.5) implies
R=(+1)"I,
and then, according [6; 1.4.5)
(27) lieRY < AL

=il
By other hand we have, (1; 2.23.c]:

(2.8) | lirll < 25V*(K)
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Finally, SV¥[K] < %. (2.8) and (2.7) imply (2.3) and so (2.2) for every (t,s) € Q. »
If R has the exponential expression (2.6), we can get in some special cases B(t, s)[(t,s) €
Q), done in terms of K, as shown in the next theorem. Before, we need a definition:

Definition 2.5 K € Gg§.SV" satifies the property (P;) if

0

(Py) (=1 (Iy)(t,) = 0

nml
Theorem 2.6 Let be K € G7.SV* satisfying (Py) and with SV*[K] < .
Then B : Q — L(X) in (2.6) can be expressed by

K’(2t,s) 5 K3(t,s) e

(2.9) B(tv") o (l(tts) e 3

where K'(t,s) = K(t,s) and K"*'(t,s) = K(t,3) 0 K*(t,s),n=1,2...

Proof: According the theorem 2.4 we get
(2.10) e =(1+7).
K satisfying (Py), and 7(Ix) = =K yield:
ef = Iy - K

The definition of log T, for a linear operator T in [6; X.1.4] implies (2.9) for every (t,s) € Q.
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