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Predicting the existence of a 2.9 GeV D f;(980) molecular state
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A D-like meson resonance with mass around 2.9 GeV has been found in the DKK system using two
independent and different model calculations based on (1) QCD sum rules and (2) solution of Fadeev
equations with input interactions obtained from effective field theories built by considering both chiral and
heavy quark symmetries. The QCD sum rules have been used to study the D(2317)K and Df,(980)
molecular currents. A resonance of mass 2.926 GeV is found with the Df(980) current. Although a state
in the D((2317)K current is also obtained, with mass around 2.9 GeV, the coupling of this state is found
to be two times weaker than the one formed in Df;(980). On the other hand, few-body equations are
solved for the DKK system and its coupled channels with the input ¢ matrices obtained by solving Bethe-
Salpeter equations for the DK, DK, and KK subsystems. In this study a D-like meson with mass
2.890 GeV and full width ~55 MeV is found to get dynamically generated when DKK gets reorganized as
Df(980). However, no clear signal appears for the D((2317)K configuration. The striking similarity
between the results obtained in the two different models strongly indicates the existence of a Df(;(980)

molecule with mass nearly 2.9 GeV.
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L. INTRODUCTION

In the past years, the development of high-energy facili-
ties has led to the discovery of a number of open and
hidden charm resonances by collaborations like BABAR,
Belle, and BES [1-5], which, in turn, has motivated many
theoretical studies to understand the properties and nature
of heavy-flavor hadrons. Some of the heavily discussed
states are D +;(2317), X(3872), and Z* (4430), whose prop-
erties have been studied within different models, assuming
different configurations like diquarks, tetraquarks, hybrids,
hadron molecules, etc. (for a review, see Refs. [6-9]).

The understanding of the nature of the different mesons
and baryons of the hadron spectra, in general, is a long-
standing puzzle in theoretical nuclear physics. QCD is the
accepted fundamental theory describing the strong inter-
actions in terms of the quarks and gluons which constitute
the hadronic matter. However, while at high energies the
theory becomes perturbative and has been successfully
tested by the experiment, the situation is very different at
low energies, where due to the confinement of the quarks,
the theory is no longer perturbative, and nonperturbative
methods are needed to extract information about the prop-
erties of the hadrons.

To face this challenging issue, different techniques have
been developed. One of them is lattice QCD, which in the
last few years has emerged as an important tool to extract
information about hadronic observables, like mass, phase
shifts, etc. However, due to the large number of degrees of
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freedom present in QCD (quarks and gluons of different
flavors and colors), numerical calculations involving large
numbers of lattice points and small lattice spacing are very
time consuming for natural values of the mass of the
quarks. Although a lot of progress has been done in this
area, there are still some problems when addressing excited
states that have decay channels [10-14].

Another alternative for studying hadrons within the
spirit of QCD is the method of QCD sum rules (QCDSR)
(see Refs. [15-18] for a pedagogical information on this
topic). In this formalism the hadrons are described in terms
of their interpolating quark currents, with which a corre-
lation function is built. One begins evaluating this corre-
lation function at short distances, where the quark-gluon
dynamics is essentially perturbative, and then nonpertur-
bative corrections are added to it. This method has been
widely used to understand the mass, coupling, decay width,
etc., of many hadron states.

Yet another way to elucidate the nature and properties of
mesons and baryons is based on the use of effective field
theories built by taking into account unitarity, chiral sym-
metry, and its spontaneous breaking. In this case, the had-
rons are the degrees of freedom of the theory instead of the
quarks which constitute them. In the last 20 years, there has
been lot of activity in this field, and many resonances have
been found to have important meson-meson or meson-
baryon components in their wave functions. Some of the
states most widely discussed are the A(1405), generated as
a consequence of the interaction of the coupled channel
system KN and 73 [19-23], and the f,(980) resonance,
formed in the KK and 77 system [24-26]. Recently, this
theory has been generalized to study the properties of
hadronic systems in a finite volume, and its value in the
determination of related physical observables, using the
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energy levels obtained in the finite volume, and thus as a
prospective tool for lattice QCD calculations has been
shown [27-31].

The above-mentioned methods are in continuous devel-
opment since the experimental access to higher and higher
energies is becoming plausible and, consequently, more
and more new states with heavy quarks are being found.
The present time is thus ideal to study heavy hadron
physics since model predictions can be immediately tested,
which eventually helps in understanding the structure of
hadrons. With this idea we present a study of the DKK
system, which we find particularly interesting since the DK
and KK interactions are attractive in nature. In this manu-
script, we have studied this system using two methods:
QCDSR and few-body equations. In the former case, we
investigate the Df(980) and D(2317)K configurations,
while in the latter we solve the Faddeev equations for the
three-hadron system, where f,(980) and D-,(2317) are
dynamically generated in the corresponding subsystems.
As we shall see, we find a resonance with similar character-
istics in both models.

In the following, we first discuss the calculations based
on QCD sum rules and the results found in it.
Subsequently, we tackle with the formalism to solve the
Faddeev equations and discuss the results obtained with it.
Finally, we draw some conclusions.

II. QCD SUM RULES

We start our study based on the QCDSR by writing the
interpolating molecular currents for the Df, and DgsoK
systems as

JPT0 = i(G,vsca)(5psp) (D

JPoK = i(5,¢,)(@pYs55s), )

where a and b are color indices, and g represents a light
quark (u or d). Using these currents, we write the two-point
correlation function

M(g?) = i [ dxe 0 | TL)HOT10) ()

which can be written in terms of the quark propagators by
contracting all the quark antiquark pairs (for more details
see, for example, Ref. [6]).

This function is of a dual nature: it represents a quark-
antiquark fluctuation at short distances (or large negative
g%) and can be treated in perturbative QCD, while at large
distances it can be related to hadronic observables. The
sum rule calculations are based on the assumption that in
some range of g both descriptions are equivalent. One,
thus, proceeds by calculating Eq. (3) for both cases and by
eventually equating them to obtain information on the
properties of the hadrons.

From the QCD side, for large momentum transfers,
Eq. (3) can be calculated, in the first approximation, by
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assuming the involved propagators as those of free quarks.
However, since we are finally interested in studying the
properties of hadrons, the relevant energies are lower, where
the distance between the quarks gets longer and quark-
gluon interactions, quark-antiquark pair creation becomes
important. It is, thus, required to include the effect of the
presence of the gluons and quarks in the QCD vacuum. For
practical calculations, then, one resorts to the Wilson op-
erator product expansion (OPE) method, where the corre-
lation function is expanded in a series of local operators

IIPE = 3"C,(09)0,. (4)

In Eq. (4) the set {O"} contains all local gauge-invariant
operators expressible in terms of the gluon fields and
the fields of light quarks. The coefficients C,(Q?)(Q? =
—g?), by construction, include only the short-distance do-
main and can, therefore, be evaluated perturbatively.
Nonperturbative long-distance effects are contained only
in the local operators.

In the expansion of Eq. (4), the operators are ordered
according to their dimension n, where n = 0 corresponds
to the unit operator, i.e., perturbative contribution, and the
rest of the operators are related to the QCD vacuum fields
in terms of condensates. For normal quark-antiquark states,
the contributions of condensates with dimensions higher
than four are suppressed by large powers of Adcp/Q%
with 1/Aqcp being the typical long-distance scale.
However, for molecular states, condensates with higher
dimensions can play an important role. This is taken into
account by writing Eq. (4) in terms of the spectral density
using the dispersion relation

OPE(S)
q2

TTOPE(g?) = ojds + Subtraction terms. (5)

mZ s —
We work at leading order in «, and we consider conden-
sates up to dimension seven, as shown in Fig. 1.
Therefore, p®E can be written as

pOPE(qz) = ppert + pm.\ + p(‘?‘D + p<g2G2> —+ pm\<5?q>
+ plaso-Ga) + pmiaso-Ga) 4 plaay 4 pmlaay

(6)

where m, represents the mass of the strange quark. The
spectral density p©FF is related to the imaginary part of the
correlation function as 7p°PE(s) = Im[I1°FE(s)].

To calculate the different terms in Eq. (6), for the D (K
and Df, currents, we use the momentum-space expression
for the heavy quark propagator and the coordinate-space
expression for the light quark propagator. The Schwinger
parameters are used to evaluate the heavy quark part of the
correlator and to perform the d*x integration in Eq. (3).
Finally, we get integrals in the Schwinger parameters. The
result of these integrals are given in terms of logarithmic
functions, from where we extract the spectral densities and
the limits of the integration.
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FIG. 1.

Carrying out the calculations for the different diagrams
shown in Fig. 1 leads us to the following expressions,
where m, is the mass of the charm quark.

(1) The perturbative or dimension O contribution is

found to be

pert 2\ __ _pert, 2
Pp..c\ ) =Py, (a%)

amax
=— da
0

(2) For the terms of dimension one, which are propor-
tional to m,, we get

((a—1g*+m?)ta’
227%(a—1)3

(7)

C C I I
@ ! s !
(xxxi) (xxxii)

S

(xxviii)

¢ »333
"

(xxxiii)

Diagrams that contribute to the OPE side of the sum rule.

my ( 2) _ X max d mc((a - 1)q2 + m%)3a3m
Pp..k\4 , 21076 (q— 1)3

P (42 =0. ®)

5

(3) The calculation of the diagrams with one quark
condensate gives

@@ ~fame , 3m (e —1)g* +m2)>a*(5s)
.01;13012(‘12) _[ da Bt (a—1) ’

p@q)(qz) - _ amﬂxdaSmc((a —1)g* + m?)*a*(qq)
Dfo 0 287 (a—1)?

9
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(4) Both p™{49 and p<g2G2> contribute to dimension four and the expressions for the corresponding spectral densities are

3((a — 1)g* + m2)*>am,

amax
P I (q?) = jo da

262 22 amax
Py = o) = [ a

(5) Considering the mixed condensates, we get

e e (IR "
m{g X max 9((a — 1) + mg) o S my
pD.}(oqq>(q2) _ __[0 da (( 276] - _)1) (5s) ’
HgPGH (22— a)m2+ (a—1)¢*) | m2a® \a(m?+ (a—1)qg?)
21277.6 ( 2(1 _ a) 9(1 — a)2> 1 —a . (11)
3m(5g0 - Gs)a(l — 2a)(m® + (a — 1)¢?)
287 (a — 1)? ’ (12)

G Xmax
i) = [ da

3mAggo - Ggya(l — 2a)(m? + (a — 1)42)

G Pmax
PIET () = ~ [0 da

28 4(a _ 1)2

(6) Going to the dimension six operator, we get the following contributions for the terms proportional to m(Ggo - Gq):

pD§<qg(T Gq)(qz) _ /:max da ?54 [m% — q2(1 - a)](((?gO' : Gq>(6 In (CY) - 3) <Sg0' GS><1 il 25)),

o @max <Sg0' GS>
Pt D(g?) = fo daiy 7

four-quark condensates

a” 2):_[0 gale— e +m2)<qq><SS>

Pp..k 22
(Gq)* ( 2): a'““d
Ppr, \q o o4
and three-gluon condensates

3
pl G>(q2) P& (q?)

max
=— f da
0

In the case of the (dimension six) four-quark con-
densate, we have used the factorization assumption.
Therefore, its vacuum saturation value is given by:

(a9)* (16)

(14)

(= 1g* + m3)(5s)*
2477.2 ’

(a=1)g*+3m?)a’(g*G?)
3X 2470 —1)
(15)

(G9qq) =
(7) Finally, for dimension seven, we get

o ) = [ a0 (S~ (Gaxs),

mlqay oy _ _ [ % 3m(qq)(5sym,
pr“ (61 ) - ](; da24—772. (17)
The integration limitin Eqs. (7)—-(17)is @ = 1 — "% For

numerical calculations we need the values of the dlfferent

(13)

[mz — ¢*(1 = &)](1 — 61n(a)),

f
condensates and quark masses. We have used here the same
values for these inputs as those used in QCDSR calculations
for other exotic molecular states [6,32-34], which are given
in Table I. For the (g G?) condensate, we have used the new
numerical value estimated in Ref. [35].

We now calculate the correlation function from the
hadronic or phenomenological point of view. In this case,
the currents jT and j are interpreted as the creation and
annihilation operator of the hadrons which have the quan-
tum numbers of the current j. For this I1(g?) is written by
inserting a complete set of states with the same quantum
numbers as those of the currents under consideration,

. &p
thenom 2\ — /d4 lq-x/
(g°) =i | d*xe PPSUGIE

X 301 j(x) | mep)Xmep | j1(0)10). (18)
k=0

TABLE I. Values of the different known parameters required
for numerical calculations of the correlation function given by
Eq. (3) (see Refs. [6,32-35]).

Parameters Values

my 0.10 = 0.022 GeV
m, 1.23 + 0.05 GeV
qq) —(0.23 = 0.03)3 GeV?
(55) 0.8 {Gq)
(g°G?) (0.88 = 0.25) GeV*
(¢’°GY) (0.58 = 0.18) GeV®
(Go - Gq) 0.8{Gq) GeV?
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Thus, the correlation function contains the information on
all the hadrons of a given set of quantum numbers includ-
ing the one we are interested in, which is the low-mass,
relatively narrow, hadron of the series. One proceeds in
such a situation by assuming that the spectral density of
hadrons, for a fixed set of quantum numbers, can be ex-
pressed as a sum of a narrow, sharp state (which we are
interested in) and a smooth continuum

pphenom(s) = /\26(S - m2) + pcontinuum(s)’ (19)

where P ontinuum 18 @ssumed to vanish below a certain value
of s, s¢, which corresponds to the continuum threshold.
Above this threshold, it is assumed to be given by the result
obtained with the OPE. Therefore, one uses the ansatz [36]
pcontinuum(s) = pOPE(S)®(s - SO)-

The delta function in Eq. (19) implies that the width of
the particle is assumed to be zero. In principle, the intro-
duction of a finite width in the above calculation could
change the final result obtained for the mass and, more
importantly, it could be another important source of error
in the final result for the mass. However, our experience
with this type of calculation suggests that the introduction
of a width is not a very important source of errors. Indeed,
in Ref. [37] (see also the discussion in Ref. [6]), a careful
discussion of this effect was presented with the conclusion
that for the X(3872), Z(4430), and Z(4250) the uncertainty
in the width, when properly taken into account, generates
at most a 5% error in the final mass of the state. Moreover,
in Ref. [38] a careful study of the role played by the particle
width was performed. The semileptonic decay D — «lv
was calculated with QCDSR. From experiment we know
that m, = 0.797 GeV and the width is I', = 0.410 GeV.
With this extremely large value of the width, we would
expect that the zero width approximation for the x would
change the result dramatically. However, as shown in the
quoted article, the zero width approximation yields a total
D semileptonic decay rate that is only about 20% larger.
Given the huge size of the kappa width (half of its mass!),
the above mentioned estimate could be considered an
upper limit of the error introduced by neglecting the par-
ticle width. In view of these examples and bearing in mind
the exploratory nature of the present work, we will post-
pone the inclusion of the width for a future study. However,
we are aware and must remind the reader that the estimated
error in our results could be slightly larger.

In Eq. (19), A is the coupling of the current j with the
low-lying hadron with mass, (0| j|m) = A.

The spectral density given by Eq. (19) is related to the
correlation function of Eq. (18) as

OPE
—W )

A? © p
thenom(qZ) — + f ds
m2 — 6]2 s 2

s$—q
To carry out the calculations, s is taken as a parameter

of the method but its value is not completely arbitrary: it is
related to the onset of the continuum in the current j under
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consideration and is taken to be roughly 0.5 GeV above the
mass of the hadron we are interested in Refs. [6,18]. In this
work, we are looking for a resonance with a possible
Dfy(980) or D,(2317)K moleculelike structure. Since
such resonances are weakly bound, they are expected to
get generated close to the threshold of the constituent
mesons. Thus, /s in the present case can be ~3.4 GeV.
The correlation function calculated using QCD suffers
from divergent contributions coming from long-range in-
teractions, while the one calculated phenomenologically
contains contribution from the continuum. This situation
can be improved by taking the Borel transform of both
Egs. (5) and (20), which kills the problematic terms of both
sides, and which is defined as
—_ ,2\n+1
B - lim “L (LY. e
2 n! dq

—g%n—o
— 2 =M

After taking the Borel transform, we equate the resulting
expressions of the correlation functions on the basis of its
dual nature and get

/\2e—m2/M2+f dS'DOPE(S)e—x/MZ:[7dspOPE(S)e—x/M2’
So me

(22)

which can be rearranged as

A2€7mz/M2 — So dspOPE(S)efs/Mz’ (23)
"
where M represents the Borel mass parameter. Calculating
the derivative of Eq. (23) with respect to M? and dividing
the resulting expression by Eq. (23), we obtain the mass
sum rule

B ]:1]3 dsspOPE(s)e /M

2
m - .
j;(:% dSpOPE(S)efs/M2

(24)

Having the mass one can evaluate the current-state cou-
pling constant through Eq. (23),
j;(;(z arsspOPE(S)e—s/M2

)t2
e—mz/M2

(25)

The reliability of the results obtained within QCD sum
rules depends on the definition of a valid Borel window.
This range of the Borel mass is obtained by making the
following constraints:

(i) The maximum value of the Borel mass, M ,,, , where
the results should be reliable, is fixed by ensuring
that the pole term (low mass hadron) gives the domi-
nant contribution to the calculations. However, M,
is a function of sy. As mentioned earlier, a reason-
able value of /sy in the present calculation can be
3.4 GeV. We show the contributions of the pole and
continuum terms weighted by their sum [6,32,33] for
the Dfy(980) and D,;(2317)K systems, obtained
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with /sy = 3.4 GeV, in Fig. 2, which shows that
M3, ~2.06 GeV? in the former case and
1.79 GeV? in the latter, respectively.

(i1) The second constraint is to look for that Borel mass

range where a convergence in the OPE series is
found. For this we calculate the perturbative contri-
bution and add to it the diagrams with higher di-
mensions step by step. In other words, we calculate
the right-hand side of Eq. (23) by first using Eq. (7)
for pOPE, then by using the sum of Eqs. (7) and (8),
which means including the diagrams up to dimen-
sion one. Next we do the calculations up to the
|

max
dim =1

fSo dSpd PE(s)e—s/Mz)

max

dim =1

PHYSICAL REVIEW D 87, 034025 (2013)

subsequent higher dimension by taking a sum of
Eqgs. (7)—(9), etc, until going to diagrams with di-
mension seven [given by Eqgs. (17)]. For a conve-
nient comparison, the result obtained in each case is
weighted (divided) by the one obtained by using the
whole series of Eq. (6) for the spectral density. In
Fig. 3, we show the results of such an analysis of
OPE convergence for the Df;(980) (left panel) as
well as D (2317)K (right panel) systems.

The final condition, which is imposed to identify the
minimum value for the Borel mass, is that the con-
tribution defined by

]’So dspOPE(s)e—s/Mz)

dim

max

dlm—l(fso dsdeE(s)e S/M)

(26)

Dg0(2317)K

_k
o

o
<)

o
o

o
N

o
()

1.0

\Byp=3.4GeV _

Contributions (Pole, Continuum)

18 2 22 24 26 28
M? (GeV?)

12 14 16

1

2 14

18 20 22 24 26 28
M2 (GeV?)

16

FIG. 2. The contributions of the pole (solid line) and continuum (dashed line) weighted by (divided by) their sum for the D f;(980)
(left panel) and D,-(,(2317)K (right panel) systems.

D fo (980) Dy (2317) K
n 2.0 T T T T T T T T -
E L DImO ]
5 /So=3.4 GeV 3[ /5y=3.4GeV I Rmi
W el ~--=-Dim 4
o 15 L ——Dim5
o) 2 l l ----- Dim 6
g L ——Dim7
5 1.0 1
(2]
5
Sost oL '
5 A ]
(@] L L L L L L L L
14 16 18 2.0 2.2 15 16 1.7 1.8 1.9
M? (GeV’) M? (GeV?)

FIG. 3. Relative c_ontributions of the different OPE terms as a function of the squared Borel Mass, for the Df,(980) (left panel) as
well as D((2317)K (right panel) systems. A value of /55 = 3.4 GeV is used in these calculations. The arrows in the figures indicate
the valid Borel window, which is determined by using the conditions discussed in the text.
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is less than 0.25. In the equation written above, N, refers
to the maximum dimension of the condensates taken into
account in the calculation, which is seven in the present
case. With this, the OPE convergence is ensured in the
Borel mass range where the results can be taken as reliable
ones. It can be seen from Fig. 3 that a good convergence of
the OPE series is found for M3, = 1.5 GeV? and
1.7 GeV?, for the Df,(980) (left panel) and D((2317)K
(right panel) cases respectively.
The valid Borel windows established using both criteria
discussed above are indicated with arrows for the D f,(980)
and D-((2317)K systems in Fig. 3, for \/5; = 3.4 GeV.
Having fixed these conditions, we show, in Fig. 4, the
results of the calculation of the mass [using Eq. (24)] of the
states described using Df(980) and D,«;(2317)K mole-
culelike currents. It can be seen that a mass of 2.852
+0.008 GeV is found in the case of D((2317)K, while
it is 2.921 = 0.021 GeV in the Df;(980) system (within
the Borel window, indicated by the arrows in Fig. 4).
However, these calculations have been done using the
value of 3.4 GeV for /sy, which is a parameter. We now
vary the continuum threshold in the range 3.3 = \/s; =
3.6 GeV to check the sensitivity of our results to this
parameter. We also take into account the fact that there
exists uncertainty in the knowledge of the values of the
different condensates and quark masses listed in Table I.
Considering all these uncertainties we finally get

mp..x = (2.913 £ 0.140) GeV @7)

for the Dy((2317)K molecular current, while for the
Df,(980) molecular current we get

mpy, = (2.926 * 0.237) GeV. (28)

The above results have been determined by averaging the
mass over the corresponding Borel windows and by calcu-
lating the standard deviation to estimate the error.

PHYSICAL REVIEW D 87, 034025 (2013)

Next, following the same procedure, we have calculated
the coupling A for the two configurations studied and found
that the current-state coupling of the state described by the
D+((2317)K current is around two times weaker than the
one found for the Df(980) current,

Ap.g = (58+12)X 1077 GeV® and

(29)
Aps, = (9.4 = 3.3) X 1073 GeV>.

At first sight these couplings may look compatible within
error bars. However, this is not the case. Our error analysis
shows that, for a given set of parameters, A py, turns out to
be 1.4Ap . x — 2Ap . k, and this situation repeats for all
other set of inputs. We can interpret this result as an
indication that a Df,(980) state is better represented
by the respective molecular current than the
D((2317)K state.

III. THREE-HADRON APPROACH

Let us now discuss the study of the DKK system within
a very different approach that is based on effective field
theories, treating hadrons as the degrees of freedom instead
of quarks, and examine if the findings obtained in such a
calculation are compatible with the ones found with QCD
sum rules.

In the unitary chiral models [19-26,39,40], the f,(980)
resonance is described as a molecular hadron state gener-
ated in the interaction of the KK and 777 coupled channels
[24,25]. Similarly, the D-((2317) state can be interpreted
as a DK bound state formed in the DK, D;n coupled
channel system [41-45]. In these models, Lagrangians
based on symmetries, like chiral [46—48] and heavy quark
symmetries [49-51], are used to determine the lowest order
amplitude describing the transition between the different
coupled channels. These amplitudes are further unitarized
by using them as driving terms in the Bethe-Salpeter
equation, and the scattering matrix ¢ for the system is

D 1,(980) Dy (2317) K
a1l VSp=3.4 GeV | a0l VSo=3.4GeV |
< 30¢ . 29F i ]
[}
Sl V1 W
= 29} 1 28} T :
(7]
©
S 28f 27} ]
27} 26} ]
1.4 1.6 1.8 2.0 2.2 15 1.6 17 1.8 1.9
M? (GeV?) M?(GeV?)

FIG. 4. Mass of a moleculelike resonance obtained by using QCD sum rules to study the Df,(980) (left panel) and D((2317)K
(right panel) systems. The arrows indicate the range where the reliability of the results is ensured.
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obtained. Recently, these models based on effective field
theories, chiral symmetry, and unitarity in coupled chan-
nels have been further extended to investigate the interac-
tion of three-hadron systems formed by different mesons
and baryons, like 7KN, NKK, J/ KK, KK, etc., and
generation of several hadron states like 2(1660), ¢(2170),
Y(4260), N*(1710) has been found [52-55]. Analogously
to the two-body studies where the scattering matrix is
obtained by solving the Bethe-Salpeter equation taking as
kernel the lowest-order chiral amplitude, in the case of the
approach of Refs. [52-55], the Faddeev equations [56] are
solved, having as driving term the chiral two-body scatter-
ing matrices for the different pairs of the system. In this
way, the input two-body ¢ matrices in the Faddeev equation
contain the information related to the generation of the
corresponding two-body resonances.

In line with the above mentioned works, a different
strategy to the one discussed in the previous section to
study the Df(980) and DK systems would be to consider
f0(980) and D;(2317) as molecular resonances formed,
respectively, in the KK and DK systems, together with
their respective coupled channels, and study the three-body
system DKK following the approach of Refs. [52-55]. To
do this, we consider ten coupled channels for total charge
zero and charm C = 1: D°K*K~, D°K°K®, DV7* 7,
D7 x*, D'7°#°, D°z°n, DYK°K~, D a
DYm 7, D a7,

As mentioned above, to solve the Faddeev equations for
the DKK system and coupled channels, we first need to
determine the two-body scattering matrices ¢ for the differ-
ent pairs of the system. This is done by solving the Bethe-
Salpeter equation through its on-shell factorization form
[20,24-26,39],

t=(1-vg)'v. (30)

The kernel V in Eq. (30) corresponds to the lowest-order
two-body amplitude obtained from a suitable Lagrangian,
and G represents the loop function of two hadrons.

In the case of the DKK system and coupled channels, we
have two different types of interactions: one involving two
light pseudoscalars, like K K, 77, and the other between a
heavy and a light pseudoscalar meson, like DK, Dr.

For the description of the KK system, we follow
Refs. [24,25] and solve Eq. (30), considering KK, 7,
and 77 as coupled channels. The kernel V is obtained from
the lowest-order chiral Lagrangian for the process PP —
PP, with P representing a light pseudoscalar (i.e., 7, K, 1),

In Eq. (31), f is the pion decay constant, Tr{...} indicates
the trace in the flavor space of the SU(3) matrices appear-
ing in P, which is a matrix containing the different
Goldstone bosons, and M is a mass matrix,
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12 77.0 + 71g n 7T+ K+
p=| = —kat+ln K| 3
- o0 _2
m2 0 0
M=| 0 m2 0 . (33)
0 0 2mik—m’

The V matrix obtained using the Lagrangian of Eq. (31)is a
function of the Mandelstam variables s, ¢, and u. This
matrix is further projected on s wave, and the resulting
expressions can be found in Ref. [24].

The loop function G in Eq. (30) is calculated using the
dimensional regularization scheme of Ref. [25]. In the
present case, i.e., for a two-pseudoscalar system,

md, md—md E g,

1
= +In—r+ 2 _Ir "
GV 16772 {ar(lu') n Mz 2E2 nm%

+ %[m (B2 — (m2, — m2) + 2q,E)

+1In(E? + (m3, — m3,) + 2q,E)
—In(—E*+ (m3, — m3,) + 2q,E)

—In(=E? — (m3, —m3) + 2q,E)]}. (34)

In Eq. (34), E is the total energy of the two-body system,
my,, m,,, and g, correspond, respectively, to the masses
and the center of mass momentum of the two pseudoscalars
present in the rth channel, w is a regularization scale, and
a,(u) a subtraction constant. Following Ref. [25], we have
taken u = 1224 MeV and a value for a,(u) ~ —1 (note
that there is only one independent parameter here since a
change in u can be reabsorbed in a,). In this way we can
reproduce the observed two-body phase shifts and inelas-
ticities for the different coupled channels as done in
Refs. [24,25]. The resulting scattering matrix ¢ exhibits
poles on the unphysical sheet which are related to the
resonances o(600), (980), and ay(980).

In the case of the subsystem constituted by a heavy and a
light pseudoscalar meson, like DK, D, since the heavy
mesons contain both light and heavy quarks, one expects
both the chiral symmetry of the light quarks and the
symmetry of the heavy quarks to be considered. Having
this in mind, to determine the scattering matrix of a heavy
meson H with a light pseudoscalar P, we follow
Refs. [42,45], where the leading order Lagrangian describ-
ing this interaction is given by the kinetic and mass term of
the heavy mesons (chirally coupled to pions),

L =D, HD*H' — MyHH", (35)
with H= (D D% D/) collecting the heavy mesons,

whose mass in the chiral limit is My, P is given by
Eq. (32), and D, is the covariant derivative [51]
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D,H' = (9, +T,)HT, D,H=H(3, +T}),

1 .
r,= E(uTaﬂu +ud,ub), u? = eN2P/1, (36)

For the process which concerns us, i.e., HP — HP,
Eq. (35) becomes

1
Lyp= m{af'~H[P, a,PIHY — H[P,0,Plo*HT},  (37)
and the lowest-order amplitude obtained from this
Lagrangian in terms of the Mandelstam variables reads as

Vl] f2
In Eq. (38) i and j represent the initial and final channels,
respectively, and the C;; coefficients have been earlier
calculated and can be found in Refs. [42,45]. This potential
is further projected on s wave.

As in Refs. [42,45], we consider the coupled channels
DK, D,n and D, for strangeness +1 and D7, Dn, D ,K
for strangeness 0. The loop function G of Eq. (30) is
determined using Eq. (34) with x = 1000 MeV and a =
—1.846 [44,45], obtaining in this way a pole in the DK
system for total isospin 0 at 2318 MeV, which corresponds
to the state D((2317), and a pole at 2446-i43 MeV in the
D system in isospin 0, associated with the resonance
D;;(2400).

Once the two-body scattering matrices are calculated,
we can proceed with the determination of the three-body T
matrix for the DKK system. To do that we use the approach
of Refs. [52-55], in which the Faddeev partitions, T', T2,
and T3, are written as

L(s — u). (38)

3
T =183k — k) + D T{,
j#i=1

i=123 (39

with Ei (/Z) being the initial (final) momentum of the
particle i and ¢ the two-body t matrix which describes
the interaction of the (jk) pair of the system, j # k # i =
1, 2, 3. The total three-body 7 matrix is obtained by
summing the 7" partitions,

T=T'+T*+7T°= Zﬂa*k—k)JrTR, (40)

i=1

where we define

3 3
Ez > Ty 41)
i=1 j#i=1

The T,’g partitions in Eq. (39) satisfy the following set of
coupled equations

T = tigiiti + d[GUTY + GUkTI,
i %, jFk=1273 42)

where g corresponds to the three-body Green’s function
of the system and its elements are defined as
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. Ny
g”(k;, kj = (ﬁ)
2E,(k; + kj)
1

X = > > s
J5 — E(k) — B (K, + &) + ie

(43)
with Ny = 1 for mesons and E;, [ =
the particle /.

The G* matrix in Eq. (42) represents a loop function of
three particles, and it is written as

1,2, 3, is the energy of

) LR
with the elements of g/ being
s N N
g Y (k/l’ sl’”) = l"// m"//

2E)(k") 2E,, (k")
1

X _ __ i#l#m,

Sim = E((k") = E,, (k") +ie
(45)

and the matrix F/¥, with explicit variable dependence, is
given by

FKE", Ky ki, s%0) = 1 (sk0) g (K, k)Lg ™ (K, k)T
X[t](sru)] 1» ];ér:/:l/l=1,2,3.
(46)

In Eq. (45), /s, is the invariant mass of the (Im) pair and
can be calculated in terms of the external variables. The
upper index k" for the invariant mass s¥, of Eq. (46)
indicates its dependence on the loop variable (see
Ref. [53] for more details).

The T} partitions given in Eq. (42) are functions of the
total three-body energy, /s, and the invariant mass of the
particles 2 and 3, ,/s;3. The other invariant masses, ,/s1,
and /53, can be obtained in terms of /s and /553, as it
was shown in Refs. [53,54]. In this model, peaks obtained
in the modulus squared of the three-body 7 matrix are
related to dynamically generated resonances. Finally, it
should be mentioned that the first term in Eq. (40) cannot
give rise to any state generated due to the three-body
dynamics and, hence, we can just study the properties of
the Tr matrix defined in Eq. (41).

Further, we work in the charge basis, then, to associate
the peaks found in the three-body 7-matrix with physical
states we need to project 7 on an isospin basis. We do this
by defining a basis where the states are labeled in terms of
the total isospin I of the three-body system and the isospin
of one of the two-body subsystems, which in the present
case is taken as the isospin of the KK subsystem or the
system made by particles 2 and 3, I,3, and evaluate the
transition amplitude (I, I,3|Tgl|1, I,3). The isospin I,; can
be either O or 1, thus, the total isospin / can be 1/2, or 3/2.
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\/? (MeV) 3040

FIG. 5 (color online). Squared amplitude for the DKK
channel for total isospin / = 1/2 with the KK subsystem in
isospin zero.

For the cases involving the states |I = 1/2, I,; = 1),
|I =3/2, I,5 = 1), we find no structure that could be
related to a resonance or a bound state. Thus, in the
following, we discuss the case I = 1/2 with I,; =0,
where we do find a resonance.

In Fig. 5 we show the results obtained for the modulus
squared of the scattering amplitude of the DKK channel
for total isospin 1/2 with the KK system in total isospin 0.
A peak around 2890 MeV with a width of 55 MeV is found
when the KK system is in the isospin zero configuration
with an invariant mass of around 985 MeV, thus, forming
the f,(980) resonance.

If instead of using the isospin base |1, I,3) we use |1, I},),
with I}, the isospin of the (12) subsystem, i.e., the DK
system, no clear signal for the peak shown in Fig. 5 is
observed when the DK system is in isospin zero.

PHYSICAL REVIEW D 87, 034025 (2013)

These results are similar to the ones obtained in the
previous section using QCD sum rules, in which a state
of mass around ~2900 MeV is found to couple more to the
Df,(980) current than to the one corresponding to
D((2317)K.

IV. SUMMARY

We have studied the DKK system using two different
methods: one based on QCD sum rules and the other on
solving few-body equations. In the former case, the
Df(980) and D,((2317)K configurations of the DKK
system have been investigated and a state with a mass
around 2.9 GeV has been found, which couples more to a
D f, molecular current. In the latter, the Faddeev equations
have been solved with input two-body ¢ matrices that gen-
erate the £,(980) and D,-;(2317), respectively, in the KK
and DK systems and related coupled channels. As aresult, a
state with a mass close to 2.9 GeV and a width of 55 MeV
was found when the KK subsystem generates the f,(980)
resonance. The findings obtained within these two different
methods are quite similar, hinting towards the existence of a
Df,(980) molecular state with a mass close to 2.9 GeV. A
state with this mass has not been discovered experimentally so
far, and the heaviest known D meson is the D(2750), whose
mass is around 150 MeV below the one found in this manu-
script. We strongly encourage the search of a state decaying
into DKK with the characteristics of the one found here.
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