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A D-like meson resonance with mass around 2.9 GeV has been found in the DK �K system using two

independent and different model calculations based on (1) QCD sum rules and (2) solution of Fadeev

equations with input interactions obtained from effective field theories built by considering both chiral and

heavy quark symmetries. The QCD sum rules have been used to study the Ds�0ð2317Þ �K and Df0ð980Þ
molecular currents. A resonance of mass 2.926 GeV is found with the Df0ð980Þ current. Although a state

in the Ds�0ð2317Þ �K current is also obtained, with mass around 2.9 GeV, the coupling of this state is found

to be two times weaker than the one formed in Df0ð980Þ. On the other hand, few-body equations are

solved for the DK �K system and its coupled channels with the input t matrices obtained by solving Bethe-

Salpeter equations for the DK, D �K, and K �K subsystems. In this study a D-like meson with mass

2.890 GeVand full width�55 MeV is found to get dynamically generated whenDK �K gets reorganized as

Df0ð980Þ. However, no clear signal appears for the Ds�0ð2317Þ �K configuration. The striking similarity

between the results obtained in the two different models strongly indicates the existence of a Df0ð980Þ
molecule with mass nearly 2.9 GeV.
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I. INTRODUCTION

In the past years, the development of high-energy facili-
ties has led to the discovery of a number of open and
hidden charm resonances by collaborations like BABAR,
Belle, and BES [1–5], which, in turn, has motivated many
theoretical studies to understand the properties and nature
of heavy-flavor hadrons. Some of the heavily discussed
states areDs�0ð2317Þ,Xð3872Þ, and Zþð4430Þ, whose prop-
erties have been studied within different models, assuming
different configurations like diquarks, tetraquarks, hybrids,
hadron molecules, etc. (for a review, see Refs. [6–9]).

The understanding of the nature of the different mesons
and baryons of the hadron spectra, in general, is a long-
standing puzzle in theoretical nuclear physics. QCD is the
accepted fundamental theory describing the strong inter-
actions in terms of the quarks and gluons which constitute
the hadronic matter. However, while at high energies the
theory becomes perturbative and has been successfully
tested by the experiment, the situation is very different at
low energies, where due to the confinement of the quarks,
the theory is no longer perturbative, and nonperturbative
methods are needed to extract information about the prop-
erties of the hadrons.

To face this challenging issue, different techniques have
been developed. One of them is lattice QCD, which in the
last few years has emerged as an important tool to extract
information about hadronic observables, like mass, phase
shifts, etc. However, due to the large number of degrees of

freedom present in QCD (quarks and gluons of different
flavors and colors), numerical calculations involving large
numbers of lattice points and small lattice spacing are very
time consuming for natural values of the mass of the
quarks. Although a lot of progress has been done in this
area, there are still some problems when addressing excited
states that have decay channels [10–14].
Another alternative for studying hadrons within the

spirit of QCD is the method of QCD sum rules (QCDSR)
(see Refs. [15–18] for a pedagogical information on this
topic). In this formalism the hadrons are described in terms
of their interpolating quark currents, with which a corre-
lation function is built. One begins evaluating this corre-
lation function at short distances, where the quark-gluon
dynamics is essentially perturbative, and then nonpertur-
bative corrections are added to it. This method has been
widely used to understand the mass, coupling, decay width,
etc., of many hadron states.
Yet another way to elucidate the nature and properties of

mesons and baryons is based on the use of effective field
theories built by taking into account unitarity, chiral sym-
metry, and its spontaneous breaking. In this case, the had-
rons are the degrees of freedom of the theory instead of the
quarks which constitute them. In the last 20 years, there has
been lot of activity in this field, and many resonances have
been found to have important meson-meson or meson-
baryon components in their wave functions. Some of the
states most widely discussed are the�ð1405Þ, generated as
a consequence of the interaction of the coupled channel
system �KN and �� [19–23], and the f0ð980Þ resonance,
formed in the K �K and �� system [24–26]. Recently, this
theory has been generalized to study the properties of
hadronic systems in a finite volume, and its value in the
determination of related physical observables, using the
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energy levels obtained in the finite volume, and thus as a
prospective tool for lattice QCD calculations has been
shown [27–31].

The above-mentioned methods are in continuous devel-
opment since the experimental access to higher and higher
energies is becoming plausible and, consequently, more
and more new states with heavy quarks are being found.
The present time is thus ideal to study heavy hadron
physics since model predictions can be immediately tested,
which eventually helps in understanding the structure of
hadrons. With this idea we present a study of the DK �K
system, which we find particularly interesting since theDK
and K �K interactions are attractive in nature. In this manu-
script, we have studied this system using two methods:
QCDSR and few-body equations. In the former case, we
investigate the Df0ð980Þ and Ds�0ð2317Þ �K configurations,
while in the latter we solve the Faddeev equations for the
three-hadron system, where f0ð980Þ and Ds�0ð2317Þ are
dynamically generated in the corresponding subsystems.
As we shall see, we find a resonance with similar character-
istics in both models.

In the following, we first discuss the calculations based
on QCD sum rules and the results found in it.
Subsequently, we tackle with the formalism to solve the
Faddeev equations and discuss the results obtained with it.
Finally, we draw some conclusions.

II. QCD SUM RULES

We start our study based on the QCDSR by writing the
interpolating molecular currents for the Df0 and Ds�0 �K
systems as

jDf0 ¼ ið �qa�5caÞð�sbsbÞ (1)

jDs�0 �K ¼ ið�sacaÞð �qb�5sbÞ; (2)

where a and b are color indices, and q represents a light
quark (u or d). Using these currents, we write the two-point
correlation function

�ðq2Þ ¼ i
Z

d4xeiq�xh0 j T½jðxÞjyð0Þ� j 0i; (3)

which can be written in terms of the quark propagators by
contracting all the quark antiquark pairs (for more details
see, for example, Ref. [6]).

This function is of a dual nature: it represents a quark-
antiquark fluctuation at short distances (or large negative
q2) and can be treated in perturbative QCD, while at large
distances it can be related to hadronic observables. The
sum rule calculations are based on the assumption that in
some range of q2 both descriptions are equivalent. One,
thus, proceeds by calculating Eq. (3) for both cases and by
eventually equating them to obtain information on the
properties of the hadrons.

From the QCD side, for large momentum transfers,
Eq. (3) can be calculated, in the first approximation, by

assuming the involved propagators as those of free quarks.
However, since we are finally interested in studying the
properties of hadrons, the relevant energies are lower,where
the distance between the quarks gets longer and quark-
gluon interactions, quark-antiquark pair creation becomes
important. It is, thus, required to include the effect of the
presence of the gluons and quarks in the QCD vacuum. For
practical calculations, then, one resorts to the Wilson op-
erator product expansion (OPE) method, where the corre-
lation function is expanded in a series of local operators

�OPE ¼X
n

CnðQ2ÞOn: (4)

In Eq. (4) the set fOng contains all local gauge-invariant
operators expressible in terms of the gluon fields and
the fields of light quarks. The coefficients CnðQ2ÞðQ2 ¼
�q2Þ, by construction, include only the short-distance do-
main and can, therefore, be evaluated perturbatively.
Nonperturbative long-distance effects are contained only
in the local operators.
In the expansion of Eq. (4), the operators are ordered

according to their dimension n, where n ¼ 0 corresponds
to the unit operator, i.e., perturbative contribution, and the
rest of the operators are related to the QCD vacuum fields
in terms of condensates. For normal quark-antiquark states,
the contributions of condensates with dimensions higher
than four are suppressed by large powers of �2

QCD=Q
2,

with 1=�QCD being the typical long-distance scale.

However, for molecular states, condensates with higher
dimensions can play an important role. This is taken into
account by writing Eq. (4) in terms of the spectral density
using the dispersion relation

�OPEðq2Þ ¼
Z 1
m2

c

ds
�OPEðsÞ
s� q2

þ Subtraction terms: (5)

We work at leading order in �s, and we consider conden-
sates up to dimension seven, as shown in Fig. 1.
Therefore, �OPE can be written as

�OPEðq2Þ ¼ �pert þ �ms þ �h �qqi þ �hg2G2i þ �msh �qqi

þ �h �qg��Gqi þ �msh �qg��Gqi þ �h �qqi2 þ �msh �qqi2 ;

(6)

where ms represents the mass of the strange quark. The
spectral density �OPE is related to the imaginary part of the
correlation function as ��OPEðsÞ ¼ Im½�OPEðsÞ�.
To calculate the different terms in Eq. (6), for the Ds�0 �K

and Df0 currents, we use the momentum-space expression
for the heavy quark propagator and the coordinate-space
expression for the light quark propagator. The Schwinger
parameters are used to evaluate the heavy quark part of the
correlator and to perform the d4x integration in Eq. (3).
Finally, we get integrals in the Schwinger parameters. The
result of these integrals are given in terms of logarithmic
functions, from where we extract the spectral densities and
the limits of the integration.
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Carrying out the calculations for the different diagrams
shown in Fig. 1 leads us to the following expressions,
where mc is the mass of the charm quark.

(1) The perturbative or dimension 0 contribution is
found to be

�pert

Ds�0 �K
ðq2Þ¼�pert

Df0
ðq2Þ

¼�
Z �max

0
d�
ðð��1Þq2þm2

cÞ4�3

212�6ð��1Þ3 : (7)

(2) For the terms of dimension one, which are propor-
tional to ms, we get

�ms

Ds�0 �K
ðq2Þ¼�

Z �max

0
d�

mcðð��1Þq2þm2
cÞ3�3ms

210�6ð��1Þ3 ;

�
ms

Df0
ðq2Þ¼0: (8)

(3) The calculation of the diagrams with one quark
condensate gives

�h �qqi
Ds�0 �K

ðq2Þ¼
Z �max

0
d�

3mcðð��1Þq2þm2
cÞ2�2h�ssi

28�4ð��1Þ2 ;

�h �qqiDf0
ðq2Þ¼�

Z �max

0
d�

3mcðð��1Þq2þm2
cÞ2�2h �qqi

28�4ð��1Þ2 :

(9)
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FIG. 1. Diagrams that contribute to the OPE side of the sum rule.
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(4) Both �msh �qqi and �hg2G2i contribute to dimension four and the expressions for the corresponding spectral densities are

�
msh �qqi
Ds�0 �K

ðq2Þ ¼
Z �max

0
d�

3ðð�� 1Þq2 þm2
cÞ2�ms

27�4ð�� 1Þ ½h �qqi � h �ssi�;

�msh �qqi
Df0

ðq2Þ ¼ �
Z �max

0
d�

9ðð�� 1Þq2 þm2
cÞ2�h �ssims

27�4ð�� 1Þ ;

(10)

�hg
2G2i

Ds�0 �K
ðq2Þ ¼ �hg

2G2i
Df0

ðq2Þ ¼
Z �max

0
d�

3hg2G2i
212�6

�ð2��Þðm2
cþ ð�� 1Þq2Þ

2ð1��Þ þ m2
c�

2

9ð1��Þ2
�
�ðm2

cþ ð�� 1Þq2Þ
1��

: (11)

(5) Considering the mixed condensates, we get

�h �qg��Gqi
Ds�0 �K

ðq2Þ ¼
Z �max

0
d�

3mch�sg� � Gsi�ð1� 2�Þðm2
c þ ð�� 1Þq2Þ

28�4ð�� 1Þ2 ;

�h �qg��Gqi
Df0

ðq2Þ ¼ �
Z �max

0
d�

3mch �qg� �Gqi�ð1� 2�Þðm2
c þ ð�� 1Þq2Þ

28�4ð�� 1Þ2 :

(12)

(6) Going to the dimension six operator, we get the following contributions for the terms proportional tomsh �qg� �Gqi:
�msh �qg��Gqi
Ds�0 �K

ðq2Þ ¼
Z �max

0
d�

ms

28�4
½m2

c � q2ð1� �Þ�
�
h �qg� � Gqið6 ln ð�Þ � 3Þ � h�sg� �Gsi

�
1þ 2�

1� �

��
;

�
msh �qg��Gqi
Df0

ðq2Þ ¼
Z �max

0
d�

msh�sg� �Gsi
27�4

½m2
c � q2ð1� �Þ�ð1� 6 ln ð�ÞÞ;

(13)

four-quark condensates

�h �qqi
2

Ds�0 �K
ðq2Þ¼�

Z �max

0
d�
ðð��1Þq2þm2

cÞh �qqih�ssi
24�2

;

�h �qqi
2

Df0
ðq2Þ¼

Z �max

0
d�
ðð��1Þq2þm2

cÞh�ssi2
24�2

;
(14)

and three-gluon condensates

�hg
3G3i

Ds�0 �K
ðq2Þ¼�hg

3G3i
Df0

ðq2Þ

¼�
Z �max

0
d�
ðð��1Þq2þ3m2

cÞ�3hg3G3i
3�214�6ð��1Þ3 :

(15)

In the case of the (dimension six) four-quark con-
densate, we have used the factorization assumption.
Therefore, its vacuum saturation value is given by:

h �qq �qqi ¼ h �qqi2: (16)

(7) Finally, for dimension seven, we get

�
msh �qqi2
Ds�0 �K

ðq2Þ ¼
Z �max

0
d�

mcms

23�2

�h �ssi2
22
� h �qqih�ssi

�
;

�
msh �qqi2
Df0

ðq2Þ ¼ �
Z �max

0
d�

3mch �qqih�ssims

24�2
: (17)

The integration limit in Eqs. (7)–(17) is�max ¼ 1� m2
c

q2
. For

numerical calculations we need the values of the different

condensates and quark masses. We have used here the same
values for these inputs as those used inQCDSR calculations
for other exotic molecular states [6,32–34], which are given
in Table I. For the hg3G3i condensate, we have used the new
numerical value estimated in Ref. [35].
We now calculate the correlation function from the

hadronic or phenomenological point of view. In this case,
the currents jy and j are interpreted as the creation and
annihilation operator of the hadrons which have the quan-
tum numbers of the current j. For this �ðq2Þ is written by
inserting a complete set of states with the same quantum
numbers as those of the currents under consideration,

�phenomðq2Þ ¼ i
Z

d4xeiq�x
Z d3p

2p0ð2�Þ3

�X1
k¼0
h0 j jðxÞ jmk ~pihmk ~p j jyð0Þ j 0i: (18)

TABLE I. Values of the different known parameters required
for numerical calculations of the correlation function given by
Eq. (3) (see Refs. [6,32–35]).

Parameters Values

ms 0:10� 0:022 GeV
mc 1:23� 0:05 GeV
h �qqi �ð0:23� 0:03Þ3 GeV3

h�ssi 0.8 h �qqi
hg2G2i ð0:88� 0:25Þ GeV4

hg3G3i ð0:58� 0:18Þ GeV6

h �q� �Gqi 0:8h �qqi GeV2
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Thus, the correlation function contains the information on
all the hadrons of a given set of quantum numbers includ-
ing the one we are interested in, which is the low-mass,
relatively narrow, hadron of the series. One proceeds in
such a situation by assuming that the spectral density of
hadrons, for a fixed set of quantum numbers, can be ex-
pressed as a sum of a narrow, sharp state (which we are
interested in) and a smooth continuum

�phenomðsÞ ¼ �2�ðs�m2Þ þ �continuumðsÞ; (19)

where �continuum is assumed to vanish below a certain value
of s, s0, which corresponds to the continuum threshold.
Above this threshold, it is assumed to be given by the result
obtained with the OPE. Therefore, one uses the ansatz [36]
�continuumðsÞ ¼ �OPEðsÞ�ðs� s0Þ.

The delta function in Eq. (19) implies that the width of
the particle is assumed to be zero. In principle, the intro-
duction of a finite width in the above calculation could
change the final result obtained for the mass and, more
importantly, it could be another important source of error
in the final result for the mass. However, our experience
with this type of calculation suggests that the introduction
of a width is not a very important source of errors. Indeed,
in Ref. [37] (see also the discussion in Ref. [6]), a careful
discussion of this effect was presented with the conclusion
that for the X(3872), Z(4430), and Z(4250) the uncertainty
in the width, when properly taken into account, generates
at most a 5% error in the final mass of the state. Moreover,
in Ref. [38] a careful study of the role played by the particle
width was performed. The semileptonic decay D! �l	
was calculated with QCDSR. From experiment we know
that m� ¼ 0:797 GeV and the width is �� ¼ 0:410 GeV.
With this extremely large value of the width, we would
expect that the zero width approximation for the � would
change the result dramatically. However, as shown in the
quoted article, the zero width approximation yields a total
D semileptonic decay rate that is only about 20% larger.
Given the huge size of the kappa width (half of its mass!),
the above mentioned estimate could be considered an
upper limit of the error introduced by neglecting the par-
ticle width. In view of these examples and bearing in mind
the exploratory nature of the present work, we will post-
pone the inclusion of the width for a future study. However,
we are aware and must remind the reader that the estimated
error in our results could be slightly larger.

In Eq. (19), � is the coupling of the current j with the
low-lying hadron with mass, h0jjjmi ¼ �.

The spectral density given by Eq. (19) is related to the
correlation function of Eq. (18) as

�phenomðq2Þ ¼ �2

m2 � q2
þ

Z 1
s0

ds
�OPEðsÞ
s� q2

: (20)

To carry out the calculations, s0 is taken as a parameter
of the method but its value is not completely arbitrary: it is
related to the onset of the continuum in the current j under

consideration and is taken to be roughly 0.5 GeVabove the
mass of the hadron we are interested in Refs. [6,18]. In this
work, we are looking for a resonance with a possible
Df0ð980Þ or Ds�0ð2317Þ �K moleculelike structure. Since
such resonances are weakly bound, they are expected to
get generated close to the threshold of the constituent
mesons. Thus,

ffiffiffiffiffi
s0
p

in the present case can be �3:4 GeV.
The correlation function calculated using QCD suffers

from divergent contributions coming from long-range in-
teractions, while the one calculated phenomenologically
contains contribution from the continuum. This situation
can be improved by taking the Borel transform of both
Eqs. (5) and (20), which kills the problematic terms of both
sides, and which is defined as

BM2½�ðq2Þ� ¼ lim
�q2 ;n!1
�q2=n¼M2

ð�q2Þnþ1
n!

�
d

dq2

�
n
�ðq2Þ: (21)

After taking the Borel transform, we equate the resulting
expressions of the correlation functions on the basis of its
dual nature and get

�2e�m2=M2þ
Z 1
s0

ds�OPEðsÞe�s=M2¼
Z 1
m2

c

ds�OPEðsÞe�s=M2
;

(22)

which can be rearranged as

�2e�m2=M2 ¼
Z s0

m2
c

ds�OPEðsÞe�s=M2
; (23)

whereM represents the Borel mass parameter. Calculating
the derivative of Eq. (23) with respect to M2 and dividing
the resulting expression by Eq. (23), we obtain the mass
sum rule

m2 ¼
Rs0
m2

c
dss�OPEðsÞe�s=M2

Rs0
m2

c
ds�OPEðsÞe�s=M2 : (24)

Having the mass one can evaluate the current-state cou-
pling constant through Eq. (23),

�2 ¼
Rs0
m2

c
dss�OPEðsÞe�s=M2

e�m2=M2 : (25)

The reliability of the results obtained within QCD sum
rules depends on the definition of a valid Borel window.
This range of the Borel mass is obtained by making the
following constraints:
(i) The maximum value of the Borel mass,Mmax , where

the results should be reliable, is fixed by ensuring
that the pole term (low mass hadron) gives the domi-
nant contribution to the calculations. However,Mmax

is a function of s0. As mentioned earlier, a reason-
able value of

ffiffiffiffiffi
s0
p

in the present calculation can be

3.4 GeV. We show the contributions of the pole and
continuum terms weighted by their sum [6,32,33] for
the Df0ð980Þ and Ds�0ð2317Þ �K systems, obtained
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with
ffiffiffiffiffi
s0
p ¼ 3:4 GeV, in Fig. 2, which shows that

M2
Max � 2:06 GeV2 in the former case and

1:79 GeV2 in the latter, respectively.
(ii) The second constraint is to look for that Borel mass

range where a convergence in the OPE series is
found. For this we calculate the perturbative contri-
bution and add to it the diagrams with higher di-
mensions step by step. In other words, we calculate
the right-hand side of Eq. (23) by first using Eq. (7)
for �OPE, then by using the sum of Eqs. (7) and (8),
which means including the diagrams up to dimen-
sion one. Next we do the calculations up to the

subsequent higher dimension by taking a sum of
Eqs. (7)–(9), etc, until going to diagrams with di-
mension seven [given by Eqs. (17)]. For a conve-
nient comparison, the result obtained in each case is
weighted (divided) by the one obtained by using the
whole series of Eq. (6) for the spectral density. In
Fig. 3, we show the results of such an analysis of
OPE convergence for the Df0ð980Þ (left panel) as
well as Ds�0ð2317Þ �K (right panel) systems.
The final condition, which is imposed to identify the
minimum value for the Borel mass, is that the con-
tribution defined by

�������������
PNmax�1

dim¼1 ð
Rs0
m2

c
ds�OPE

dim ðsÞe�s=M2Þ �PNmax

dim¼1ð
Rs0
m2

c
ds�OPE

dim ðsÞe�s=M2ÞPNmax

dim¼1ð
Rs0
m2

c
ds�OPE

dim ðsÞe�s=M2Þ

�������������
(26)

FIG. 2. The contributions of the pole (solid line) and continuum (dashed line) weighted by (divided by) their sum for the Df0ð980Þ
(left panel) and Ds�0ð2317Þ �K (right panel) systems.

FIG. 3. Relative contributions of the different OPE terms as a function of the squared Borel Mass, for the Df0ð980Þ (left panel) as
well as Ds�0ð2317Þ �K (right panel) systems. A value of

ffiffiffiffiffi
s0
p ¼ 3:4 GeV is used in these calculations. The arrows in the figures indicate

the valid Borel window, which is determined by using the conditions discussed in the text.
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is less than 0.25. In the equation written above, Nmax refers
to the maximum dimension of the condensates taken into
account in the calculation, which is seven in the present
case. With this, the OPE convergence is ensured in the
Borel mass range where the results can be taken as reliable
ones. It can be seen from Fig. 3 that a good convergence of
the OPE series is found for M2

Min ¼ 1:5 GeV2 and
1:7 GeV2, for the Df0ð980Þ (left panel) and Ds�0ð2317Þ �K
(right panel) cases respectively.
The valid Borel windows established using both criteria
discussed above are indicated with arrows for theDf0ð980Þ
and Ds�0ð2317Þ �K systems in Fig. 3, for

ffiffiffiffiffi
s0
p ¼ 3:4 GeV.

Having fixed these conditions, we show, in Fig. 4, the
results of the calculation of the mass [using Eq. (24)] of the
states described using Df0ð980Þ and Ds�0ð2317Þ �K mole-
culelike currents. It can be seen that a mass of 2.852
�0:008 GeV is found in the case of Ds�0ð2317Þ �K, while
it is 2:921� 0:021 GeV in the Df0ð980Þ system (within
the Borel window, indicated by the arrows in Fig. 4).
However, these calculations have been done using the
value of 3.4 GeV for

ffiffiffiffiffi
s0
p

, which is a parameter. We now

vary the continuum threshold in the range 3:3 � ffiffiffiffiffi
s0
p �

3:6 GeV to check the sensitivity of our results to this
parameter. We also take into account the fact that there
exists uncertainty in the knowledge of the values of the
different condensates and quark masses listed in Table I.
Considering all these uncertainties we finally get

mDs�0 �K ¼ ð2:913� 0:140Þ GeV (27)

for the Ds�0ð2317Þ �K molecular current, while for the
Df0ð980Þ molecular current we get

mDf0 ¼ ð2:926� 0:237Þ GeV: (28)

The above results have been determined by averaging the
mass over the corresponding Borel windows and by calcu-
lating the standard deviation to estimate the error.

Next, following the same procedure, we have calculated
the coupling � for the two configurations studied and found
that the current-state coupling of the state described by the
Ds�0ð2317Þ �K current is around two times weaker than the
one found for the Df0ð980Þ current,

�Ds�0 �K ¼ ð5:8� 1:2Þ � 10�3 GeV5 and

�Df0 ¼ ð9:4� 3:3Þ � 10�3 GeV5:
(29)

At first sight these couplings may look compatible within
error bars. However, this is not the case. Our error analysis
shows that, for a given set of parameters, �Df0 turns out to

be 1:4�Ds�0 �K � 2�Ds�0 �K; and this situation repeats for all

other set of inputs. We can interpret this result as an
indication that a Df0ð980Þ state is better represented
by the respective molecular current than the
Ds�0ð2317Þ �K state.

III. THREE-HADRON APPROACH

Let us now discuss the study of the DK �K system within
a very different approach that is based on effective field
theories, treating hadrons as the degrees of freedom instead
of quarks, and examine if the findings obtained in such a
calculation are compatible with the ones found with QCD
sum rules.
In the unitary chiral models [19–26,39,40], the f0ð980Þ

resonance is described as a molecular hadron state gener-
ated in the interaction of the K �K and �� coupled channels
[24,25]. Similarly, the Ds�0ð2317Þ state can be interpreted
as a DK bound state formed in the DK, Ds
 coupled
channel system [41–45]. In these models, Lagrangians
based on symmetries, like chiral [46–48] and heavy quark
symmetries [49–51], are used to determine the lowest order
amplitude describing the transition between the different
coupled channels. These amplitudes are further unitarized
by using them as driving terms in the Bethe-Salpeter
equation, and the scattering matrix t for the system is

FIG. 4. Mass of a moleculelike resonance obtained by using QCD sum rules to study the Df0ð980Þ (left panel) and Ds�0ð2317Þ �K
(right panel) systems. The arrows indicate the range where the reliability of the results is ensured.
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obtained. Recently, these models based on effective field
theories, chiral symmetry, and unitarity in coupled chan-
nels have been further extended to investigate the interac-
tion of three-hadron systems formed by different mesons
and baryons, like � �KN, NK �K, J=cK �K, �K �K, etc., and
generation of several hadron states like �ð1660Þ, �ð2170Þ,
Yð4260Þ, N�ð1710Þ has been found [52–55]. Analogously
to the two-body studies where the scattering matrix is
obtained by solving the Bethe-Salpeter equation taking as
kernel the lowest-order chiral amplitude, in the case of the
approach of Refs. [52–55], the Faddeev equations [56] are
solved, having as driving term the chiral two-body scatter-
ing matrices for the different pairs of the system. In this
way, the input two-body tmatrices in the Faddeev equation
contain the information related to the generation of the
corresponding two-body resonances.

In line with the above mentioned works, a different
strategy to the one discussed in the previous section to
study theDf0ð980Þ andDs

�K systems would be to consider
f0ð980Þ and Ds�0ð2317Þ as molecular resonances formed,
respectively, in the K �K and DK systems, together with
their respective coupled channels, and study the three-body
system DK �K following the approach of Refs. [52–55]. To
do this, we consider ten coupled channels for total charge
zero and charm C ¼ 1: D0KþK�, D0K0 �K0, D0�þ��,
D0���þ, D0�0�0, D0�0
, DþK0K�, Dþ���0,
Dþ��
, Dþ�0��.

As mentioned above, to solve the Faddeev equations for
the DK �K system and coupled channels, we first need to
determine the two-body scattering matrices t for the differ-
ent pairs of the system. This is done by solving the Bethe-
Salpeter equation through its on-shell factorization form
[20,24–26,39],

t ¼ ð1� VGÞ�1V: (30)

The kernel V in Eq. (30) corresponds to the lowest-order
two-body amplitude obtained from a suitable Lagrangian,
and G represents the loop function of two hadrons.

In the case of theDK �K system and coupled channels, we
have two different types of interactions: one involving two
light pseudoscalars, like K �K, ��, and the other between a
heavy and a light pseudoscalar meson, like DK, D�.

For the description of the K �K system, we follow
Refs. [24,25] and solve Eq. (30), considering K �K, ��,
and�
 as coupled channels. The kernel V is obtained from
the lowest-order chiral Lagrangian for the process PP!
PP, with P representing a light pseudoscalar (i.e.,�,K,
),

LPP ¼ 1

12f2
Trfð@�PP� P@�PÞ2 þMP4g: (31)

In Eq. (31), f is the pion decay constant, Trf. . .g indicates
the trace in the flavor space of the SU(3) matrices appear-
ing in P, which is a matrix containing the different
Goldstone bosons, and M is a mass matrix,

P ¼

1ffiffi
2
p �0 þ 1ffiffi

6
p 
 �þ Kþ

�� � 1ffiffi
2
p �0 þ 1ffiffi

6
p 
 K0

K� �K0 � 2ffiffi
6
p 


0
BBBB@

1
CCCCA; (32)

M ¼
m2

� 0 0

0 m2
� 0

0 0 2m2
K �m2

�

0
BB@

1
CCA: (33)

The V matrix obtained using the Lagrangian of Eq. (31) is a
function of the Mandelstam variables s, t, and u. This
matrix is further projected on s wave, and the resulting
expressions can be found in Ref. [24].
The loop function G in Eq. (30) is calculated using the

dimensional regularization scheme of Ref. [25]. In the
present case, i.e., for a two-pseudoscalar system,

Gr ¼ 1

16�2

�
arð�Þ þ ln

m2
1r

�2
þm2

2r �m2
1r þ E2

2E2
ln
m2

2r

m2
1r

þ qr
E

�
ln ðE2 � ðm2

1r �m2
2rÞ þ 2qrEÞ

þ ln ðE2 þ ðm2
1r �m2

2rÞ þ 2qrEÞ
� ln ð�E2 þ ðm2

1r �m2
2rÞ þ 2qrEÞ

� ln ð�E2 � ðm2
1r �m2

2rÞ þ 2qrEÞ
��
: (34)

In Eq. (34), E is the total energy of the two-body system,
m1r, m2r, and qr correspond, respectively, to the masses
and the center of mass momentum of the two pseudoscalars
present in the rth channel, � is a regularization scale, and
arð�Þ a subtraction constant. Following Ref. [25], we have
taken � ¼ 1224 MeV and a value for arð�Þ � �1 (note
that there is only one independent parameter here since a
change in � can be reabsorbed in ar). In this way we can
reproduce the observed two-body phase shifts and inelas-
ticities for the different coupled channels as done in
Refs. [24,25]. The resulting scattering matrix t exhibits
poles on the unphysical sheet which are related to the
resonances �ð600Þ, f0ð980Þ, and a0ð980Þ.
In the case of the subsystem constituted by a heavy and a

light pseudoscalar meson, like DK, D�, since the heavy
mesons contain both light and heavy quarks, one expects
both the chiral symmetry of the light quarks and the
symmetry of the heavy quarks to be considered. Having
this in mind, to determine the scattering matrix of a heavy
meson H with a light pseudoscalar P, we follow
Refs. [42,45], where the leading order Lagrangian describ-
ing this interaction is given by the kinetic and mass term of
the heavy mesons (chirally coupled to pions),

L ¼ D�HD�Hy �M
	 2

HHHy; (35)

with H ¼ ðD0 Dþ Dþs Þ collecting the heavy mesons,

whose mass in the chiral limit is M
	
H, P is given by

Eq. (32), and D� is the covariant derivative [51]
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D�H
y ¼ ð@� þ ��ÞHy; D�H ¼ Hð@ � þ �y�Þ;

�� ¼ 1

2
ðuy@�uþ u@�u

yÞ; u2 ¼ ei
ffiffi
2
p

P=f: (36)

For the process which concerns us, i.e., HP! HP,
Eq. (35) becomes

LHP ¼ 1

4f2
f@�H½P; @�P�Hy �H½P; @�P�@�Hyg; (37)

and the lowest-order amplitude obtained from this
Lagrangian in terms of the Mandelstam variables reads as

Vij ¼ �
Cij

4f2
ðs� uÞ: (38)

In Eq. (38) i and j represent the initial and final channels,
respectively, and the Cij coefficients have been earlier

calculated and can be found in Refs. [42,45]. This potential
is further projected on s wave.

As in Refs. [42,45], we consider the coupled channels
DK, Ds
 and Ds� for strangeness þ1 and D�, D
, Ds

�K
for strangeness 0. The loop function G of Eq. (30) is
determined using Eq. (34) with � ¼ 1000 MeV and a ¼
�1:846 [44,45], obtaining in this way a pole in the DK
system for total isospin 0 at 2318 MeV, which corresponds
to the state Ds�0ð2317Þ, and a pole at 2446-i43 MeV in the
D� system in isospin 0, associated with the resonance
D�0ð2400Þ.

Once the two-body scattering matrices are calculated,
we can proceed with the determination of the three-body T
matrix for theDK �K system. To do that we use the approach
of Refs. [52–55], in which the Faddeev partitions, T1, T2,
and T3, are written as

Ti ¼ ti�3ð ~k0i � ~kiÞ þ
X3

j�i¼1
Tij
R ; i ¼ 1; 2; 3; (39)

with ~ki ( ~k0i) being the initial (final) momentum of the
particle i and ti the two-body t matrix which describes
the interaction of the ðjkÞ pair of the system, j � k � i ¼
1, 2, 3. The total three-body T matrix is obtained by
summing the Ti partitions,

T ¼ T1 þ T2 þ T3 ¼X3
i¼1

ti�3ð ~k0i � ~kiÞ þ TR; (40)

where we define

TR 

X3
i¼1

X3
j�i¼1

Tij
R : (41)

The Tij
R partitions in Eq. (39) satisfy the following set of

coupled equations

Tij
R ¼ tigijtj þ ti½GijiTji

R þGijkTjk
R �;

i � j; j � k ¼ 1; 2; 3; (42)

where gij corresponds to the three-body Green’s function
of the system and its elements are defined as

gijð ~k0i; ~kjÞ ¼
�

Nk

2Ekð ~k0i þ ~kjÞ
�

� 1ffiffiffi
s
p � Eið ~k0iÞ � Ejð ~kjÞ � Ekð ~k0i þ ~kjÞ þ i


;

(43)

withNk ¼ 1 for mesons and El, l ¼ 1, 2, 3, is the energy of
the particle l.
The Gijk matrix in Eq. (42) represents a loop function of

three particles, and it is written as

Gijk ¼
Z d3k00

ð2�Þ3 ~g
ij � Fijk (44)

with the elements of ~gij being

~gijð ~k00;slmÞ¼ Nl

2Elð ~k00Þ
Nm

2Emð ~k00Þ
� 1ffiffiffiffiffiffiffi

slm
p �Elð ~k00Þ�Emð ~k00Þþ i


; i� l�m;

(45)

and the matrix Fijk, with explicit variable dependence, is
given by

Fijkð ~k00; ~k0j; ~kk;sk00ruÞ¼ tjðsk00ruÞgjkð ~k00; ~kkÞ½gjkð ~k0j; ~kkÞ��1
�½tjðsruÞ��1; j� r�u¼1;2;3:

(46)

In Eq. (45),
ffiffiffiffiffiffiffi
slm
p

is the invariant mass of the ðlmÞ pair and
can be calculated in terms of the external variables. The

upper index k00 for the invariant mass sk
00
ru of Eq. (46)

indicates its dependence on the loop variable (see
Ref. [53] for more details).

The Tij
R partitions given in Eq. (42) are functions of the

total three-body energy,
ffiffiffi
s
p

, and the invariant mass of the
particles 2 and 3,

ffiffiffiffiffiffi
s23
p

. The other invariant masses,
ffiffiffiffiffiffi
s12
p

and
ffiffiffiffiffiffi
s31
p

, can be obtained in terms of
ffiffiffi
s
p

and
ffiffiffiffiffiffi
s23
p

, as it

was shown in Refs. [53,54]. In this model, peaks obtained
in the modulus squared of the three-body T matrix are
related to dynamically generated resonances. Finally, it
should be mentioned that the first term in Eq. (40) cannot
give rise to any state generated due to the three-body
dynamics and, hence, we can just study the properties of
the TR matrix defined in Eq. (41).
Further, we work in the charge basis, then, to associate

the peaks found in the three-body T-matrix with physical
states we need to project T on an isospin basis. We do this
by defining a basis where the states are labeled in terms of
the total isospin I of the three-body system and the isospin
of one of the two-body subsystems, which in the present
case is taken as the isospin of the K �K subsystem or the
system made by particles 2 and 3, I23, and evaluate the
transition amplitude hI; I23jTRjI; I23i. The isospin I23 can
be either 0 or 1, thus, the total isospin I can be 1/2, or 3/2.
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For the cases involving the states jI ¼ 1=2, I23 ¼ 1i,
jI ¼ 3=2, I23 ¼ 1i, we find no structure that could be
related to a resonance or a bound state. Thus, in the
following, we discuss the case I ¼ 1=2 with I23 ¼ 0,
where we do find a resonance.

In Fig. 5 we show the results obtained for the modulus
squared of the scattering amplitude of the DK �K channel
for total isospin 1/2 with the K �K system in total isospin 0.
A peak around 2890 MeV with a width of 55 MeV is found
when the K �K system is in the isospin zero configuration
with an invariant mass of around 985 MeV, thus, forming
the f0ð980Þ resonance.

If instead of using the isospin base jI; I23iwe use jI; I12i,
with I12 the isospin of the (12) subsystem, i.e., the DK
system, no clear signal for the peak shown in Fig. 5 is
observed when the DK system is in isospin zero.

These results are similar to the ones obtained in the
previous section using QCD sum rules, in which a state
of mass around�2900 MeV is found to couple more to the
Df0ð980Þ current than to the one corresponding to
Ds�0ð2317Þ �K.

IV. SUMMARY

We have studied the DK �K system using two different
methods: one based on QCD sum rules and the other on
solving few-body equations. In the former case, the
Df0ð980Þ and Ds�0ð2317Þ �K configurations of the DK �K
system have been investigated and a state with a mass
around 2.9 GeV has been found, which couples more to a
Df0 molecular current. In the latter, the Faddeev equations
have been solved with input two-body t matrices that gen-
erate the f0ð980Þ and Ds�0ð2317Þ, respectively, in the K �K
andDK systems and related coupled channels. As a result, a
state with a mass close to 2.9 GeV and a width of 55 MeV
was found when the K �K subsystem generates the f0ð980Þ
resonance. The findings obtained within these two different
methods are quite similar, hinting towards the existence of a
Df0ð980Þ molecular state with a mass close to 2.9 GeV. A
statewith thismass has not beendiscovered experimentally so
far, and the heaviest known D meson is the Dð2750Þ, whose
mass is around 150 MeV below the one found in this manu-
script. We strongly encourage the search of a state decaying
into DK �K with the characteristics of the one found here.
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