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Abstract: Virus-like particles (VLPs) are a versatile, safe, and highly immunogenic vaccine platform.
Recently, there are developmental vaccines targeting SARS-CoV-2, the causative agent of COVID-19.
The COVID-19 pandemic affected humanity worldwide, bringing out incomputable human and
financial losses. The race for better, more efficacious vaccines is happening almost simultaneously as
the virus increasingly produces variants of concern (VOCs). The VOCs Alpha, Beta, Gamma, and
Delta share common mutations mainly in the spike receptor-binding domain (RBD), demonstrat-
ing convergent evolution, associated with increased transmissibility and immune evasion. Thus,
the identification and understanding of these mutations is crucial for the production of new, op-
timized vaccines. The use of a very flexible vaccine platform in COVID-19 vaccine development
is an important feature that cannot be ignored. Incorporating the spike protein and its variations
into VLP vaccines is a desirable strategy as the morphology and size of VLPs allows for better
presentation of several different antigens. Furthermore, VLPs elicit robust humoral and cellular
immune responses, which are safe, and have been studied not only against SARS-CoV-2 but against
other coronaviruses as well. Here, we describe the recent advances and improvements in vaccine
development using VLP technology.
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1. Introduction

The SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is the causative
agent of COVID-19 (Coronavirus Disease 2019) [1-3] and is responsible for the recent
pandemic, which has already reported 248,467,363 cases and 5,027,183 deaths worldwide
as of 5 November 2021 [4]. As new cases continue to increase worldwide, it is urgent to
develop inexpensive and versatile vaccines to handle emerging variants that can affect
pre-existing natural immunity and the efficacy of already approved vaccines [5]. According
to the World Health Organization, 129 COVID-19 vaccines are under clinical trials, and
eight are approved for emergency or definitive use worldwide, including inactivated,
mRNA and viral vector vaccines (Table 1) [6,7]. Although we already have these available
vaccines, there is still a need for improved versions of COVID-19 vaccines. Hence, adapting
vaccines to variants of concern (VOCs) along with decreasing vaccine costs will be the goals
for the next step towards eradication. A technology that has potential to address some of
these issues is the virus-like particles (VLPs) vaccine platform, as it is adaptable, resembles
viral structures, highly immunogenic, and can be less expensive than other platforms.

Table 1. Summary of WHO COVID-19 approved vaccines.

Name Platform Adjuvant Dosage Efficacy * References
Coronavac . 83.5% (95% CI,
(Sinovac) Inactivated Alum 2 doses 65.4-92.1) [8-11]
BBIBP-CorV . 72.8% (95% CI,
(Sinopharm) Inactivated Alum 2 doses 58.1-82.4) [12,13]
BBV152-Covaxin . 77.8% (95% CI,
(Bharat Biotech) Inactivated Alum 2 doses 65.2-86.4) [14,15]
AZD1222—Vaxzevria . 74.0% (95% (I,
(Oxford / AstraZeneca) Viral vector No 2 doses 65.3-80.5) [16-18]
Covishield . 74.0% (95% CI,
(Oxford/ AstraZeneca formulation) Viral vector No 2 doses 65.3-80.5) [16-18]
Ad26.COV2.S . 66.9% (95% (I,
(Johnson &Johnson-Janssen) Viral vector No 1 dose 59.0-73.4) [19-22]
mRNA-1273 94.1% (95% CI,
(Moderna) mRNA No 2 doses 89.3-96.8) [23,24]
BNT162b-Comirnaty 95% (95% CI,
(Pfizer /BioNTech) mRNA No 2 doses 90.3-97.6) [25,26]

* Against symptomatic COVID-19.

The VLPs are noninfectious nanoscale particles composed of single or multiple self-
assembling viral or nonviral proteins, which mimic a native viral particle [27]. These
particles, when used as immunogens, are captured and processed by antigen presenting
cells (APCs) and presented by both MHC-I and MHC-II to T helper and Cytotoxic T
lymphocytes (Figure 1A). The structural repetitiveness and particle size of VLPs enhance
recognition and direct activation of B cells. [28-31]. Taken altogether, these properties
lead to robust humoral and cellular immune responses, which are exciting for vaccination
against infectious diseases [32-38].

VLPs are classified according to their structural composition (nonenveloped-neVLPs or
enveloped-eVLPs) and to the native virus components (homologous or heterologous) [39]
(Figure 1B). Homologous VLPs comprise particles that self-assemble using proteins derived
from the native virus only [40]. On the other hand, heterologous VLPs contain proteins
from different sources to increase immunogenicity [41]. Moreover, available bioinformatics
tools can help to optimize the rational design of new and pre-existing VLPs to achieve the
best immunogenic performance [32,42-46].
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Figure 1. The adaptive immune response generated by VLPs immunization and VLPs classification.
(A) After immunization, VLPs are phagocytized by dendritic cells or macrophages. Then, they are
carried out to lymphatic vessels, where the antigenic regions will be processed and presented by
class I MHC molecules (CD4+ T cells) and, through cross-presentation, by class I (CD8+ T cells).
Immunological pathway activation by immunization with VLPs will activate robust cellular (cy-
tokines) and humoral (B cell-antibodies) immune responses. (B) VLPs are classified as nonenveloped
(neVLPs) or enveloped VLPs (eVLPs) based on the absence or presence of a lipidic membrane,
respectively. These particles can also be classified as homologous or heterologous VLPs according to
their composition. Homologous VLPs are assembled using proteins from the native pathogen only

(blue), and heterologous VLPs can be assembled using proteins or peptides from different sources
(black and blue).

VLPs can be expressed in insect [32,47], mammalian [48,49], bacterial [50], plant [37,51]
or yeast cells [33]. These particles have been used for the development of vaccines against
several infectious diseases [52]. VLP-based vaccines for Hepatitis B (Engerix-B®), Hepatitis
E (Hecolin®) and HPV (Cervarix®, Gardasil® and Gardasil 9°) demonstrate proof of
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concept for industrially scalable vaccines [33,53,54]. In addition to vaccine development,
the empty shell-like structure of these nanoparticles has been studied for other biomedical
purposes, such as gene therapy [53-56] and drug delivery [57-62].

2. SARS-CoV-2, VOCs, and Structural Vaccinology

The SARS-CoV-2 positive-sense single-stranded RNA genome (29 kb in length) en-
codes four structural and 16 non-structural proteins [3]. The structural proteins are the
membrane (M), envelope (E), spike (S), and nucleocapsid (N) proteins, as seen in other
coronaviruses (Figure 2A). The M protein (UNIPROT ID: PODTCY5) is a highly conserved
homodimer and is the most abundant protein in mature virions [43,44]. It plays an essential
role in viral assembly, membrane fusion, and particle size and shape, through interac-
tions with other structural proteins [63-66]. The E protein (UNIPROT ID: PODTC4) is
a pentameric structure [67] found at low levels among coronaviruses [68,69]. It regulates M
homodimerization [70] and, along with M, plays a central role in the vesicular transport of
virions [71-73], ion transport [74-78], and pathogenesis [79-81]. The N protein (UNIPROT
ID: PODTCY) is a highly positive-charged, flexible, and unstable [58] phosphoprotein [82,83]
that essentially performs genomic packaging [48,84,85]. The N-terminal domain of this
protein [86,87] interacts with the viral RNA genome, and the C-terminal domain [84] forms
a helical-shaped nucleocapsid [66,88,89]. Overall, the N protein interactions with M and
viral RNA define the shape and size of the virions [85]. Unsurprisingly, N is essential in
early viral replication and plays an integral role in infectivity [90].

B.
SARS-COV-2

Open state S

Fusion S

Host cell
Open S Closed S

Figure 2. SARS-CoV-2 structural proteins and the different states of the Spike protein.
(A) Schematic representation of the SARS-CoV-2 viral particle. The structure of the SARS-CoV-2
viral particle is composed of four structural proteins: Membrane (M), Envelope (E), Nucleocapsid
(N), and Spike (S). The S protein is found in two different states on viral particles: open state
(minor population) and closed state (major population). In addition, during the membrane fusion
process (host cell entry), the S protein can be found in the fusion state (fusion S). (B) Schematic
representation of the binding of open-state S (PDB ID 7498) to the ACE2 receptor present in
the host cell. The illustrations were made in free software (CellPaint 2.0 [91] and 3D Protein
Imager [92]). The binding figure was made using the crystal structure of ACE2 bound to Spike
available at the Protein Data Bank (PDB ID 7A98).
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Among these structural proteins, the main target for vaccine development is the SARS
-CoV-2 S protein, which gives the characteristic crown-shaped structure of coronaviruses [88,89].
S is a highly glycosylated [93] homotrimer transmembrane protein (UNIPROT ID PODTC2)
composed of 1273 amino acids per chain. Known human sarbecoviruses (SARS-CoV-2
and SARS-CoV-1) and the alphacoronavirus NL63 invade the host cell through an in-
teraction between the S protein and its receptor, the angiotensin-converting enzyme 2
(ACE2) [93-97] (Figure 2B). In general, the S protein consists of two major regions in addi-
tion to the signal peptide (SP) (1-12): the S1 subunit (13-685), and the S2 subunit (686-1273),
which contains the transmembrane region (TM) (1214-1234) followed by the cytoplasmic
domain (CD) (1235-1273) (Figure 3A). The S protein and the ACE2 receptor binding are
mediated by the receptor-binding motif (RBM; 437-508), located in the receptor-binding
domain (RBD; 319-541) [98] (Figure 3A, purple and cyan, respectively). The fusion ma-
chinery in 52 is composed of two fusion peptides (816-837 and 835-855) and two heptad
regions (920-970 and 1163-1202). The first site of cleavage targeted by host proteases, such
as furin and TMPRSS2, is located in the S1/52 interface (685-686) [99-101] (Figure 3A,
red). Removing the 51/S2 site promotes conformational changes that open the second
cleavage site at S2 (815-816). The subsequent cleavage of the S2 site promotes the projec-
tion of needle-shaped fusion peptides into the host membrane [102,103], leading to cell
fusion in 60-120 s in feline coronavirus [104]. The S protein presents a closed and open
conformation [45,105] (Figure 3B, upper and bottom panel, respectively). With one or more
RBDs projected outward, the open state constitutes the major conformation population of
viable virions [105]. The increased exposure and steric freedom enable stronger interactions
with the ACE2 receptor [45,106]. Therefore, mutations that stabilize this open conformation
lead to positive selection, making the virus more transmissible [107-109].

A. B. Closed state
Side view Top view
&
Trimer
ER N
™ x :
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=
™
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a{%
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Figure 3. Structure and domain organization of the SARS-CoV-2 Spike (S) protein. (A) The S
structure comprises a cytoplasmic domain (CD, white), a transmembrane domain (TM, black), and
an ectodomain, which is divided into two subunits, S1 (gray) and S2 (dark gray). The magnification
shows the several disulfide bridges (DB, yellow) and the glycosylation sites (GIcNAc, green) through
the S protein ectodomain. It is highlighted in red, the 51/S2 interface. The receptor-binding domain
(RBD, in cyan) and the receptor-binding motif (RBM, magenta) are also shown in S1. (B) As mentioned
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in Figure 2, the S protein shows two conformers on viable viruses (closed and open state). The upper
panel shows the S protein in the closed state (trimeric and monomeric state). The bottom panel shows
the S protein in the open state (trimeric and monomeric state). Illustrations were made in PyMol [110]
using the wild-type structures available from Zhang et al. [107,111].

A better understanding of the effects of these conformational changes allows us to
closely monitor the emerging VOCs. The VOCs that have attracted the most attention so
far are the Alpha, Beta, Gamma, and Delta variants [108], which were initially identified in
the UK [109], South Africa [112], Brazil [113], and India [114], respectively (Figure 4).
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Figure 4. Mapping mutations of SARS-CoV-2 variants of concern (VOCs) and phenotypes. Red: mutations; Cyan: receptor-

binding domain (RBD); Magenta: receptor binding motif (RBM); Light gray: S1; Dark gray: S2; Yellow: Heptad repeat 1;

Green cyan: fusion peptide 1; Slate: Fusion peptide 2; Green: Signal peptide. Illustrations were made in PyMol [110] using

resources from Zhang et al. [107,111].

The Alpha variant (B.1.1.7; main mutations in RBD: N501Y, P681H, 69/70 A) was first
identified in the United Kingdom and was also the first VOC to receive global attention
due to increased transmissibility up to 43-90% higher than the original strain [112,115].
Furthermore, the Alpha variant was associated with increased disease severity among
younger patients [116]. Nevertheless, this VOC did not significantly affect the efficacy of
available vaccines [117,118]. The Beta variant (B.1.351; main mutations in RBD: E484K,
K417N, N501Y) was first detected in the Eastern Cape province of South Africa and was
associated with decreased vaccine efficacy [18,112] and higher immune evasion than the
Alpha variant [119,120]. The Gamma variant (P.1; main mutations in the RBD: K417T,
E484K, N501Y, D614G) has become the primary concern in Brazil, as it is 1.7-2.4 fold more
transmissible compared to the Alpha variant [113]. Indeed, the Gamma variant spread
rapidly in the Amazonas, Brazil, and contributed to the collapse of the local health care
system [121]. Interestingly, both the Gamma and Alpha variants have similar binding affini-
ties between the RBD and ACE2, slightly stronger than the original strain [105]. Stronger
receptor binding could explain the higher viral transmission observed in countries with
the dominant circulating Gamma variant [122,123]. As mentioned above, these variants
have contributed to the collapse of the public health system in many countries. However,
recently, a new emerging variant (Delta) has become the highest global health concern
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as it was shown to affect immune responses [18,124,125] and is 55% more contagious
than the Alpha variant [126]. The Delta variant (main mutations: T19R, G142D, E156G,
F157A, R158A, L452R, T478K, D614G, P681R, and D950N) was first identified in India in
December 2020 [114,127] and quickly became the local predominant VOC. The accumu-
lation of convergent mutations on VOCs resulted in local variants during the COVID-19
s wave in India. As expected, due to the increased transmissibility of Delta, this variant
soon became the predominant VOC in England [109], the United States [128,129], and other
countries [18]. The linages of VOCs are defined by multiple convergent mutations that are
hypothesized to have appeared in the condition of chronic COVID-19 infections in immuno-
compromised patients [130]. A recent study showed that patients who received the first
dose of the BNT162b2 (Pfizer-BioNTech) and ChAdOx1 AZD1222 (Oxford-AstraZeneca)
vaccines were not as protected against the Delta variant as those who received the second
dose [131].

The VOCs have become a threat to pandemic control, and the vaccines need the
help of biotechnology, especially structural vaccinology tools, to stay one step ahead
of emerging variants. Structural vaccinology proposes the rational design and selec-
tion of antigens, including peptides, to maximize vaccine immunogenicity, safety, sta-
bility, and quality [43,132]. This critical process can accelerate the development of new
vaccines through several bioinformatics, biophysical, and computational tools already
available [133-137]. Such resources offer a rational approach to predict epitopes and mea-
sure their binding affinities and structural and dynamical properties [138,139].

Different laboratories have already reported potential B and T cell epitopes predicted
based on the SARS-CoV-2 S protein that could be used as vaccine candidates, including
VLPs vaccines [138,140,141]. For example, the UB-612 is a rationally designed vaccine
candidate construct based on two antigenic components: an S1-RBD-sFc fusion protein
and a synthetic polypeptide consisting of five SARS-CoV-2 derived peptides together with
a universal peptide [132]. This alum- and CpG-adjuvanted vaccine candidate induced high
titers of S1-RBD nAbs and increased Thl-oriented responses. In mice, UB-612 reduced the
viral load and prevented the development of the disease in a live SARS-CoV-2 challenge.
UB-612 is being developed by Vaxxinity, which is currently conducting clinical trials in
Taiwan. Another successful example employing structural vaccinology is the use of a well-
known structural optimization that improves the expression and stability of the S protein in
MERS-CoV and was adapted to SARS-CoV-2 protein-based vaccines [45]. Two consecutive
substitutions of proline residues at 986-987 on the S2 subunit (52P) and mutations at
the cleavage site 51/52 (682-685, ‘RRAR’ to ‘GSAS’) increased protein expression and
prevented host proteolytic cleavage, locking the S protein in the prefusion state [45,142].
The S2P mutations are being used in the available Pfizer-BioNTech vaccine (Comirnaty®
BNT162b2) [25], which showed high efficacy (95%) [26] against symptomatic cases and
a substantial reduction of hospitalizations and deaths in the United Kingdom, Israel, and
other countries [143-145]. Other studies have shown that point mutations at residues T572I,
D614N, A892P, A942P and V987P lock S in the closed state and promote a 6.4-fold increase
in protein expression and thermal stability [115]. Despite the expression advantages, these
mutations could make vaccines more accessible to developing countries [146].

3. Enveloped VLPs against SARS-CoV-2

As discussed above, incredible progress has been made on the understanding and
improvement of SARS-CoV-2 immunogens. Significantly, the comprehensive analysis of
the S protein characteristics and its antigenic regions were crucial for the rapid development
of the SARS-CoV-2 vaccines. However, there is still room to test both existing and novel
antigens using different platforms.

The VLP vaccine platform can be used for the production of eVLPs and neVLPs of
interest [140,147]. Enveloped VLPs harbor a host-derived or synthetic membrane and
generally need more complex expression systems, such as those in eukaryotic cell lines
(mammalian, insect, or plant cells). For the formation of coronavirus eVLPs, structural
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proteins are essential for viral maturation and particle assembly [48,49,148]. Some studies
have shown that the minimal requirement for the assembly of SARS-CoV-2 VLPs and other
coronaviruses is the combination of M and either the E or N proteins. However, most
particles include the N protein and the highly immunogenic S protein for better assembly
and expression (Figure 5A) [48,49]. To date, Vero E6 cells presented the highest expression
of S-containing VLPs when compared to HEK293 cells [49]. All of these initial approaches
for SARS-CoV-2 VLP production show a promising use of this platform in vaccine develop-
ment. However, industrial viability and large-scale production was not considered, and
these are crucial features for further development and are still very challenging in the eVLP
production field [100].
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Figure 5. Enveloped and nonenveloped VLPs against SARS-CoV-2.



Vaccines 2021, 9, 1409

9of 17

Although homologous VLPs are an attractive strategy for producing these particles,
the combination of antigenic SARS-CoV-2 proteins with other highly expressed heterolo-
gous proteins (that could be used as alternative VLPs scaffolds) are an exciting strategy
to address issues of industrial production. The NDVLP-S2P (Figure 5B) is a heterolo-
gous chimeric eVLP vaccine candidate against SARS-CoV-2 that uses the structure of
a well-characterized enveloped virus, the Newcastle disease virus (NDV) [41], and is be-
ing developed by the National Institute of Allergy and Infectious Diseases (NIAID). The
transmembrane domain of the NDV fusion protein was fused to SARS-CoV-2 S2P, allowing
the correct display of S2P on the VLP surface [41,45,149]. The NDV-52P VLPs were more
immunogenic than the trimeric S protein alone, showing that the presentation of antigens
on the surface of the VLPs is advantageous [41]. Another heterologous SARS-CoV-2 eVLPs
vaccine candidate is the CoVLP from Medicago/GSK (Figure 5C) [37,51]. This vaccine
is based on VLPs that display a mutated S2P protein, which comprises a plant signal
peptide, GSAS substitutions in the S1/52 site, and TM/CD regions of the Influenza H5
A/Indonesia/5/2005. The CoVLP vaccine is formulated with AS03 [141] and given in
a two-dose regimen. After the second dose, immunized volunteers showed higher serum
SARS-CoV-2 nAb titers than in convalescent plasma. This vaccine candidate is already
in phase 3 clinical trials (NCT04636697). VBI-2902a [149] is an MLV-based eVLPs vaccine
candidate containing the S protein in the prefusion state fused with the VSV-G transmem-
brane cytoplasmic domain (VSV-GTC) (Figure 5D). This vaccine is being developed by VBI
Vaccines and is in ongoing clinical trials 1/2 (NCT04773665).

As discussed, all these approaches allow for easier incorporation of highly anti-
genic S proteins into the VLP scaffold, dramatically improving production and efficacy of
the vaccine.

4. Non-Enveloped VLPs against SARS-CoV-2

Unlike eVLPs, neVLPs do not contain any lipid membranes. They can be produced
in simpler expression systems, such as those using bacteria (i.e., Escherichia coli) and
yeast (i.e., Saccharomyces cerevisine and Pichia Pastoris) cells. The Hepatitis B virus vaccine,
Engerix-B® [150], and the Human papillomavirus vaccine, Gardasil® and Gardasil 9% [33],
are neVLPs-based vaccines approved by the FDA. They are produced in Saccharomyces
cerevisiae, an efficient expression system that is industrially scalable and cheaper than
mammalian and insect cell systems. Despite these clear advantages, bacteria and yeast
cells lack complex post-translational modifications (PTM) needed to produce some pro-
teins, such as the highly glycosylated SARS-CoV-2 S protein [75,151]. Thus, the choice
of the best expression system could be a determinant for protein/VLP production, even
considering neVLPs. Cervarix® is another HPV neVLP-based vaccine [152] which is highly
immunogenic [153] and effective [154,155] against HPV types 16 and 18, which are the
main serotypes that cause cervical cancer [148]. The Cervarix® vaccine is produced using
insect cells infected with recombinant baculovirus [40,156,157].

An up-and-coming SARS-CoV-2 neVLP-based vaccine candidate is the Novavax
NVAX-CoV2373 (Figure 5E) that consists of S2P protein (1-1273) locked in the prefusion
state and expressed using a baculovirus/insect cell system [32]. Later, the recombinant S
protein is incorporated into polysorbate 80 detergent. This vaccine is formulated in combi-
nation with Matrix-M® adjuvant [32]. The NVAX-CoV2373 vaccine was shown to be im-
munogenic and safe [35,36] and conferred 89.7% protection against symptomatic cases [158].
Using a different approach, the ABNCoV2 (Figure 5F) is a SARS-CoV-2 neVLPs-based
vaccine candidate from the Radbound University and AdaptVac. A SpyTag-SpyCatcher
was used to display the S RBD in a bacteriophage scaffold system [159]. The ABNCoV2 is
another highly immunogenic candidate and induced high titers of nAbs in mice [159]. This
vaccine candidate is currently in phase 1/2 clinical trials (NCT04839146).

Although these different approaches show great potential for developing a SARS-
CoV-2 VLPs-based vaccine, some improvements could be made to design broad-spectrum
vaccines against other coronaviruses of interest. A pancoronavirus vaccine is an exciting
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strategy against zoonotic coronaviruses that represent a threat to humans and may soon be
responsible for the next pandemic [160,161].

It is already known that SARS-CoV-2 vaccines do not generate significant broadly
neutralizing antibodies against other family members, supporting the need for a functional
pancoronavirus vaccine [162]. Cohen and colleagues designed different mosaic nanopar-
ticle vaccines based on the S RBD from several human and animal (bat and pangolin)
sarbecoviruses, including the SARS-CoV-2 RBD (Figure 5G) [34]. Each vaccine induced
strikingly higher cross-neutralizing antibodies than the SARS-CoV-2 S protein alone. Fol-
lowing the same idea, a Sortase A tagged ferritin-based VLPs conjugated to the SARS-CoV-2
S RBD (Figure 5H) was tested with alum adjuvants [163]. The protective immunity induced
by this vaccine was robust against SARS-CoV-2 Alpha and Beta variants, as well as other
human and bat sarbecoronaviruses. Interestingly, the cross-neutralizing antibody titers
were more significant than the mRNA vaccine encoding the SARS-CoV-2 S protein. Despite
this, the data suggest that mRNA and other S-based vaccines may afford some protec-
tion against other sarbecoronaviruses. Lastly, the candidate GBP510 (Figure 5I) is based
on two rationally designed proteins, 153-50A and 153-50B [164,165], which self-assemble
into trimers and pentamers, respectively. Combining these proteins forms a versatile
120 subunit scaffold, 28 nm wide, for the multivalent display of antigens linked to 153-50A
subunits, such as SARS-CoV-2 RBD [156]. These particles were highly immunogenic in
mice and resulted in 10-fold higher antibody titers at a 5-fold lower dose than the S2P
protein alone [156]. In further preclinical trials with rhesus macaques, GBP510 was tested
with different adjuvants, including alum, AS03, CpG, Essai O/W, and AS37. Although
highly immunogenic against the original strain and the Alpha variant, a 4.5- to 16-fold
reduction in neutralization was observed against the Beta variant [157]. GBP510 is already
in phase I/1I clinical trials (NCT04742738 and NCT04750343) sponsored by SK Bioscience
Co. LTD and the Coalition for Epidemic Preparedness Innovations (CEPI).

5. Conclusions

As the cases of COVID-19 continue to grow and variants of SARS-CoV-2 emerge, the
need for easily adaptable vaccine platforms remains one of the major goals in the pursuit
of eradicating the disease. VLPs are an attractive platform for developing vaccines against
infectious diseases such as COVID-19, due to their impressive versatility and immuno-
logical applications. The main advantage of using this vaccine platform is that VLPs can
closely resemble the native virus in their size, shape and antigen display. Additionally,
VLPs can be adapted to contain more than one antigen of interest, a very important feature
to produce efficient and broad vaccines.

Several VLP-based vaccines have been tested in human clinical trials since the ap-
proval of the Hecolin®, Cervarix®, Gardasil® and Gardasil 9® vaccines. These vaccines
consolidated this platform, and opened doors for its use to produce vaccines against several
diseases, including COVID-19. Here, we discussed nine VLP-based vaccines that have
been developed against SARS-CoV-2, among which five are already undergoing clinical
trials. The main antigenic component of these vaccines is the S protein, specifically the
RBD, which is involved in viral entry and antibody neutralization, especially in its closed
conformation. By displaying multiple full-length Spikes or only its RBD on the VLPs
surfaces, especially on neVLPs, these vaccines have shown high immunogenicity in clinical
trials, generating neutralizing antibodies, and inducing cell-mediated responses. However,
we discussed the importance of considering additional structural proteins as antigens in
eVLPs-based vaccines, as they lead to more complex and native-like structures, and also
generate broad-spectrum immunity against variants and other coronaviruses. As seen
with other available vaccines, rational and adaptable vaccine development directly lead to
a reduction of hospitalizations, deaths and spread. The recent advances in VLP production
and structural vaccinology provide this platform with all the needed features to produce
novel, potent, and broad-spectrum coronavirus vaccines that could help in the fight against
current and future pandemics.
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