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Abstract
Regression analysis is one of the most widely used statistical techniques. It is well
known that the least squares estimates is sensitive to atypical and/or influential
observations. Many methodologies were proposed to detect influential observations
considering case deletion (global influence). On the other hand, Cook (J R Stat Soc
Ser B 48(2):133–169, 1986) developed a general and powerful methodology to obtain
a group of observations that might be jointly influential considering the local influ-
ence. However, these techniques may fail to detect masked influential observations. In
this paper, we propose a methodology to detect masked influential observations in a
local influence framework considering the forward search (Atkinson andRiani, Robust
diagnostic regression analysis, Springer, New York, 2000). The usefulness of the pro-
posed methodology is illustrated with data sets which were previously analyzed in the
literature to detect outliers and/or influential observations. Masked influential obser-
vations were successfully identified in these studies. The proposed methodology may
be used in any model where the local influence analysis (Cook 1986) is appropriate.
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1 Introduction

Influence diagnostic is an important step in the analysis of a statistical model. It is
well known that parameter estimation and variable selection are very sensitive to the
presence of outlying or influential observations in regression analysis (Atkinson and
Riani 2000; Montgomery et al. 2011). There is an extensive literature on detecting
outliers and influential observations in linear regression, such as DFBETA, DFFIT
(Belsley et al. 1980) and the Cook’s distance (Cook 1977). These techniques were
quickly assimilated being extended to several classes of models and many works deal
with the global influence scheme. The global influence consists in the evaluation of the
impact of removing one or more observations in the data analysis. Mavridis andMous-
taki (2009) described two kinds of errors that may occur in the process of detecting
outliers. The first one is the masking effect and it occurs when an outlier is undetected
because of the presence of a cluster of outliers. The second one is the swamping effect
which occurs when an observation is incorrectly identified as an outlier. The tradi-
tional deletion methods may fail to detect multiple outliers as they can be affected
by own observations that should be identified (masking effect). Cook and Weisberg
(1982, p. 31) pointed out that residuals with opposite sign can mask each other in a
way that none appears as atypical data in the diagnostic methods considering residu-
als. Chatterjee and Hadi (1988) discussed methods to detect observations which are
jointly influential, but individually may not be considered atypical, points of leverage
or influential observations, which is considered as masking effect. Hadi (1992) dealt
with the identification of multiple atypical data. Hadi and Simonoff (1993) proposed
methods that are less susceptible to masking problems.

Atkinson and Riani (2000) developed a method based on the articles of Hadi (1992)
and Hadi and Simonoff (1993), which was called forward search algorithm to detect
multiple masked outliers in regression models and determine their effect on inferences
of the fitted model. Themethodology proposed by Atkinson and Riani (2000) consists
in obtaining a small subset of the data free of outliers andgradually increment the subset
until all the observations are included. The parameters of the model are estimated from
the subset, but the criterion to enter into the subset is applied to all the observations.
They considered the least-squares estimates and the coefficients estimated in this way
were used to evaluate the residuals of all the observations. Then the least median of
squares of the observational residuals were used to select the initial subset with p+ 1
(number of parameters) observations. Thereafter, the p + 2 observations with the
smallest squared residuals based on a fit of p+ 1 observations are chosen to compose
the next subset.

As the subset size increases, the evolution of residuals, parameter estimates and
inferences are monitored and the results are presented as forward plots which show
the evolution of the quantities of interest as a function of the size of the subset. In
the first steps, the forward search algorithm usually avoids the inclusion of atypical
observations, but the choice of the starting subsets does not dramatically influence
the search and if an outlier is included in the earlier steps, soon it is disregarded not
affecting the final steps. In the last iteration, we have the least-squares estimate of the
parameters based on the whole data set.
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Manyworks that extend the preliminary forward search based algorithmwere devel-
oped in the last decades. Atkinson et al. (2018) uses the forward search to cluster
multivariate data, Cerioli et al. (2019) combines the cluster analysis with robust esti-
mation considering the forward search, Riani et al. (2014) and Cerioli et al. (2018)
monitor robust high-breakdown procedures, Riani et al. (2019) comments on Galeano
and Peña (2019) considering the forward search and Grané et al. (2021) combines for-
ward search distance-based algorithm with robust clustering to visualize mixed data,
for example.

On the other hand, instead of deleting cases, Cook (1986) proposed a powerful
and general methodology, the local influence analysis, to assess the effect of a minor
perturbation in themodel or in the data considering the normal curvature of an influence
graph based on the likelihood displacement. This methodology can identify a group
of observations that are locally influential. It was quickly disseminated and there are
numerous applications of this diagnostic method in diverse areas, as can be seen in
Beckman et al. (1987), Lawrance (1988), Thomas and Cook (1990), Escobar and
Meeker Jr (1992), Paula (1993), Labra et al. (2007), Russo et al. (2009), Russo et al.
(2012) and Zhu et al. (2016), for example.

However, the procedure may fail to identify masked influential observations and
as far as we know the detection of masked influential observations in local influence
analysis Cook (1986) with the use of the forward search has not been addressed yet.

The contribution of this paper is to propose a methodology to detect masked influ-
ential observations in a local influence framework considering the forward search
algorithm (LIFS). To ease interpretation, the proposed methodology was applied to
linear regression models, however it can be applied directly to more complex mod-
els as measurement error models or random effects models, for example, and also in
univariate and multivariate models, as the methodology may be applied to any model
with a smooth likelihood function Cook (1986). In addition, with the forward plot it
is possible to see how the influence of each observation changes as the number of
elements in the subset increases.

We analyzed data sets which were previously analyzed in the literature to show the
usefulness of the proposed methodology. The first and second data sets are rat data
and geese data, respectively, which were reported in Weisberg (1980) and analyzed in
Cook (1986). The third data set is the bank data, which was considered in Riani et al.
(2014) and the fourth data set, customer data, was analyzed in Neter et al. (1996).
The first data set contain masked observation considering the local influence analysis,
which can easily be detected using the LIFS algorithm. In the second and third data
set, there are some influential observations which can easily be detected. The fifth data
set is a simulated one to see the effect of a dataset with high contamination rate.

To motivate the proposed methodology, the LIFS forward plot for the rat data set
and the geese data set considering the case weight perturbation scheme are presented
in Figs. 1 and 2 , respectively. The details of the methodology and more complete
illustration with these data sets, analyzed in Cook (1986), can be found in Sects. 2 and
3, respectively. Also, Cook (1986) considered that the error variance σ 2 is known and
the value of σ 2 was replaced by its estimated value. Here, we consider σ 2 as unknown
parameter in our analysis.
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Fig. 1 Rat data: case-weight perturbation scheme. LIFS forward plot (left) and index plot of |lmax| (right)

The left and right hand panel of Fig. 1 shows, respectively, the forward plot of
|lmax| considering the LIFS algorithm and the index plot of |lmax| (Cook 1986) for
the rat data. This data set consists of three explanatory variables with X1 representing
the body weight, X2 representing the liver weight and X3 the relative dose. A certain
amount of the drug was given to each rat and after an amount of time, each rat was
sacrificed and the percent of the dose in the liver (Y ) was determined. The actual dose
that each rat received was related to their weight, as liver weight is strongly related to
body weight and also large livers would absorb more dose (Weisberg 1980).

The left hand panel of Fig. 1 shows that observation 3 stands out for almost the
entire evolution of the LIFS algorithm as an influential observation. In the last iteration
observation 3 enters into the search, which makes a steep drop of the observation 3
from the penultimate iteration to the last iteration. Consequently, observation 3 is
masked in the last iteration.

ConsideringCook (1986) and the right hand panel of Fig. 1 observation 19, followed
by observations 13 and 1 stand out. It is not possible to detect that observation 3 might
be influential. Observation 19 was the one which had the second greatest absorption
by the liver. However, it was the rat with the second lower liver weight. Furthermore,
observation 13 was the one that had the least drug absorbtion and observation 1 was
the one that among those that received 0.88 mg of the dose (four rats), it had the
greatest absorbtion of the dose and the lowest liver weight. According to this index
plot of |lmax|, we conclude that the group of observations (1, 13, 19) might be jointly
influential.

Figure 2 (top) shows the forward plot of |lmax| considering the LIFS algorithm
and the geese data, where the response variable Y represents the number of birds in
the flock counted based on a aerial photograph and X represents the estimated number
of geese in the flock made by the observer 1. In this case, the methodology shows that
observation 29 is the most influential one, followed by the observations 28 and 41 and
there is no masked observations (see Sect. 2 for details). The left hand panel (bottom)
of Fig. 2 shows the index plot of |lmax| (Cook 1986). Clearly, observations 29, 28 and
41 stand out as influential observations. Also, the scatter plot of the data can be found
in the right hand panel (bottom).
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Fig. 2 Geese data: case-weight perturbation scheme. LIFS forward plot (top) and index plot of |lmax|
(bottom left). Scatter plot (bottom right)

In Sect. 3 these data sets and also the bank data, the customer data and the simulated
data set will be analyzed in more detail with the use of the LIFS algorithm.

The paper is organized as follows. In Sect. 2we review the local influence technique
(Cook 1986) and introduce the LIFS algorithm. Section 3 presents the LIFS algorithm
applied to the four data sets previously analyzed in the literature and a simulated data
set to show the usefulness of the proposed methodology. In the last section, we discuss
the obtained results.

2 Local influence and LIFS algorithm

Let
Y = Xβ + ε, (1)

where Y (n×1) denotes the vector of the dependent variable, X(n×p) is the model matrix
of explanatory variable values, β(p×1) = (β0, β1, . . . , βp−1)

T denotes the vector of
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unknown parameters and ε(n×1) the vector of random errors, with εi
ind∼ N (0, σ 2),

i = 1, . . . , n, and σ 2 unknown.
We denote by �(θ) and �(θ |ω), respectively, the log-likelihood function of the pos-

tulated model and perturbed model, where �(θ |ω) is twice continuously differentiable
in (θT ,ωT )T , with ω = (w1, w2, · · · , wq)

T representing the perturbation vector in
an open subset Ω of Rq , whereas θ (p+1)×1 is the vector of unknown parameters.
ω0 denotes the vector of no perturbation, such that �(θ |ωo) = �(θ). ̂θ and ̂θω are,
respectively, the maximum likelihood estimator from the postulated and perturbed
models.

Cook (1986) proposed an influence measure, the likelihood displacement

LD(ω) = 2{�(̂θ) − �(̂θω)}

to assess the influence of varying ω in Ω . The graph of α(ω) =
(

ω

LD(ω)

)

is named

the influence graph whereas the normal curvature Cl of the lifted line in the direction

l evaluated at θ = ̂θ and ω = ω0 can be written as Cl = 2|lTΔT L̈
−1

Δl|, where
L̈ = ∂2�(θ)

∂θ∂θT

∣

∣

∣

∣

θ=̂θ

with Δ = ∂2�(θ | ω)

∂θ∂ωT

∣

∣

∣

∣

θ=̂θ ,ω=ω0

and ‖l‖ = 1.

Cook (1986) suggested the use of lmax which is the eigenvector associated with

Cmax that corresponds to the maximum absolute eigenvalue of F̈ = ΔT L̈
−1

Δ.
For more details related to the local influence analysis, see Cook (1986).
Next, we propose a methodology based on the forward search algorithm and the

local influence analysis to deal with the problem of masking effects.

2.1 LIFS algorithm

Many methods developed to detect outliers consist in the division of the data in a
clean subset and a subset with outliers/influential observations. Atkinson and Riani
(2000) developed a general methodology to obtain multiple masked outliers. Themain
concept is to extract from the dataset with n observations, a small subset of sizem free
of outliers and estimate the unknown parameters. If the model contains p parameters,
they suggested to start the algorithm with a subset of size m = p. If (np) is too large,
it was suggested to use some large number of subsets, for example 1000. They used
the least-squares estimates and then the least median of squares of the observational
residuals were applied to select the subset. In the next iteration it was considered
subsets of size m + 1 and the procedure is repeated until all the observations are
included.

In this work we propose the use of the local influence analysis to assess the effect
of minor perturbation in the model/data set considering the forward search algorithm.
Cook (1986) suggested the use of the maximum curvature Cmax and the associated
eigenvector lmax to study the behavior of the influence graph, due to the fact that
this is the direction which gives the greatest local change in the likelihood displace-
ment. One way to find out the influential observations is to plot the elements of the
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lmax and if the i th element or a group of elements of the lmax is relatively large,
this is an indication that the observation or the group of observations are relatively
influential.

The local influencewith forward search (LIFS) algorithm starts by choosing a subset
of size m = p + 1. In order to find the initial subset, we start sampling subsets of size
m = p+ 1 from the data set according to Atkinson and Riani (2000) and estimate the
unknown parameters considering themaximum likelihood estimator. Notice that in the
case of model (1) the least-squares estimator and the maximum likelihood estimator
are the same. If we have sampled K subsets, we will have a set of K maximum
likelihood estimates (MLE) corresponding to each subset.

The next step consists in computing the vector lmax considering the whole data
set, but using the MLE obtained for each of the K subsets of size m = p+ 1 obtained
in the first step. It means that, for each subset, the values of the MLE are obtained
considering only the elements of the subset and then considering the whole data set
the elements of the vector lmax are obtained. So, we will obtain K vectors lmax and
the subset corresponding to the least median of the lmax’s will be chosen in the first
step.

The forward search moves to the dimension m + 1 and all the steps described so
far are repeated but now considering subsets of size m + 1. Gradually, the number of
observations used in the fit are incremented until all the n observations are used to fit
the model.

In the last step of the LIFS algorithm we have only one set left, which is the whole
data set. It means that we will derive the usual lmax attained considering the whole
data set.

The results are presented as forward plots which show the evolution of the vectors
lmax as a function of the subset size. Other quantities of interest can also be presented
as forward plots, such as the estimated value of the parameters.

In order to better illustrate the LIFS algorithm, we are going to describe the
methodology step by step considering a simple regression model. In this case,
θ = (β0, β1, σ

2)T and the number of parameters is p + 1 = 3. We assume that
the data set has n = 5 observations, (Xi ,Yi ), i = 1, · · · , 5 and also that the per-
turbation scheme was already defined, as well as, the obtention of all the necessary
matrices, so that it is possible to obtain the vector lmax.

– Step 1: start the LIFS algorithm with all possible subsets of size m = p + 1 = 3
from the data set (Cn

m = 10).
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Number of the subset k= 1 k=2 · · · k=9 k=10
Elements in the subset (X1, Y1) (X1, Y1) · · · (X2, Y2) (X3, Y3)

(X2, Y2) (X2, Y2) · · · (X3, Y3) (X4, Y4)
(X3, Y3) (X4, Y4) · · · (X5, Y5) (X5, Y5)

MLE of the k-th subset θ̂1 θ̂2 · · · θ̂9 θ̂10
lmax obtained with the whole

data set, but with the MLE of the lmax1 lmax2 · · · lmax9 lmax10
k-th subset (θ̂k )

lmax11 lmax21 · · · lmax91 lmax101
lmax12 lmax22 · · · lmax92 lmax102
lmax1med lmax2med · · · lmax9med lmax10med
lmax14 lmax24 . . . lmax94 lmax104
lmax15 lmax25 · · · lmax95 lmax105

l∗m

• Determine l∗m = min(lmax1med , lmax2med , · · · , lmax9med , lmax10med );
• If the vector lmax corresponding to l∗m is lmax4, for instance, then the vector lmax4 is the lmax

obtained in the first iteration for m = 3;
• Other quantities of interest, such as θ̂4 can also be used to detect masked influential observations.

– Step 2: move to the next iteration (m = 4) and repeat Step 1 with all possible
subsets of size m = 4 from the data set (Cn

m = 5).
– Step 3: move to the next iteration (m = n = 5) and repeat Step 1 with all possible
subsets of size m = 5 from the data set (Cn

m = 1).

Number of the subset k= 1 (whole data set)
Elements in the (X1, Y1)

subset (X2, Y2)
(X3, Y3)
(X4, Y4)
(X5, Y5)

MLE of the k-th subset θ̂1 = θ̂

lmax obtained with the whole
data set, but with the MLE of the lmax1 = lmax

k-th subset (θ̂k )
lmax11 =lmax1
lmax12= lmax2

lmax1med = lmaxmed
lmax14= lmax4
lmax15= lmax5

l∗m
• In the last step, it is simply obtained the usual vector lmax.

In order to construct the forward plots considering the LIFS algorithmwewill consider
the model defined in (1) for the first three data sets and the simulated data set with
four perturbation schemes.

Case-weight perturbation scheme: in this case, the perturbed log-likelihood function
is given by �(θ |ω) = ∑n

i=1 ωi�(θ) and the corresponding matrix Δ can be written as

Δ =
(

XT D(e)
σ̂ 2 ,

eTsq
2σ̂ 4 − 1Tn

2σ̂ 2

)T

,
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where e = (e1, . . . , en)T is the residual vector obtained when ω = ω0 = 1 with
D(e) denoting the diagonal matrix, esq = e � e = (e21, . . . , e

2
n)

T and 1n the vector
composed by n ones.

Explanatory variable perturbation scheme: the perturbed covariate matrix is given
by Xω = X + WS, where W (n×p) and S = D(s) with s = (s0, s1, . . . , sp−1)

T

denote, respectively, the perturbation matrix and the scale matrix, with sk denoting
the scale factors accounting for the different metric units related to the columns of
X, k = 1, . . . , p−1, and s0 = 0. Cook (1986) presented the matrix Δ when the error
variance σ 2 is known. In our case, the matrix Δ has dimension (p + 1) × n(p + 1)
and can be partitioned as Δ = (Δ0,Δ1, . . . ,Δp) with the elements Δk being given
by

Δk =
⎛

⎝

sk(bkeT − β̂kXT )

σ̂ 2 ,−
sk

(

β̂keT
)

σ̂ 4

⎞

⎠

T

(p+1)×n

,

where bk denotes a vector composed by p − 1 zeros and 1 in the kth line.
Response variable perturbation scheme: let Yω = Y + syω represent the perturbed

response variable with sy denoting the scale factor. In this case, the matrix Δ is given
by

Δ =
(

syXT

σ̂ 2 ,
syeT

σ̂ 4

)T

.

Error variance perturbation scheme: let σ 2
wi

= σ 2

wi
, i = 1, . . . , n, the corresponding

matrix Δ takes the form

Δ =
(

XT D(e)
σ̂ 2 ,

eTsq
2σ̂ 4

)T

.

Cook (1986) shows that

L̈ = −
(

XT X
σ̂ 2 0
0 n

2σ̂ 4

)

.

Afterwards, we apply the LIFS algorithm to the data sets described in the Introduction.

3 Applications

To show the usefulness of the proposed methodology we apply the LIFS algorithm to
four data sets previously analyzed in the literature and to a simulated data set.

First, we consider the rat data which was considered in Cook (1986) and reported
in Weisberg (1980). The data set consists of n = 19 observations where the response
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Fig. 3 Scatter Plot of the rat data variables

variable represents the amount of a particular drug present in the liver of a rat with
three covariates: body weight (X1), liver weight (X2) and the relative dose of a drug
(X3). The data set was described in the Introduction. Weisberg (1980) concluded that
observation 3 is influential and that this rat received a larger dose than it should have
received.

Figure 3 shows the scatter plot of the rat data identifying the observations that were
detected in Fig. 1.

Cook (1986) considered case-weight perturbation scheme and explanatory variable
perturbation scheme.However, it was assumed known variance. Here, we consider that
the variance parameter is unknown as was done in Weisberg (1980).

The left hand panel of Fig. 1, presented in the Introduction, shows the forward plot
of LIFS algorithm for the rat data considering case-weight perturbation scheme. It
starts with a subset of size m = 5 and in each step of the algorithm the sample size is
incremented by 1, so that in the last step the analysis and the estimation of
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Fig. 4 Rat data: explanatory variable perturbation scheme. LIFS forward plot (left) and index plot of |lmax|
(right)

the parameters are done with the whole sample of size n = 19, which means that the
points in the last iteration are the same as the index plot of |lmax| (right hand panel of
Fig. 1). Clearly, observation 3 stands out from the rest of observations, as influential,
during the evolution of the LIFS algorithm and in the last iteration when observation 3
is introduced into the subset, it becomes masked and observations 19, 13 and 1 pop up.
On the other hand, with the usual local influence analysis (right hand panel) it is not
possible to identify the observation 3 and the conclusion would be that observations
19, 13 and 1 might be jointly influential.

Next, we perturbed the three covariates using the explanatory variable perturbation
scheme. In this case, observations 1 to 19 refer to the elements of the first covariate
(X1), while observations 20 to 38 (39 to 57) to the elements of the second covariate
(X2) (third covariate (X3)).

The left hand panel of Fig. 4 corresponds to the LIFS forward plot. In this case,
observations 3 and 41 stand out from the beginning of the evolution of the LIFS algo-
rithm until the iterationm = 16, then these observations are masked, and observations
19 and 57 followed by observations 1 and 39 pop up. In the iteration m = 17 obser-
vation 3 is introduced in the subset, which makes a steep drop of the observations
(3, 41) and a sharp increase of the observations (1, 39) and (19, 57). Observations
(3, 41), (1, 39) and (19, 57), are respectively, the 3rd, 1st and 19th observation of
the covariate X1 and X3, i.e., for instance (3, 41) = (X31, X33).

The right hand panel of Fig. 4 shows the index plot of |lmax| . In this case, it is
clear that covariate X1 and X3 are more influential than the covariate X2.

Table 1 shows the relative changes in the MLE and the respective p-values after
dropping observations 3,19, 13 and 1, and also the exclusion of the group of observa-
tions (1,3,13,19). With the whole data set, the covariates X1 and X3 are significant at
5% level of significance. After the exclusion of observation 3 or the group of obser-
vations (1,3,13,19) none of the covariates is significant.

Figure 5 displays the forward plot of the regression coefficients. On the left hand
panel we observe that the value of β̂3 changes substantially during the evolution of the
forward plot. On the right hand panel β̂3 was omitted so that the behavior of the other
estimated coefficients during the evolution of the forward plot could be seen. Observe
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Table 1 Parameter estimates, relative changes and the respective p-values

Whole Dropping observations

Data set 3 19 13 1 (1, 3, 13, 19)

β̂0 0.266 0.311 0.116 0.409 0.273 0.228

Relative change 0.169 −0.564 0.538 0.026 −0.143

p-value 0.192 0.151 0.547 0.066 0.150 0.278

β̂1 −0.021 −0.008 −0.019 −0.022 −0.024 −0.012

Relative change 0.619 0.095 −0.048 −0.143 0.429

p-value 0.018 0.684 0.017 0.011 0.007 0.460

β̂2 0.014 0.009 0.019 0.002 0.026 0.019

Relative change −0.357 0.357 −0.857 0.786 0.357

p-value 0.419 0.637 0.247 0.924 0.154 0.323

β̂3 4.178 1.485 3.944 4.352 4.520 2.230

Relative change −0.645 −0.056 0.042 0.082 −0.466

p-value 0.015 0.695 0.012 0.01 0.006 0.470

σ̂ 2 0.005 0.005 0.004 0.004 0.004 0.003

Relative change 0.000 −0.200 −0.200 −0.200 −0.400
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Fig. 5 Rat data: explanatory variable perturbation scheme. Forward plot of the estimated regression
coefficients—all coefficients (left) and without β̂3 (right)

that the sign of β̂1 (β̂2) is positive (negative) during almost the entire evolution of the
LIFS algorithm and after iteration m = 16 the sign is reversed. The same happens
with β̂3. The sign of β̂3 is negative until iteration m = 16 and from iteration m = 17
it becomes positive.

The next data set to be considered is the geese data analyzed in Cook (1986)
considering that the error variance σ 2 is known. Here, we also consider σ 2 as unknown
parameter in our analysis. The snow geese data, was conducted to investigate the
reliability of the estimate of the number of geese in the flock by an experienced person
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Fig. 6 Geese data: error variance perturbation scheme. LIFS forward plot (left) and index plot of |lmax|
(right)

flying over geese summer range areas. The response (Y ) and explanatory (X) variables
were described in the Introduction, with n = 45 observations.

The LIFS forward plot considering the case-weight perturbation scheme was pre-
sented in Fig. 2 (top panel) in the Introduction and it clearly shows that observation
29 followed by the observations 28 and 41 stands out from the rest of observations
as possible influential observations during the entire evolution of the LIFS algorithm.
Moreover, clearly there is no masked observation. This is what we would expect after
looking at the index plot of |lmax| (bottom left hand panel of Fig. 2), but it may not
be the case as we saw in the previous example (rat data).

Next we consider the variance perturbation scheme. The left hand panel of Fig. 6
shows the LIFS forward plot for the geese data. Clearly, observation 29 appears as the
most influential in the entire process of theLIFS algorithmand in the last iterationwhen
observation 29 is introduced in the subset, observation 28 and 41 become influential
and the influence of observation 29 is diminished. The right hand panel shows the
index plot of |lmax|. Observation 29 followed by observations 28 and 41 stand out as
possible influential observations.

The left hand panel of Fig. 7 shows the plot of LD(ω(a)) versus a with ω(a) =
ωo + al and a ∈ [−1, 1] along the directions l = l i , with i = 28, 29 and 41. l i is the
null vector of size 45 with the i th element replaced by 1. Observation 29 is the most
influential and observation 41 the least influential among these three observations.

Considering the response variable perturbation scheme (Fig. 8, left hand panel) the
LIFS forward plot shows that observation 29 stands out as the most influential obser-
vation during the entire evolution of the LIFS algorithm except for the last iteration,
when observation 29 is introduced into the subset and observations 28 and 41 pop up.
The index plot of |lmax| for the last iteration can be seen in the right hand panel and
clearly observation 28 stands out as the most influential followed by the observations
29 and 41. On the other hand, the left hand panel shows that observation 29 is the most
influential and it was masked in the last iteration.

In addition there are 5 observations that stand out between the observation 29 and
the rest of the observations. These are observations 37, 30, 40, 33 and 26 (in this order,
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Fig. 7 Geese data: error variance perturbation scheme (left panel) and response variable perturbation scheme
(right panel). Plot of LD(ω(a)) versus a
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Fig. 8 Geese data: response variable perturbation scheme. LIFS forward plot (left) and index plot of |lmax|
(right)

from top to bottom). Observations 30, 33 and 26 were also masked in the last iteration
with the entrance of the observation 29.

The right hand panel of Fig. 7 shows the plot of the likelihood displacement along
the directions l = l i , with i = 26, 28, 29, 30, 33, 37, 40 and 41. Observation 29 is the
most influential followed by the observations 28 and 41.

The left hand panel of Fig. 9 shows the evolution of the estimated regression parame-
ters during the LIFS algorithm considering the response variable perturbation scheme.
In the last iteration, the estimated value of the intercept changes abruptly when obser-
vation 29 is introduced in the subset.

The right hand panel of Fig. 9 shows the evolution of the t-statistic for the regression
coefficients during the LIFS algorithm. The hypothesis that the intercept is null is
rejected in the last iteration with significance level of 5%. Notice that before the last
iteration the intercept is significant.

Table 2 shows theMLEof the parameters, relative changes and p-values considering
the whole data set and dropping observations 29, 28 and 41, individually and in group.
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Fig. 9 Geese data: response variable perturbation scheme. Forward plot of the estimated regression param-
eters (left) and forward plot of t-statistic (right)

Table 2 Parameter estimates, relative changes and the respective p-values

Whole Dropping observations

data set 29 28 41 (28,29,41)

β̂0 26.650 5.141 29.707 27.409 18.568

Relative change −0.807 0.115 −0.028 −0.303

p- value 0.003 0.493 0 0.001 0.005

β̂1 0.883 1.280 0.782 0.831 0.964

Relative change 0.449 −0.114 −0.059 0.092

p-value 0 0 0 0 0

σ̂ 2 1884.226 1058.830 1251.536 1563.062 638.371

Relative change −0.438 −0.336 −0.170 −0.661

Observe that when observation 29 is removed from the data set the intercept becomes
non significant.

The third data set to be analyzed is the bank data which was considered in Riani
et al. (2014) and refers to the amount of money made from personal customer over a
year. They considered 13 potential explanatory variables (see Riani et al. (2014) for
more details) which describe the services used by the customers. The main interest
was to discover which activities are particularly profitable. The data set contains 1949
observations.

Considering the variance perturbation scheme, Fig. 10 shows the LIFS forward plot.
There is a group of observations (1324, 396, 1338) that stands out during almost the
entire evolution of the LIFS algorithm as possibly the most influential observations in
the data set, followed by the second group of observations, (86, 892, 1098). Moreover,
there are no masked observations. The interesting feature of this plot is that it can also
be used as a validation method in this case, as the group of observations stands out as
influential observations in almost the entire evolution of the LIFS methodology.
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Fig. 10 Bank data: response variable perturbation scheme. LIFS forward plot
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Fig. 11 Bank data: error variance perturbation scheme (left panel) and customer data: case-weight pertur-
bation scheme (right panel). Plot of LD(ω(a)) versus a

The left hand panel of Fig. 11 shows the plot of the likelihood displacement in the
direction of the group of observations (1324, 396, 1338), (86, 892, 1098) and also all
6 observations. The group of observations composed by the 6 observations that stands
out during almost the entire evolution of the LIFS algorithm, is the most influential
group, followed by the first group of observations, (1324, 396, 1338), and the second
group of observations, (86, 892, 1098).

In addition, with the whole data set the covariate X10 is significant at 1% level,
but after the exclusion of the group of observations (1324, 396, 1338) or all the 6
observations, the covariate X10 is no longer significant. Considering the parameter
estimates, if we drop the first group of observations; the second group of observations
or both group of observations, the biggest changes in the parameter estimates occur
in the regression coefficients of X5 and X12, when the second group is excluded. The
relative change in the parameters estimate are 75.36% and 61.40%, respectively. The
case weight perturbation scheme reaches the same results and will be omitted.
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Fig. 12 Customer data set:
case-weight perturbation
scheme. Index plot of |lmax|
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Fig. 13 Customer data set: case-weight perturbation scheme. LIFS forward plot

The fourth data set to be considered is the customer data set and the corresponding
model as reported in Neter et al. (1996). The data set refers to a survey conducted
in a two-week period. Initial selection of predictors was conducted which led to the
retention of five predictors: X1 representing the number of housing units/1000; X2
the average income/1000, in dollars; X3 the average housing unit age, in years; X4
the distance to nearest competitor, in miles and X5 the distance to store, in miles. The
response variable is the number of customers who visited the store from census tract.
The Poisson regression model with response function μ = exp(XTβ) was fitted to
the data. Paula (2013) also analyzed this data set.

The observed information matrix and the matrix Δ considering the case-weight
perturbation scheme, necessary to perform the local influence analysis, can be found
in Paula (2013), Sect. 1.10.4. Figure 12 shows the index plot of |lmax|. Observations
20, 38 and 85 appears as possible influential observations.

The forward plot of the LIFS algorithm is presented in Fig. 13. Observations 43
and 85 stands out as influential observations during almost the entire evolution of the
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Table 3 Parameter estimates, relative changes, p-values and deviances

Whole Dropping observations

Data set 20 38 43 85

β̂0 2.942 2.959 2.920 2.989 2.921

Relative change 0.006 0.007 0.016 0.007

p-value 0 0 0 0 0

β̂1 0.606 0.622 0.636 0.590 0.625

Relative change 0.027 0.049 0.026 0.031

p-value 0 0 0 0 0

β̂2 −0.012 −0.013 −0.012 −0.012 −0.012

Relative change 0.073 0.014 0.001 0.005

p-value 0 0 0 0 0

β̂3 −0.004 −0.005 −0.003 −0.004 −0.003

Relative change 0.211 0.106 0.187 0.126

p-value 0.037 0.014 0.063 0.015 0.07

β̂4 0.168 0.172 0.165 0.174 0.173

Relative change 0.023 0.021 0.036 0.027

p-value 0 0 0 0 0

β̂5 −0.129 −0.126 −0.131 −0.134 −0.131

Relative change 0.020 0.014 0.039 0.014

p-value 0 0 0 0 0

deviance 114.985 111.242 110.988 111.978 112.116

Relative change 0.033 0.035 0.026 0.025

LIFS algorithm. In the final steps, observation 43 is masked and observations 20 and
38 pop up.

The right hand panel of Fig. 11 shows the plot of the likelihood displacement in
the direction of the group of observations (43, 85), the two observations that stand out
during almost the entire evolution of the LIFS algorithm, observations (20, 38), the
two observations that pop up in the final steps and observations (20, 38, 85), the three
observations that stands out in the index plot of |lmax|. The plot of LD(ω(a)) versus
a shows that if we perturb in the direction of the group of observations (43, 85) the
likelihood displacement increases more than if we perturb in the direction of the group
of observations (20, 38), whereas the joint influence of the group of the observations
(20, 38) are the same as the group of observations (20, 38, 85).

Considering the global influence, the exclusion of observations 38 or 85 change the
inferential results. Table 3 shows that the covariate X3 is not significant at 5% level of
significance, however after dropping the observation 38 or 85 it becomes significant.

The last data set to be analyzed is a simulated data set where nearly 50% of the
observations are contaminated. Considering the simple linear regression model it was
generated 76 observations according to Fig. 14, where the 18 observations in green
and the 18 observations in red represent the contaminated portion of the data set and
the majority (40 observations) are in beige.
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Fig. 14 Scatter Plot of the
simulated data
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The LIFS methodology was applied to the simulated data set considering lin-
ear regression model with the use of the explanatory variable perturbation scheme
and the response variable perturbation scheme. Figure 15 top (bottom) presents the
LIFS forward plot for the explanatory variable perturbation scheme (response vari-
able perturbation scheme). Both plots show that observations in red and green may be
influential, while the observations in beige are robust to the induced perturbations.

4 Conclusions

Influence diagnostics is an important step in statistical data analysis. If there are obser-
vations that can influence the results of an analysis, these observations should be
known. Thought there are many methodologies to find out influential observations,
these methodologies may fail to detect masked influential observations.

Atkinson and Riani (2000) proposed the forward search algorithm considering the
least-squares estimates and the corresponding residuals to identify masked outliers, in
regression models, considering the global influence. On the other hand, Cook (1986)
developed a general methodology to identify multiple influential observations consid-
ering the local influence. However, this methodology may not detect masked locally
influential observations. To fill this gap, we proposed the LIFS algorithm to detect
masked influential observations considering regression models and local influence
approach, thought the proposed methodology may be applied to any model with a
well-behaved likelihood.

We applied themethodology to four data sets whichwere previously analyzed in the
literature and to a simulated data to detect outliers and/or influential observations. The
local influence analysis were performed and influential observations were obtained,
however, as can be seen in Sect. 3 there are masked influential observations that were
not detected with the usual local influence analysis. The proposed methodology suc-
cessfully detected masked influential observations and the applications also revealed
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Fig. 15 Simulated data: LIFS forward plot, explanatory variable perturbation scheme (top) and response
variable perturbation scheme (bottom)

some interesting aspects of the LIFS algorithm in the local influence analysis. Figures 5
and 9 , for instance, show how the quantities of interest evolve during the iterations
of the LIFS algorithm and even if there are no masked influential observations it can
give extra information, as validation (see Fig. 2).

Hence the LIFS algorithm may be used to complement the local influence analysis
proposed by Cook (1986) to detect masked influential observations.
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