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Abstract 

We consider the ARMA(l,l) model and deal with the estimation of the residual vari­

ance. Results are known for the maximum likelihood(ML) estimators under normality, 

both for known and unknowm mean, in which case the asymptotic bias depends on the 

number of parameters(including the mean) and on the true residual variance, but not on 

the values of the remaining parameters. For moment and least squares estimators the sit­

uation is different; The asymptotic bias depends on the values of the parameters, besides 

the true variance. Some simulation results are also presented. 

Key word.3: Time series, autoregressive moving average models,residual variance, bias, 

maximum likelihood,method of moments, least square:;. 



1. Introduction 

We consider the ARMA(l,l) model defined by 

(Xi - µ) + /J(X1-1 - µ) = ac + crn1-1 , t = 0, ±1, .. . , (1.1) 

where a1 is a white noise sequence with mean zero and finite variance u~, and µ, a, /3 are 
real parameters. For stationarity we require that l,81 < I , which also gives invertibility 
of (1.1) into an infinite moving average(the model is causal) . If lal < 1 , then (1.1) is 
invertible into an infinite autoregression. 

The autocovariance sequence is 'Y• = E(X, - µ)(X1+1•1 - µ), s = 0, ±1 , . . . , and 
satisfies the equations 

I + o- 2 
- 2o/3 2 

-Yo = 1 - /P q a , 

(1 - o/J)(o - /3) 2 
,'J = ( 1 - f32) q a , (1.2) 

The autocorrelation sequence is p. = -y./-y0 , s = 0, ±1, . .. and from (1.2) is given by 

if j = 0 
ifj~l. (1.3) 

The autocovariance and autocorrelation sequences are two of the basic tools in the 
time domain analysis of the model (1.1).The autocovariance satisfies the inversion formula 

where 

(1.4) 

is the spectral density of the process. 
In this paper we consider the estimation of the parameter u;. This is important 

because estimates of the residual variance enter, for example, into confidence sets for 
parameters, in the estimation of the spectrum and in the expression of the estimated error 
of prediction. 

Estimates of u: come from the methods of moments(MM), least squares(LS) anJ 
maximwn likelihood(ML) under normality, and also from frequency domain arguments . 

The main purposes of this paper are to review the literature on the subject and present 
new material on the large sample bias of estimators for the residual variance for model 
(1.1). Results for ML estimators and general ARMA(p,q) models are available in the 



literature. For pure autoregressive and moving average models see Mentz,Morettin and 

Toloi( 1995a, 1995b). 

2. Review of the Literature 

The object of the inference will be the autocovariances and autocorrelations intro­

duced in (1.2) and (1.3), respectively, and of course the parameters o, f] and cr;. For 

the first two sequences, large sample expectations, variances, covariances and distributions 

are available, for several standard definitions of the sample quantities. This point will be 

briefly considered in Section 3. 

Tanaka(l984) suggests a technique for obtaining the Edgeworth type asymptotic ex­

pansions associated with ML estimates in ARMA models. He obtains biases up to order 

1/T for AR(l),AR(2),MA(l),MA(2) and ARMA(l,1) models with and without constant 

terms.Biases for the residual variance are also considered . 

Cordeiro and Klein( 1994) present a general procedure to obtain tlu• biases of tvIL 

estimates in ARMA models. It turns out that the formula is difficult to obtain for models 

other than the lower order ones, but numerically it is easy to be implemented. 

De Gooijer and Pukkila(l994) present a technique for obtaining expressions for the 

approximate expectations of estimates in ARMA models. They derive first and second 

order approximations, based on Taylor series expansions of the log-likelihood in terms of 

the expected values of the sample covariances or in terms of the expected values of the 

periodogram ordinates. 

Good references for teclwiques and results for asymptotic analysis in time series are 

Anderson(l971) and Fuller(l976). 

3. Estimation of Covariances and Correlations 

Let X1, ... ,XT be a sample from (1.1); we consider estimating ii by 

(3.1) 

for j = 0, ... , T - l , c_; = c,, and .X is the usual sample mean. Other estimators 

are considered in the literature, for example by changing in {3.1) the denominator or the 

range of the sums(see for example Anderson,1971,ch.8).We use (3.1) because for T > 1 the 

autocovariance matrix with elements cli-ii is positive definite, a fact we shall use below. 

With these estimators we form estimators of the autocorrelations, rj = c;/c0 , j = 
1, ... , T - 1. 

Large sample moments of these estimators are available in the literature. They are 

derived under the assumption that the process follows a general linear model, of which 



(1.1) is a special case. Some useful results are(Fuller,1976): 

For h ~ q ~ 0 , 

Cov(rh,rq) = ½ L (PpPp-h+q + Pp+qPp-h - 2pqPpPp-h 
p 

- 2nJ(O) -u~ (1 + o)2 

Etc1, - 10) ~ -Var(X) = - - T- = T (l + ,8)1 

for the ARMA(l,1) model. 

(3.2) 

(3.3) 

(3.4) 

{3.5) 

(3.6) 

Here and elsewhere in the paper we assume that the a 1 are normally distributed, with 

mean zero and variance u~. 

4. Moment Estimators 

Box and Jenkins(l976,p.201) give a general procedure for obtaining initial estimates 

of the parametrs of an ARMA(p,q) model, which can be viewed as moment type estimates. 

A related reference is Brockwell and Davis(1991,p.250). 
From (1.2) we find that an estimate for u~ is given by 

•2 1 - /J2 
UMM = .Co 

1 + o: 2 - 2o.(J 
(4.1) 

where t'."1- and Ji nrf' t.h<> moment f'stimat.ors of o and Ji • respectivf'ly. defined implicitly 

by the sample analog of ( 1.3). for j = 1. 2. where p 1 and p2 are estimated by the sample 

autocorrelations r 1 and r2. 

In deriving the asymptotic bias of ui, M , the asymptotic biases and variances of the 

moment estimates of o and ,8 will be needed. 
From(l.3) we obtain 



(1 - o/3)( a - /3) 
Pl = ------ , P2 = -/3p1 • 

1 + o 2 - 2o/J 

from which we get a= h(p1,P2) and /3 = k(p1,P2). 

(4.2) 

Asymptotic bias of the moment estimators a and /J are obtained as follows. Let 

. 8h 
Oi = - , 

8p; 

. 81. 
/3; = - ' 

op; 
(4.3) 

for i,j = 1, 2. Here ::; is a shorthand notation for Bh~;,r,l 19 , where (J is the vector of 
parameters. The same is true for the other derivatives and this simplification will be used 
consistently in the paper. 

Then using a Taylor expansion up to O(T-1 ) and talcing expected values we obtain 

2 2 

E(a-a) = L 0t;E(r; - p;)+ ~ L ci;;E(r; - p;)2ci12 E(r1 - P1 )(r2 - p2)+o(T-1 ), (4.4) 
i=I i=I 

2 2 
A ~• 1~.. 2 

E(/3 - P) = ~ {3;E(r; - p;) + 2 ~ {3;;E(r; - p;) 
i=I i=I 

,. I 
+fii2E(r1 - pi)(r2 - P2) + o{T- ) (4.5) 

From (4.3) and (4.4) we have 

2 

E(a-a)(iJ -fJ) = L 0t;,B;E(r; - p;)2 +(0t2.81 +0t1#2)E(r1 - Pt ){r2 - P2)+o(T-1) , ( 4.6) 
i=l 

2 

E(a - a)2 = L °'~ E(r; - p;)2 + 20t10t2E(r1 - P1 )(r2 - pz) + o(T-1
) , ( 4.7) 

i=J 

2 

E(iJ - /i)2 = L .B; E(r; - p;)2 + 2.81P2E(r1 - P1 )(r2 - pz) + o(T-1 
). ( 4.8) 

i=l 

We now consider finding the asymptotic bias of uL, M .Using a Taylor expansion up 
to second order and talcing expectations we obtain 

2 z) 80-; E( ) 80-; E( • l E( u MM - u O = O'yo co - 1'0 + 80 o - a 

2 82 2 82 2 8
o-0 E(l.J.-f3) !~E(·- )2 !~E(B-8)2 

+ 8JJ /J + 2 802 
0 0 + 2 8/32 ' 

(4.9) 

:i 



i)2u2 fJ2u2 • 
+

0 0
a E(co - -yo)(& - o) + 

0 0
4aE(co - -yo)(/3 - {3) 

ToG Toµ · 

In the Appendix we show that (4.9) leads to 

(4.10) 

with 

M(o, {3) = -3 + 5o2 
- 2o3 

- 17o4 + 1406 
- 2a 7 

- 608 
- 0 10 + 2o/3 + 2o2 ,8 + 203 /3 

+3a' 132 - 1la-6132 + 4a8132 + al o 132 - lOa/33 - 2a2 (]3 + 60-3 /33 

+5o2 ,84 + 2o3 134 
- 604 ,84 

- 4o5 134 + 5a6 134 + 2o 7 ,84 + 408 ,84 
• 

In the special case of o = 0 this expression reduces to 

-u~ 3 - 5132 o(T-1) 
T 1-,82 + ' (4.11) 

which can be compared with the bias of the residual variance estimator for the AR(l) 

model, given by Mentz et al(1995a) as 

__ 2? _ 4a2 
_v_,. - µ (T-1) 

T 1 - 132 + 0 
. 

Expressions ( 4.11) and ( 4.12) are compared in Figure 1. 

In the special case of fJ = 0, (4.10) reduces to 

(4.12) 

(4.13) 

which can be compared with the bias of the residual variance estimator for the MA( 1) 

model, given by Mentz et al( 1995b) as 



-u~ 2 - 6a2 - 2a3 + 15a4 + 4a5 - 406 - 2o7 + 0 8 _ 1 

T (1 - o2)3 + o(T ) . 

Expressions (4.13) and (4.14) are compared in Figure 2. 

5. Least Squares Estimators 

One procedure that is often used in practice is to minimize the sum 

T 
"""' r • 2 S(a,(j) = L.,(.\'.; -X;) /r;-1 
1=1 

(4.14) 

(5.1) 

with respect to a and fJ, where rn = vn/u; , v,. = E(Xn+1 - .\'n+I )2 is the mea11 

square error of prediction and the predictors .i:1 can be computed recursively throu11:h 

the Innovations Algorithm, for example(see Brockwell and Davis,199la). The estimators 

obtained in this way will be referred to as the least squares estimators(LSE) ois and 

fhs , of o and J3 , respectively. For the minimization of S( a, /3) it is necessary to restrict 

o so that lol < 1 , which means that the model is invertible. 

To develop the theory we use the idea of Durbin(l959), approximating the a1 in (I.I) 

by a "long autoregression" 

BT 
a; = E s;cx,_. - µ} , (5.2) 

•=0 

where Br-+ oo as T-+ oo but in such a way that Br/T-+ 0 as T-+ oo. In fact, we 

use (5.2) together with the substitution ofµ by .t. 
The corresponding LSE of the residual variance will be taken as 

T 
·2 1 """'•2 
u LS = T - 3 L., a, ' 

t=l 

taking into account the estimation of the parameters a, /3 and u~. 

Defining u1 = a, + oa,-1 we have 

00 oc, 

a1 = L (-a )1u 1_; = L (-o)i[X,-; - µ + fJ(X,-,-1 - ,,)] 

j=O 1=0 

00 

= (X, - µ) + (fJ- o) L (-a)1- 1(X,_1 - µ) 

1=1 

that can be approximated by 

7 

(5.3) 



Br 

a; = ( X, - µ) + ( ,8 - o ) L ( -o )i- l ( X 1 _; - µ) . (5.4) 
j=l 

Thus the LSE of u~ using the long AR approximation is 

1 T Br 

=T-Br-
3 

L [(X,-.t)+(#-o)I:(-o/-1(X,_j-.t)]2 (5.5) 
t=Br+I j=l 

where o and fJ are the least squares estimators. By comparing the sums on t with (3.1) 
we justify the approximation 

-2 I (/1-0.)2] •• [ o(/J-o)lLOO ( ·)1-1 
uL5 ~c0 1+ •

2 
+2(,8-o)l-

1 
. 2 -o c;. 

1-o -o . 
1=1 

(5.6) 

Then, by (1.2) we havp 

•2 2 I (/J-0)21 I (.B-0)21 
O' LS - O' a ~ Co 1 + 1 . 2 - 'Yo 1 + 1 2 -o -o 

• &(/J-o) ~ · 1 o(,8-o) ~ · J 
+2(,8-o)[l- 1-cP ]L..,(-o)'- c;-2(,8-o)[l- l-o2 lL..,(-0)1- 'Yi· (5.7) 

J=l 1=J 

If we take this expression as a function of o., /;, cu and tht> other c; 's, we derive a Taylor 
expansion in te-rms up to se-coucl or<lrr and obtain thP asymptotic bias as 

where 

-2(08-l)(o-B) . 
A1= (n 2 -l)1 E(c0 -10 )(n-o), 

A 2( i3 - u) E ( ; ,i 
2 = l 2 ( Co - i'u ) /3 - p ) , 

- O' 



2 
a., E(. )2 

A• = - - -- u - o • 
ol - 1 

00 

A6 = L E(o - o)(<'j - ,,)A"j 
j=I 

2 0 .., 'I 

A·= - --" - E(d- H)· 
•• 1f.! -1 ' 

oc 

A1 = LE(d-f3)(Cj-,,}L,. ( 5.9) 

J=I 

and H 1 , Lj are given in the Appendix. together with the details of the derivation of ( 5.8 ). 

The first term in the right-hand side of (5 .8} is the sum of the contributions coming 

from terms involving the (asymptotic} biases of the- covariance estimators, that is, ap­

proximations to E(c1 - ,j),j = 0.1. .. . . The second term includes two parts: (1) The 

contributions from the variances and covariances of o and 8 . namely approximations to 

E( o-o )2, E(/3-/3)2 and E( o-o )( ii-/j); these can be taken as equivalent(asymptotically) 

to those of the maximum likelihood estimators, as given. for example, in Brockwell and 

Davis(199la,Section 8.8), or else calculated numerically as will br indicatf'd Lt>lm,· ; (2) the­

contributions from the asymptotic covariances between the c1 's am.I i i a111! ;i : for thesp 

there are no closed-form approximations availabi<·, and hPnce w,:, resort to a numerical 

procedure, namely the bootstrap(Efron an<l Tibshirau.i,1993). 

The bootstrap procedure may be described as follows: 

(a) An ARMA(l,l) model with T + 1 observations is generated; 

(b) The parameters o and fJ are estimated by LS, yielding a.Ls and thsi 

(c) The residuals of the fitted model iu (b) are computed. namely 

ii1 = 0, a, = x, + (hsX1-1 - OLSUt-1 , t = 2,. '. 'T + I , 

mean-corrected, yielding the 'bootstrap residuals ' a2, ... , ar+i; 

(d) These bootstrap residuals are used to generate B bootstrap replicates, all with size 

T, through a simple random sampling scheme with replacement ; 

( e} Through model ( 1. 1) and each bootstrap replicatt>. bootstrap sampl<'s arP pro<lnced hy 

t = 1, . . . , T , i=l. ... ,B (5.10) 

where Xj = X 1 and aj = O; 

(f) For each series generated according to (5.10), compute 

i = 1, ... ,B 

The values obtained in (f) are then used to compute bootstrap estimates of all expec­

tations appearing in (5.9). 

Q 



To be able to compare with the MM and ML procedures, computations were done 

with: 

(i) l\Iodel I: o = 0.9 and f:J == 0.3; 

(ii) Model II: a= -0.8 and (J == -0.6; 

(iii) Model III: o = 0.4 and /3 == -0.7. 

for T == 50 and T = 100. 

6. Maximum Likelihood Estimators 

(5.11) 

\Ve now consider :t-,ILE under the assumption that the underlying process is Gaussian. 
A convenient way to tr<'at. the problem is by using the prediction error decomposition of 

the likelihood. This avoids the direct calculation of the determinant and inverse of the 

covariance function of X == ( X 1 , ... , X T )' in 

(G.l) 

The prediction error der.omposition gives 

(6.2) 

where S(a, {3) is given by (5.1).The MLE of the residual variance is then 

• 2 S(o,/3) 
o1111. = - T-- , l 6.3) 

where a,/J are the values of aJJ which minimize the reduced likelihood 

T 
C( . fl)_ fnS(o:,8) .!_ '°' f ( ) 

a, - T + TL., n r1-1 . (6.4) 
J=l 

In our simulatious the program PEST of the ITS!vl package( Bnickw,.ll aucl Davis. 

1991b), which uses th<' iuuovatiorns alµ;oritm, gives the MLE of th<> varianrt•. 

Tanaka(l984) am\ Cordeiro and Klein(1994) derived formulas for tht> biast>s of MLE of 

th<' rocfficients aud residual variance of ARtvIA modrls. In partic-ular for th" ARMA( 1.1) 
case we have that 

if I' unknown: 

jf /I= 0. 
(6.5) 



In the case of invertible models ( lol < 1). the minimization of S(a, J) and f(o:,73) arc 

equivalent and then MLE and LSE will have the same asymptotic properties. 

7. Simulations 

In (5.11) we have the models that were generated in order to verifj• empirically thr 

conclusions of the theoretical results presented in this paper. In all cases the a1 are i.i.<l 

normal random variables, with mean zero and variance 1. \.Ve assume that the mean of the 

process is I' = 0. Four sample sizes were considered:T = 50. 100,200. 400.For each sampl<" 

size 100 replicates were taken for each model. 

For the computations we have used the ITSM package(Brockwell and Davis, 1991b). 

The moment estimators are computed via the iunovations algorithm , the least squares 

estimators are computed minimizing ( 5.1) and exact maximum likelihood estimators arf' 

computed via the prediction error decomposition in conjunction with thc> innovations al­

gorithm. 

Table 7.1 reports the findings . Iu c>ach cdl we prf'sc11t the Pstimalt'1I bias(EST.OIAS) 

obtained by averaging over the 100 replications, the standard error(ST .ERROR) of tlw 

estimated bias, computed as s/10 , where 
• 

IOU 

s
2 = L (bi - b? /100, 

i=I 

with b, = o} - 1 , b = L!!1: b;/100 and &? is the variance estimated for each method, 

and finally the asymptotic bias(ASYM.BIAS) given by the theoretical formu.las(Ml'\l an<l 

ML methods). 

For the least squares estimators WP computed au "approximated asymptotir bias'' 

through the bootstrap procedure(as described in section 5.2), using 10 covariances iu the 

calculations of A 6 and A1 in (5.9). These computations were done for T = 50 and 

T = 100 only and arc summarized in Table 7.2. 

To facilitate the interpretation of Table 7.1 we computed the intervals b ± 11; au<l 

marked with * those estimates for which the interval does not include th<:' corresponding 

asymptotic bias. The results of this analysis can be summarized as follows: 

Parameters 

0 = 0.9,{:J = 0.3 

0 = -0.8, f3 = -0.6 

0 = 0.4, (3 = -0.7 

Some conclusions are: 

Analysis of Results 

* at MM. T = 50. 100, 200, 400 

* at M1I, T = 50. 100,200.300. 400 

• at LS. T = 50 

* at 1'.IM and 11L. T = 5ll 

1. Moment estimators tend to have larger biases than lca.~t. squares and maximum likeli­

hood estimators, in agreement with what is expected. 

11 



.. ... '\ 

2. For moment estimators , when the MA parameter is close to the invertibility region(a ::11: 

0.9 and a;;: -0.8) the estimated bias c.an differ eonsiderably from the theoretical vahie. 
+ 

even for large sample sizes. 
3. For given sample size, the variability of the estimated biases, as meas111red by the 
estimated standard error. tend to have similar values for the LS and ML estimators. 
4. The more frequent cases of lack of fit occured when the method of moments was used. 
5. The values of the "asymptotic biases" obtained through the bootstrap procedure for 
the LS estimators seern reasonable in most of the cases. 

8. Concluding Remarks 

In this paper we considered the estimation of the residual variance in the ARMA(l,1) 
model. This variance is a nuisance parameter and its estimation is important because 
estimators enter into prediction errors, confidence intervals, tests of hypotheses , spectral 

... 

estimators and othe,r inferencial procedures. 6 
In spite of the indicated usefulness, not many results are available about properties 

of estimators of the residual variance in ARMA models, except for maximum likelihood 
estimators under normality. 

We considered estimation by three standard methods, namely moments.least squares 
and maximum likelihood under normality. In the analytical part of our work we cou­
centrated in the study of the a5ymptotic bia5es of the estimators by using Taylor-type 
expansions and asymptotic results in the literature for means, variances, autocovariances 
and autocorrelations of linear processes. ... 

For the ARMA(l,1) model, Figure 3 shows the behavior of (T.ASYM.BIAS) for the 
MM estimator for lo! = 0.9, 0.6, 0.3 and -0.9 :5 /3 :5 0.9 . which can be compared with the 
corresponding value for tllf' ML estimator, namely, -3 , for all values of o and tl. This 
figure shows that: 

(i) For lo! = 0.9 and -0.9 :5 (:J :5 0.9 the value of T.ASYM.BIAS is large and negative. 
indicating an underestimation of u;; • 

(ii) For jaj = 0.6 and -0.7 :5 fl :5 0.7 , the above quantity a5sumes values which are 
smaller(around -9 ), indicating also an underestimation of u; , but with a smaller bias; 

(iii) For !al = 0.3 and -0.65 :5 /3 :5 0.65 , T.ASYM.BIAS assumes negative values. but 
very small and often smaller than the corresponding ML ones. 

Summarizing, for values of lol not very close to one. we have rea.sonablf' valUf•s 
for the asymptotic biases. when compared with the ML estimators biases. for -0.65 ::; 
/3 :5 0.65 (not too close to the nonstationarity rPl!;iou). Figure 4 shows tlw Yalu,,s of 
T.ASYM.BIAS for -0.9 ::; n :5 0.9 and -0.9 :S tJ :S 11.9, confirming the a how condusious. 

Our analysis for the LS estimator is less complete. Vv'e were able to provide an 
asymptotically closed-form representation in (5.G) . an.d some empit"ical examples show 
that th<:' behavior of 1111' <·stimators is rea.o;onabJ.. . • 

The simulations confirm expected results. t.h.ri ~[L an<l LS estimators prrform hf'tter 



" 
" 

1t than MM or that better fits are obtained for large sample sizes. The fit of the simulated 

results is much better for ML and LS than for MM procedures. 

In conclusion. correction for biases when using ML estimators is simple, since the 

corr~ction does not depend on the values of the model parameters. For LS and MM 

estimators the correction will include a more complex function of all parameters, which, 

in practice will have to be estimated. We should also expect considerable biases near the 
admissibility regions for MM estimators. 
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Appendix 

• 
Al. Proof of ( 4.10) 

Expression ( 4.1) gives u~ as a function of co, ci and J , and is the sample analog 

of u; defined in (1.2). We now consider (4.9): E(c0 - 10 ) is given by (3.6) and the 

expectations E( ci - 0t n~ - fi)• , for O :5 r + s :S 2 are given by ( 4.4 )-( 4.8 ). 

The necessary imputs to apply formulas ( 4.4)-( 4.8) arc: 

(a) Calculate the first and second-order derivatives of a and /3 with respect to Pk ; this 

can be done by (4.2) where Pl= f(a,{:J),p1 = 9(0,/3), son= h(p1,P2),f1 = /..:(p1,Pi). 

Denoting the various derivatives with subindices, the first and second-order derivativPs 

of the inverse functions h and k are determined by the matrix relation AB = 16 where 

[/, h fn fn hi /,, l 91 92 9JJ 912 921 922 

A= o 0 fl /1h hfi I? 
0 0 fi91 fi92 fz91 h92 
0 0 gif1 91h 9zf1 92h 
0 0 91 9192 9291 9~ 

and 

h1 h2 hu h12 h21 h1.2 

/..:1 k2 k11 k12 k21 kn 

B= 
0 0 h2 h1h2 h2h1 h~ I 

0 0 h1k1 h1k2 h2k1 h2k2 
0 0 k1h1 k1h2 k2h1 k2 h2 
0 0 l-2 

' ) k1k2 k2k1 J..:2 
'J, 

The results can be checked by repeated application of the chain rule. 

(b) From (3.4} and (3.5) evaluate E(ri - Pi), E(ri - Pi )2 ,j = 1, 2 and E(r1 - Pt )(r2 - pz ). 

In (4.9) it remains to evaluate E(c0 -,0 )(o -a) and E(c0 - 10)(8- (J). From (4.2) 

we can expand ( a- - a) in a Taylor expansion up to order O(T- 1 ) au<l multiplying b:,­

{co - 10 ) we have that, to this same order, • 

Also, 

14 

.. 



and finally 

• --y, 2 1 . 
E(co - -Yo)(o - o) = l-2 E(co --yo) + -E(co - 'Yo)(t1 -11)]01 

1'o 10 

(A.1) 

which can be evaluated using (3.3) . 

The same procedure is used to find an entirely similar expression for E(c0 --y0 )(P-/3), 

simply replacing in (A.l) o; by ~;,i = 1,2. 
Finally, substituting all these expressions in ( 4.9) leads to ( 4.10). 

A.2. Proof of (5.8) 

We first note that if in (5.6) we write the corresponding parameters instead of the LS 

estimators, and use for the parametrics functions the relations (1.2) , we obtain 

Hence, an expansion of (5.7) up to second order terms leads to 

E(uz 5 - o-~) = AE(co - -Yo)+ BE(a - o) + CE(/J-/3) 

00 

+ LD;E(c; - 1;) + ME(co - 1o)(ii - a)+ FE((J- /J)(co - 1o) 

j=l 

00 00 

+GE(ii - a)((J - /J) +LL H;1E(c; - ,;)(ci.- - 11) 
j=O .l:=11 

00 

+ L L 1E((J- {:J)(c; - i'i) + o(T- 1
) 

1=• 
where the needed derivatives are 

aa~ 1 + tl1 - 2a J 
A= - = - - - - . 

D,u 1 - o-~ 

a 2 ~ 2 

B= ~ =C'= ~ =O. 
Do DJ 

1:, 

(A .2) 

(A.3) 



M = iJ2u~ = -2(a8 - l)(o - 13) , 
o-yoou (a2 -1? 

82u; 2(8 - o) 
F= -- = --- , 

8108/3 1 - a 2 

L; = 82u! = 2(-a)i-l 1 + a2 - 2a/3 . 
8138-y; 1 - o 2 

Replacing in (A.3) we have that 

-2 2 1 + 132 - 2af3 E( ) E( O' LS - O' II) = 2 co - 1'0 + 1-a 

~ 7 

+ L 2(/3 -la~(:2- al3) (-0);-1 E(c; - 1';) +LA,+ o(T-1)' (A.4) 
1=1 i=l 

where E(c0 - 70 ) is given by (3.6) and (3.2) gives, 

E( _ )=u;l(u-,8)(1-a,8)(-j)(-,B)i-l _(l+a)2) c, 1', T 1 - p2 ( I + /3)2 . 

Finally we obtain (5.8) by replacing the expectations iu (A.4). 

Note: All the computations were done with the Mathematica program(see \Yolfram.1988) 

Hi 



Table 5.1: Some bootstrap results for the LS method. 

T E(a - a)2 
E(P-Pl2 E(co - <To)(a-a) E(c,,-o-o)(P -Pl E(a-a)(P-PI 

Model I 50 0.037 0.056 0.006 -0.026 0.033 

100 0.013 0.026 0.006 -0.021 0.007 

Model II 50 0.359 0.317 0.012 0.027 0.323 

100 0.071 0.092 -0.004 0.014 0.067 

Model Ill 50 0.032 0.015 -0.011 -0.113 0.013 

100 0.013 0.007 0.001 -0.093 0.004 

Table 7. 1: Estimated bias of residual variance (with standard error) and asymptotic bias tor moment, least square and 
maximum likelihood estimators in the ARMA (1, 1) model. 

11•0.9 11•-0.8 u•0.4 

T P•0.3 P•-0.6 p. -0.1 

MM LS Ml MM LS ML MM LS ML 

Est. Bias 0013" 0.027 -0.030 0.01•· 0.018° -0026 0.0411" 0039 -0.001 • 

so (St. Error) (0.019) (0.019) (0.018) (0.023) (0.022) (0.021) (0.018) (0.018) (0.016) 

Asym. Bia -16.70. 0.031 + -0.060 -1 .1106 0.190+ -0.060 0.010 0.053 • -0.060 

Est. Bia• 0.001 • 0 .020 .Q.011 0.021 • 0 .028 0.008 0.011 0.018 -0.004 

100 (SI. Error) (0.0,.) (0.0,.) (0.013) (0.017) (0.017) (0.0111) (0.013) (0.013) (0.013) 

Asym. Bia• -11.351 0.0311 + -0.030 -0.953 0.018 + -0.030 0.005 0.004• -0.030 

Ell. Bias .0.009" 0.004 .0.009 0.005" 0.01• 0.003 0.000 0.006 .0.004 

200 (St. Error) (0.011) (0.009) (0.009) (0.015) (0.011) (0.011) (0.011) (0.011) (0.011) 

Asym. Bias ... 170 .Q.015 -0 .• 711 -0.015 0.003 .0.015 

Ell. Bias 0010· 0.002 .0.005 0.028" 0.009 0.004 .00011 .0.003 -0.008 

400 (SI. Error) (0.009) (0.008) (0.008) (0.019) (0.007) (0.007) (0.007) (0.007) (0.007) 

Aaym. Bias -2.0811 -0.006 -0.238 .o.ooe 0.001 .o.ooe 

♦ v--COfflPIMd uu,g boolslrap 



Table 7.2: "Asymptotic bias" of residual variance for LS estimator 

using bootstrap, In the ARMA (1, 1) model. 

T Model I Model II 

50 0.063 -0.013 

First term of (5.8) 
100 0.032 -0.007 

50 -0.032 0.203 

Second term of (5.8) 
100 0.004 0.023 

50 0.031 0.190 
• Asymptotic bias• 

100 0.036 0.016 

Model Ill 

0.093 

0.046 

-0.040 

-0.042 

0.053 

0.004 
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