





1. Introduction

We consider the ARMA(1,1) model defined by

(Xe~p)+B8(Xi-1 —p)=ar+aaey, t=0,%1,..., (1.1)

where a; is a white noise sequence with mean zero and finite variance o2, and p,a. are
real parameters. For stationarity we require that |§| < 1 , which also gives invertibility
of (1.1) into an infinite moving average(the model is causal). If |a| < 1, then (1.1) is
invertible into an infinite autoregression.

The autocovariance sequence is v, = E(X: — p)(X¢q)o) — #) ,8 = 0,%1,... , and
satisfies the equations

_l+a’-%p, _(1-aB)a-8),

Yo = 1_—B2‘¢7a M (l——ﬂz) a: (1.2)

Y = —Br-1,5 2 2.

The autocorrelation sequence is p, = %,/%0.,3 = 0,%1,... and from (1.2) is given by

{ 13 if;3=0 (13)
£i =y Q—af)(a-8) j— P .
T\ Teermaag (AT 2L

The autocovariance and autocorrelation sequences are two of the basic tools in the
time domain analysis of the model (1.1).The autocovariance satisfies the inversion formula

= / T M)A,

-

where

021 4 ae'?|?

f)

is the spectral density of the process.

In this paper we consider the estimation of the parameter ¢2. This is important
because estimates of the residual variance enter, for example, into confidence sets for
parameters, in the estimation of the spectrum and in the expression of the estimated error
of prediction.

Estimates of 62 come from the methods of moments(MM), least squares(LS) and
maximum likelihood{ML) under normality, and also from frequency domain arguments.

The main purposes of this paper are to review the literature on the subject and present
new material on the large sample bias of estimators for the residual variance for model
(1.1). Results for ML estimators and general ARMA(p,q) models are available in the



literature. For pure autoregressive and moving average models see Mentz Morettin and

Toloi(1995a,1995b).

2. Review of the Literature

The object of the inference will be the autocovariances and autocorrelations intro-
duced in (1.2) and (1.3), respectively, and of course the parameters o, and ot. For
the first two sequences, large sample expectations, variances, covariances and distributions
are available, for several standard definitions of the sample quantities. This point will be
briefly considered in Section 3.

Tanaka(1984) suggests a technique for obtaining the Edgeworth type asymptotic ex-
pansions associated with ML estimates in ARMA models. He obtaius biases up to order
1/T for AR(1),AR(2),MA(1),MA(2) and ARMA(1,1) models with and without constant
terms.Biases for the residual variance are also considered.

Cordeiro and Klein(1994) present a general procedure to obtain the biases of ML
estimates in ARMA models. It turns out that the formula is difficult to obtain for models
other than the lower order ones, but numerically it is easy to be implemented.

De Gooijer and Pukkila(1994) present a technique for obtaining expressions for the
approximate expectations of estimates in ARMA models. They derive first and second
order approximations, based on Taylor series expansions of the log-likelihood in terms of
the expected values of the sample covariances or in terms of the expected values of the
periodogram ordinates.

Good references for techniques and results for asymptotic analysis in time series are
Anderson(1971) and Fuller(1976).

3. Estimation of Covariances and Correlations

Let X;,...,XT be a sample from (1.1); we consider estimating v; by

T-3

1 7, T
¢j = 0 (Xe = X)(Xur; -~ X) (3.1)
T=1
forj =0,...,T—1 , c.; = c;, and X is the usual sample mean. Other estimators

are considered in the literature, for example by changing in (3.1) the denominator or the
range of the sums(see for example Anderson,1971,ch.8).We use (3.1) because for T > 1 the
autocovariance matrix with elements cj;_;| is positive definite, a fact we shall use below.
With these estimators we form estimators of the autocorrelations, r; = ¢; Jco, ] =
1,...,T -1
Large sample moments of these estimators are available in the literature. They are
derived under the assumption that the process follows a general linear model, of which
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(1.1) is a special case. Some useful results are{Fuller,1976):

Forh>qg >0 ,
—1 T-h L
E(ch—m) = Tl"" - ——Var(X)+0(T™). (3.2)
T-h : x5
CO‘U(C[.,C,’) = Tz Z (7P7P_h+q + ’)'p+q7p—h) + O(T ) ’ (33)
P
Br=s ) 1 -
E(rp) = T lp;. — —(1 = pp)Var(X)
Yo
+7i2[p;.Var(co) — Cov(ca,co)} + O(T™?), (3.4)
0

1
Cov(rn,rq) = 7 > " (pppp-nta+ PrtaPr—h = 2P4PpPp—h
r

—2prpppp—q + 2PaPepPy) + O(T ™), (3-5)

_2nf(0) _ —o2(1+a)?

T =T (1147 (3.6)

E(cy — o) > —Var(_’?) =

for the ARMA(1,1) model.
Here and elsewhere in the paper we assume that the a; are normally distributed, with

mean zero and variance o2.

4. Moment Estimators

Box and Jenkins(1976,p.201) give a general procedure for obtaining initial estimates
of the parametrs of an ARMA(p,q) model, which can be viewed as moment type estimates.
A related reference is Brockwell and Davis(1991,p.250).

From (1.2) we find that an estimate for 02 is given by

o : (4.1)

where @ and § are the moment estimators of @ and /3 , respectively. defined implicitly
by the sample analog of (1.3). for j = 1,2 . where p; and p; are estimated by the sample
autocorrelations r; and ro.

In deriving the asymptotic bias of 63, , the asymptotic biases and variances of the
moment estimates of & and # will be needed.

From(1.3) we obtain



(1 —aB)(a - B)

= — )]
1+a?—2af ’ T (42)

pr=

from which we get a = h(py, p2) and § = k(py, p2).
Asymptotic bias of the moment estimators & and  are obtained as follows. Let

g ah X 62’1 . ak o azk
a; = ‘a_/)x y Qg = 3/).'3/1,' ) ﬂl = a_P; ’ ﬁt] = W 0 (43)
for i,j = 1,2. Here £ T is a shorthand notation for 78"(" r2)|, | where 8 is the vector of

parameters. The same is true for the other derivatives a.na this simplification will be used
consistently in the paper.
Then using a Taylor expansion up to O(T~!) and taking expected values we obtain

2
E(é—a) = Zc’v.-E(r; - pi)t % Z @i B(ri — pi)2c12E(ry — p1)(r2 — p2)+o(T71), (4.4)

=1 =1
E(,B ﬂ) Z ﬂ,E(T‘, P:) + - 5 Z ﬂuE(rl i P|)2
=1
+612E(r1 — p1)(r2 — p2) + o(T™") (4.5)
From (4.3) and (4.4) we have

E(@—a)f—B) =D &BiE(ri— pi)* +(62b1 +@16)E(ri —p1)(r2 = p2) +o(T7') , (4.6)

i=1

2
E(@—a) =) 62E(ri — pi)* + 20 E(r — p)(rz = p2) +o(T77),  (47)

=1

2
E(f—B7 =3 BE(ri - pif* + 20152 E(rs — pr)lra — p) + (T 7). (48)

We now consider finding the asymptotic bias of §3;,, .Using a Taylor expansion up
to second order and taking expectations we obtain

2 do
E(6%p —02) = Oos E(co —70) + %E(& —a)

ligh)
1%
+2%p( - g+ 9% B o + ;55 1 (49)



d*a? . d*a

+ 2% pleu = 0 - a)+ s Blen = )3 = )
&2 - =
+3a6ﬂE(a —a)(f - B)+o(T

In the Appendix we show that (4.9) leads to

A =5 3 M( 1ﬂ) =
E(3m —02) = Ta(l _02)3(ﬂ2i TR +o(T71), (4.10)

with
M(a,B) = -3 +50% — 2a® - 17a* + 14a® — 22" — 6a® — o’® + 208 + 2028 + 2a°p6

—204f + 12a°8 — 2088 — 6a’f + 2a® 8 + 6a°B + 5% — 2% B2
+3a%B? — 110582 + 4a®B? + «'°4? — 10a8® — 2a?8* + 60°F°
1204 4° — 4a°8% + 2a88% — 207 8% - 24°8° — 60°F°

+5a28' + 2a°B* - 6a*B* — 40°f* + 5a88" + 2a7 4" +4a%4" .
In the special case of @ = 0 this expression reduces to
—023-58%
T 1-p4?
which can be compared with the bias of the residual variance estimator for the AR(1)
model, given by Mentz et al(1995a) as

+o(T™Y), (4.11)

2
T 4;2 +o(T7). (4.12)

Expressions (4.11) and (4.12) are compared in Figure 1.
In the special case of § = 0 , (4.10) reduces to

—02 (3 —5a% + 2a® + 17a* - 4a® — 140% + 247 + 6a® + '?)
a

T (1 - a?)? +o(T7"), (4.13)

which can be compared with the bias of the residual variance estimator for the MA(1)
model, given by Mentz et al(1995b) as



—o2 92— 6a? — 20° + 1504 + 40° — 4a® — 22" + a®
—L Tialo® :
T (1= a?p +o(T™") (4.14)

Expressions (4.13) and (4.14) are compared in Figure 2.

5. Least Squares Estimators

One procedure that is often used in practice is to minimize the sum

T
S(a,B) =Y (X; = X;)* /s (5.1)

=1

with respect to a and 8, where r, = vafo? , vy = E(Xnq — Xag1)? is the mean
square error of prediction and the predictors X; can be computed recursively through
the Innovations Algorithm, for example(see Brockwell and Davis,1991a). The estimators
obtained in this way will be referred to as the least squares estimators(LSE) ars and
BLs ,of @ and B, respectively. For the minimization of S(a, 8) it is necessary to restrict
o so that |a] < 1, which means that the model is invertible.

To develop the theory we use the idea of Durbin(1959), approximating the a, in (L.1)
by a "long autoregression”

Bt
@i =Y 6 Xe—a — 1), (5.2)

s=0

where Br — oo as T — oo but in such a way that Br/T =0 as T — co. In fact, we
use (5.2) together with the substitution of 4 by X.
The corresponding LSE of the residual variance will be taken as

1 T
~2 ~2
aLS_T—S;at ’ (53)

taking into account the estimation of the parameters a, § and al.
Defining uy = a; + agi—1 We have

a =Y (—aPuiy = Y (—aP [Ximy —p+ Ay — 1]

=0 =0

= (X — @) +(B-a)) (—oy T (X = )

=1

that can be approximated by



2]

af=(Xi—p)+(B-0a)) (—aV (X —p). (54)
J

i
&

Thus the LSE of 02 using the long AR approximation is

1 a2
ofs = T_Br_3 Z[]

t=Br+1
1 L By
- — = Vv 3 ol A 5 j—] 'd o o112
- ;=§+1 (X - X)+ (B a)j;( ay~YX,_; - X)) (5.5)

where &@ and § are the least squares estimators. By comparing the sums on t with (3.1)
we justify the approximation

4 a
#1s = colt + =8P Lot ey - Hiod) 12( (5.6)
Then, by (1.2) we have
(8 B —a)?

dts -t mai + 2 _qn 4 B0,

+2(8 - &)1 — “(""_ ,“)]Z( a)~le; - 2(8 - a)[1 - "w ")]Z( a)~ly, . (5.7)

=1

If we take this expression as a function of d,B, cg and the other ¢; ’s, we derive a Taylor
expansion in terms up to second order and obtain the asymptotic bias as

. 21-3 4 332
E(6}s —ol) = —;, a( f_ong e +ZA +o(T"1y, (5.8)
where
—2(af —1 - B .
A = (a(ﬂz —)1(;: )E((:n — 1) —a),
A, = (IL__—)E((—n - )3 - 8),

9 R
_ 4 5) a —
Ay = T 1aﬂE(a a)(pg - B),



= o - 2 ) a? - -
Ad——og_lE((l“‘ﬂ) . AS—_W—__lE(A{—'{) '
A=Y Ela=ale =1k, Ar=)_ E(F=Be =)L, . (5.9)
= pou

and K, L; are given in the Appendix, together with the details of the derivation of (5.8).

The first term in the right-hand side of (5.8) is the sum of the contributions coming
from terms involving the (asymptotic) biases of the covariance estimators, that is, ap-
proximations to E(c; — v5),7 = 0.1.... . The second term includes two parts: (1) The
contributions from the variances and covariances of & and # . namely approximations to
E(a—a)?, E(3-B)* and E(a—a)( 13-—_ﬂ)  these can be taken as equivalent(asymptotically)

to those of the maximum likelihood estimators, as given. for example, in Brockwell and
Davis(1991a.,Section 8.8), or else calculated numerically as will be indicated below; (2) the
contributions from the asymptotic covariances between the ¢; 's and a and 3 : for these
there are no closed-form approximations available, and hence we resort to a numerical
procedure, namely the bootstrap( Efron and Tibshirani,1993).

The bootstrap procedure may be described as follows:

(a) An ARMA(1,1) model with T +1 observations is generated;

(b) The parameters and g are estimated by LS, yielding ars and /;L 55
(c) The residuals of the fitted model in (b) are computed. namely

4, =0, =X +BLsXe1—bGrsiy, t=2,...,T+1,

mean-corrected, yielding the ‘bootstrap residuals *  @3,...,a74);

(d) These bootstrap residuals are used to generate B bootstrap replicates, all with size
T , through a simple random sampling scheme with replacement ;

(e) Through model (1.1) and each bootstrap replicate, bootstrap samples are produced by

X}, = —BisXi i +éusdi_i+a, , t=1...,T, i=lL....B (5.10)

where X7 = X; and aj =0;
(f) For each series generated according to (5.10), compute

-~ A » * :
G%16i»Blss s Cosre-rCloiy P 1,....B

The values obtained in (f) are then used to compute bootstrap estimates of all expec-

tations appearing in (5.9).



To be able to compare with the MM and ML procedures, computations were done
with:

(i) Model I: a = 0.9 and g =0.3; _—
(i) Model I: « = —0.8 and f = —0.6; (S
(iii) Model III: a = 0.4 and g =-0.7,

for T =50 and T = 100.

6. Maximum Likelihood Estimators

We now consider MLE under the assumption that the underlying process is Gaussian.
A convenient way to treat the problem is by using the prediction error decomposition of
the likelihood. This avoids the direct calculation of the determinant and inverse of the

covariance function of X = (X;,...,X7) in
L(, ) = (27) "S- exp{ ~ (X = pY BTN X = ) (6.1)
The prediction error decomposition gives
L(B,,0%) = (2702 (ror - rr_y) exp{~5025(@ )} (6:2)
where S(a, 8) is given by (5.1).The MLE of the residual variance is then

! S(é. 3
%yy = * (‘,_’r r (6.3)

where &, B are the values of a, 7 which minimize the reduced likelihood
nS(a,f) 1 <
O Bji= ==t = ; tn(r;—1) . (6.4)

In our simulations the program PEST of the ITSM package( Brockwell and Davis.
1991b), which uses the innovations algoritm, gives the MLE of the variance.

Tanaka(1984) and Cordeiro and Klein(1994) derived formulas for the biases of MLE of
the coefficients and residual variance of ARMA models. In particular for the ARMA(1.1)

case we have that

—i;-:— + O(T~%), if ¢ unknown: (6.5)

'E(on'2 _U:)= o2
e {—1;-1+O(T'2). if 0 =0.



In the case of invertible models (ja| < 1). the minimization of S(a,3) and {(a,B) are
equivalent and then MLE and LSE will have the same asymptotic properties.

7. Simulations

In (5.11) we have the models that were generated in order to verify empirically the
conclusions of the theoretical results presented in this paper. In all cases the a, arei.i.d
normal random variables, with mean zero and variance 1. We assume that the mean of the
process is ¢t = 0. Four sample sizes were considered:T = 50, 100,200, 400.For each sample
size 100 replicates were taken for each model.

For the computations we have used the ITSM package( Brockwell and Davis, 1991b).
The moment estimators are computed via the innovations algorithm, the least squares
estimators are computed minimizing (5.1) and exact maximumn likelihood estimators are
computed via the prediction error decomposition in conjunction with the innovations al-
gorithm.

Table 7.1 reports the findings. In ecach cell we present the estimated bias(EST.BIAS)
obtained by averaging over the 100 replications. the standard error(ST.ERROR) of the
estimated bias, computed as 5/10 , where

100
2= (b —b)*/100,
i=1
with b, =62 -1,b= $1%0 5,/100 and &} is the variance estimated for each method,
and finally the asymptotic bias(ASYM.BIAS) given by the theoretical formulas(MM and
ML methods).

For the least squares estimators we computed an "approximated asymptotic bias”
through the bootstrap procedure(as described in section 5.2), using 10 covariances in the
calculations of Ag and A7 in (5.9). These computations were done for T = 50 and
T =100 only and are summarized in Table 7.2

To facilitate the interpretation of Table 7.1 we computed the intervals b + =
marked with * those estimates for which the interval does not include the corresponding
asymptotic bias. The results of this analysis can be summarized as follows:

and

Parameters Analysis of Results
a=09,=03 + at MM. T = 50. 100, 200, 400
a=-08,8=-06 « at MM, T = 50,100, 200. 300,400

+ at LS, T =50
a=04,8=-07 + at MM and ML. T = 50

Some conclusions are:

1. Moment estimators tend to have larger biases than least squares and maximum likeli-
hood estimators, in agreement with what is expected.
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2. For moment estimators, when the MA parameter is close to the invertibility region(a =
0.9 and o = —0.8) the estimated bias can differ considerably from the theoretical valye,
even for large sample sizes.

3. For given sample size, the variability of the estimated biases, as measured by the
estimated standard error, tend to have similar values for the LS and ML estimators.

4. The more frequent cases of lack of fit occured when the method of moments was used.
5. The values of the "asymptotic biases” obtained through the bootstrap procedure for
the LS estimators seem reasonable in most of the cases.

8. Concluding Remarks

In this paper we considered the estimation of the residual variance in the ARMA(1,1)
model. This variance is a nuisance parameter and its estimation is important because
estimators enter into prediction errors, confidence intervals, tests of hypotheses, spectral
estimators and other inferencial procedures.

In spite of the indicated usefulness, not many results are available about properties
of estimators of the residual variance in ARMA models, except for maximum likelihood
estimators under normality.

We considered estimation by three standard methods, namely moments,least squares
and maximum likelihood under normality. In the analytical part of our work we con-
centrated in the study of the asymptotic biases of the estimators by using Taylor-type
expansions and asymptotic results in the literature for means, variances, autocovariances
and autocorrelations of linear processes.

For the ARMA(1,1) model, Figure 3 shows the behavior of (T.ASYM.BIAS) for the
MM estimator for |a| = 0.9,0.6,0.3 and —0.9 < # < 0.9, which can be compared with the
corresponding value for the ML estimator, namely, —3 |, for all values of @ and 4. This
figure shows that:

(i) For [a] = 0.9 and —0.9 < A < 0.9 the value of T.ASYM.BIAS is large and negative,

indicating an underestimation of o%;

(i1) For |a| = 0.6 and —0.7 £ A < 0.7 , the above quantity assumes values which are
smaller{around —9 ), indicating also an underestimation of ¢ , but with a smaller bias;

(iii) For |a| = 0.3 and —0.65 < # £ 0.65 , T.ASYM.BIAS assumes negative values. but
very small and often smaller than the corresponding ML ones.

Summarizing, for values of |a] not very close to one. we have reasonable values
for the asymptotic biases. when compared with the ML estimators biases. for —0.65 <
# £ 0.65 (not too close to the nounstationarity region). Figure 4 shows the values of
T.ASYM.BIAS for —0.9 £ a £ 0.9 and —-0.9 < ¢ < 0.9, confirming the above conclusions.

Our analysis for the LS estimator is less complete. We were able to provide an
asymptotically closed-formn representation in (5.6), and some empirical examples show
that the behavior of the estimators is reasonable. .

The simulations confirm expected results. that ML and LS estimators perform better

19



than MM or that better fits are obtained for large sample sizes. The fit of the simulated
results is much better for ML and LS than for MM procedures.

In conclusion. correction for biases when using ML estimators is simple, since the
corrgction does not depend on the values of the model parameters. For LS and MM
estimators the correction will include a more complex function of all parameters, which,
in practice will have to be estimated. We should also expect considerable biases near the
admissibility regions for MM estimators.
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Appendix

Al. Proof of (4.10)

Expression (4.1) gives 62 as a function of cp,& and 3 , and is the sample analog
of 02 defined in (1.2). We now consider (4.9): E(co — 70) is given by (3.6) and the

expectations E(é& — a) (G- B)* ,for 0 <r+s <2 are given by (4.4)-(4.8).
The necessary imputs to apply formulas (4.4)-(4.8) are:

(a) Calculate the first and second-order derivatives of a and f# with respect to pi ; this

can be done by (4.2) where p; = f(a,8),p2 = g(a,B) ,s0a = h(p1.p2), B = k(p1,p2) -
Denoting the various derivatives with subindices, the first and second-order derivatives
of the inverse functions h and k are determined by the matrix relation AB = I; where

h f2 o fiz fa fa
g1 92 9gn g12 {3 g22

N = 0 0 ft AHf: fuhh fI
0 0 fign figz fagr f292
0 0 aifi ake g2.fi 92f2

0 0 ¢ g2 20 93

and

hy hy hyy hiz ko ha

kv ks ko kia ko k22

B = 0 0 h'f h] h2 hzh] h:j

0 h] k] h] kz hgkl hzkz
0 0 k] h] k] }12 kgh] k2 hz
0 k2 kiky koky A2

The results can be checked by repeated application of the chain rule.
(b) From (3.4) and (3.5) evaluate E(r; — p;), E(r; —p;)%,7=1,2 and E(r, — p1)(r2 — p2).

In (4.9) it remains to evaluate E(co — 70)(& —a) and E(co —70)(# — £). From (4.2)
we can expand (& — a) in a Taylor expansion up to order O(T~") and muitiplying by
(co — 7o) we have that, to this same order,

(co — 1o )(é — a) = (co — 70)(T1 — p1)éy + (co ~ Y0)(r2 — p2)az.
Also,
rj — pj = —(co — ¥0)¥;/78 + (co - 70)275/78 + 75 (€5 = ¥} — 76 “(co = 20)e; =)
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and finally

T ]
E(co — vo)(d - a) = [‘TZIE(CU -7)' + ;)'E(Cn = 70)(a —m)la
0

1 .

+[—E(Cu 7)* + ;—E(Co —Y0)(c2 =M az +o(T7'), (A.1)
() Q

which can be evaluated using (3.3).

The same procedure is used to find an entirely similar expression for E{co—0)( B-8),
simply replacing in (A.1) a; by Bii=1,2.
Finally, substituting all these expressions in (4.9) leads to (4.10).

A.2. Proof of (5.8)

We first note that if in (5.6) we write the corresponding parameters instead of the LS
estimators, and use for the parametrics functions the relations (1.2), we obtain

(ﬂ a(ﬁ =

]Z a) ™y (A.2)
1=

o2 = lt + L= ) 4 205 - )1 -

Hence, an expansion of (5.7) up to second order terms leads to

E(635 — 02) = AE(co — 7o) + BE(& — o) + CE(3 - B)

+3 " D,E(c; — 7)) + ME(co = 0)(6 — o) + FE(B - B)(co — 70)

=1

+GE(@ —a)(B—B)+ Y 2 HuE(e; —v;)ex = ) (A.3)

1=0 k=0

+2 E(a—a) + Ew ﬂ)2+ZI\ E(é —a)(¢; — ;)

=1

+ Z LE(3— B)c; — 1) +o(T™h)
=1
where the needed derivatives are
0802 _ 144 -2a3 B= do? do?

= 3 = ﬂ=C= ll=0.
0’)[) 1-a* c')a ad

B Qa_,? | 28 — a)(1l — al)

-1
a1, B 1—a? (=ap™".
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802  —2(aB—1)(a - f)

= O700a (a? - 1)? i
Fo 9%t 2 - a)
T 0108 1-—a?
G = 020: - ~20?2 ’
dadi 1-af
0a? 0%  -20?
HJk 6’)’]6‘“ 0% = a2 i -1’
ot —20?

CEE o1

2 2 ]
By = Gos 20772 (=1)[2a% + 3 — 40?8 — o f + 24332
0adv;

tjla —a® = B+ a'f+af? —af(a® - 1)72,

. d*a? o114 a? — 2af
e S SR TE N
Replacing in (A.3) we have that
1
E(@}s~ot) = L2200 p, o)
—a
7

O Rl [
20 = 0= D) apiiBle; ~ 1) + S i+ o), (A4)

+E =t =% J <
=

where E(co — ) is given by (3.6) and (3.2) gives,

oy Tala=B)1—aB) (=5 ) =B (1+a)?
E(ej =) = | T (1+ﬂ)2].

Finally we obtain (5.8) by replacing the expectations in (A.4)

Note: All the computations were done with the Mathematica program(see Wolfram.1988)
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Table 5.1: Some bootstrap results for the LS method.

T Ed-af | EpB-pg7 |EcCo-oold-a) [ Ees-ao)d- | Ea-a)s-p)
Model | 50 0.037 0.056 0.006 -0.026 0.033
100 0.013 0.026 0.006 -0.021 0.007
Model I 50 0.359 0.317 0.012 0.027 0.323
100 0.071 0.092 -0.004 0.014 0.067
Model li 50 0.032 0.015 -0.011 -0.113 0.013
100 0.013 0.007 0.001 -0.093 0.004

Table 7.1. Estimated bias of residual variance {with standard error) and asymptotic bias for moment, least square and
maximum likelihood estimators in the ARMA (1,1) model.

a=09 a=-08 a=04
T B=03 B=-06 p=-07
MM LS ML MM Ls ML MM Ls ML

Est Bias 0013° 0027 0030 0014- 0018° 0026 0.049° 0039 0.001°

S0 (St.Emor) | (0.019)  {0.019) {0.018) 0.023)  (0.022) {0.021) (0.018) (0.018) {0.016)
Asym. Bias | -16.704 0031+ 0060 -1.906 0150+  -0.060 0.010 0053+  0.060

Est Bias 0001- 0020 2011 0021 * 0.028 0.006 oot 0.016 0004

100 (St Emor) | (0014  (0.014) 0.013) @017 0017  (0.016) (0.013) 0.013) {0.013)
Asym Bas | 8351 0036+  -0.030 0953 0016+ 0030 0.005 0004+  -0.030
Est Bias | -0009° 0004 0.009 0.005° 0.014 0.003 0.000 0.006 0004

200 (St.Emon) | (0.011)  (0.009) (0009) | (0015)  (0.011) (©.011) (0.011) (0.011) {0.011)
Asym. Bias | -4.170 0015 0.476 0015 0.003 0015
Est Bias 0010° 0002 0005 0028° 0009 0004 0006 20.003 0,008

400 (St Emon) | (0009)  (0.006) ©006) | (0019)  (0.007) {0.007) (0.007) (0.007) {0.007)
Asym Bias | -2088 0.008 0238 0.008 0.001 -0.008

+ Vaiues computad using booistrap



Table 7.2: “Asymptolic bias" of residual variance for LS estimator
using bootstrap, in the ARMA (1,1) model.

T Model | Model ii Model Ill

50 0.063 -0.013 0.093
First term of (5.8)

100 0.032 -0.007 0.046

50 -0.032 0.203 -0.040
Second term of (5.8)

100 0.004 0.023 -0.042

50 0.031 0.190 0.053
"Asymptotic bias"

100 0.038 0.016 0.004
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