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Abstract 

We consider a variational problem on the d-dimcnsional lattice 
z" which has applications in the study of the metastable behavior 
of the stochastic Ising model [Ligg, NSl, NS2, SJ . The problem. a11 

isoperimetric one, is to find what is the smallest area a finite subset 
of Z" can have for each fixed volume. If <I> is one of these subsets WP 

define its volume as the number of points in it and its area as the 
number of pairs of points in Z" which are neighbors and such that 
only one of them belongs to ({>. 

Key words and phrases: Discrete Variational Proble111. Ising ~lodd. 
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In this note we consider the following variational problem 011 1 he litttice: 
to find, within the class of all subsets of Z" with fixed volume,·. what is tlw 
smallest possible area. For each <t> C zd. finite. \\'f> dcfiiw i1s n,l1111w ilS 11w 
cardinality of this set, denoted by lef>I, and its area. denott>d by .·1'1(~). ilS 1 lw 
number of edges with only one endpoint in IJ> 



where d( x, y) = Lf=1 jx; - y;j is the lattice distance. If </> is a subset of a 
i-dimensional subspace S of Z" it is also convenient to define the area of q> 
inside I his subspace by considering only pairs in it 

A;{<P) = I{ {x,y} ES x S: d(x,y) = l,x E <f,,y i t/>}I. (2) 

To our knowledge this discrete isoperimetric problem was not solved be­
fore though similar questions appear to be natural in the context of combi­

natorics [Bl, B2]. The motivation for this problem arises £rom the analy­

sis of the metastable behavior of the finite volume cl-dimensional stochastic 
Ising model for very low temperatures [Ligg, NSl, NS2, SJ. In this statis­
tical m<'chanics model to each subset <I>. which is called a confi9umtio11, of 
{I, 2, .... N}" C Z", for some fixed and large N, we associate a real number. 
the t:lltT!JY of configumtiou </,, as follows 

H(</>) = A(</>) - hl<PI 

wlicrf' /, ~ 0. The system moves on the set of configurations as a continu­
ous time stochastic p1·ocess such that, after a long time, tllf" p1·oportio11 of time 

the system spent in a given configuration <pis proportional to exp( -H( <p )/T), 
the Gibbs weight, where T > 0 is the temperature. for low temperatures 
the system spends most of the time on the configuration ¢0 = { 1, 2, ... , ,V}" 
which is the global minimum of /I. In the so called Glauber Dynamics the 
system can only change, in one step, between configurations that differ by a 
single point. From a given configuration the system choses what will be the 
next one in such a wa.y that transitions that d<'crease the energy are favored. 
For low temperatures if the initial configuration is a. local minimum of energy 
the system may be "trapped" in its vicinity for a long time before reaching <Po 
which is a behavior associated with metastability. The variational problem 
posed her<> provides some of the information about the f'nergy profile on the 
span• of configurations necessary for the analysis of this kin<l of problem. 

For <'ach \'olume t•, a configuration that solves the variational problem 
rorrcsponds. in a sense to he made precise shortly, t.o t.he best approximation 
of a d-<li1m·11sional cube with the given volume. To clarify this statement we 
need som<' d<'linitions. 

If <I> C Z". let £( ip) be the class of all configurations that can be obtained 
from <!> hy I.Ltl ice tra11slalio11s, liLttin: rotations and lat tin• n·fl(•ctions which 



are therefore equivalent with respect to the variational problem. Write U<f> 
for the external boundary of ¢, C zd 

8¢> = {y (/. <f>: there exists x E ¢, with cl(J·.y) = I} 
Let Ed be the class of ~onfigurations defined as follows: ~ E ~'1 a11<l if 

¢, # 0 
i)x = (xi, ... , xd) E ¢, ~ Xi ~ 1, 1 $; i $; d 

ii){x; = 1} n ¢, # 0, I :'.Si :'.S d 
iii)/;(<?)~ l;(<P) if i ~ j where, for p C zd, finite, 

l;(p) = max{j: p n {:t, = j} #- 0} - max{k: p n {.1·; = k} = 0} (:J) 

is the lenght of p along direction i. To simplify the notatio11 I\'<' writ<! { .r, = J.·} 

instead of {x = (x 1 , ••• ,XJ) EV: i·; = k}. 
A set ¢, C zd is called a }-dimensional block if it is a paral1·1lcpi1wd with 

d-j sides with lenght l and the remaining j sides <'ither all equal or a-;s11111i11g 

two successive positive integers. That is, a j-dimensional block is a St'l 

<f> E [( {x E zd: l ~ .i:, :5 l,}) 

with L; = l ifi > j and L, E {L,L-1}, I~ i ~ j. for so1111• positiw 

integer L. 
Call¢ n {x; = k} a slice of¢, along directio11 1 at posi1io11 J.·. ('all it 

an external slice on the positive (negative) direction i if it is non •·111pty hut 

<f> n { x; = k + I} = 0 ( </J n { x; = k - I} = 0 ). Clearly any slice of a hlock is 

itself a block. 
Remark 1: The external boundary of a block '1>, O</J. is the union of :!.d 

disjoint blocks o<f> = uf~ 1bk. Each bk may be obtained by trnnlatio11 of mw 

lattice unit of each external slice towards the outside of (!) . .\lon•o\'1•r these 

blocks are not connected to each other as, if .i: and !J arf' poi11ts i11 different 

blocks, then d(.x,y) > I ( the notion of connecti\·ity is th«: usual llne in 

percolation theory: a set S C Z" is conuccted if for auy pair of its poiuts. 

say i· and y, there exists a sequence{=;};~,, for some.\'. in S \~·ith .r 1 = .1·. 

XN = y and cl(.r,, x;+ 1 ) = I for I ~ i < :V). 
Remm·k !!: If c/) an<l u· are different bloc:ks with o C ,. · t lw11 .it l,·,1s1 01w 

of the blocks in d<I> (as i11 Hrmark I ,dJm·c•) is rn11tai1wd i11 1. •. 



If Ai = {" : there exists an i-dimensional block with volume a}. for l ~ 
i ~ cl, and for any positive integer ti let 

Qi = max{ a E A.; : a ~ v} 

and 
ui = min{a EA: a~ v} 

Define bi( v) ( Bi( v) ) as the i-dimensional block in ~d with volume ~i ( vi 
). bi( v) ( Bi(,,) ) is the largest ( smallest ) i-dimensional block with rnlume 
not larger ( smaller ) than v. We now give an explicit constrnction of bi( v ). 

If v > 1, let L,(P) 1111d M;(v) he given by 

li(v) = min{! EN: t ~ v} and (cl) 

Mi(,•)= max{m E {0.1. ... ,i}: L:"(ti){Li(l') - l)i-m ~ ti}. (5) 

Set b;(O) = 0, b;(l) = {x; = 1.1 ~ j ~ d} and. if v ~ 2 

bi(t>) = {1 ~ .rJ ~ Ci; for l ~ j ~ d} (6) 

with (J = /,;(1·) for l ~ j :'.5 A/;(t,), t.J = l;(t,) - l for M,(,,) + I :'.5 j ~ i and 
iJ = I for ; < j :'.5 d. 

Hcmark :J: Clearly if b1 and b1 are i-dimensional blocks with volumes a 1 

a11d ai with " 1 ~ 11 2 then one can find b E £( li1 ) such that b1 C li. 
For a11y positive integer 1·. let { 1•;} t~i~d, be defi1wd by 

so that 1· = L1=i 1·,. 

Vd = lbd(v)I and v; = lb;(t, - L ''ill 
J>i 

(i) 

\Ve can now define a class of configurations Bd( ti) which corresponds to 
the best ap7,roximatio11 of a d-dimensional cube with \"olume 1• and. as we 
will show, realizes the smallest area for a given volume i-. :\ configuration c, 
belongs to Bd( I') if le.I = ti and it has a decomposition in blocks 

(8) 

satisfying 
( '011ditio11 ": c; n c1 = 0 if i -:/:- j 

., 



Condition b: {; E l'(b;(v;)), v; as before 
Condition c: For all pairs 1 $ i < j $ d we have {, c i:J{i. 
Therefore elements of 8"( v) may be constructed as follows: start with a 

block e, E l'(bd(Vd)); let aed = U]!1bj, with {bj}J!1 being the collection of 
disjoint blocks, each one attached to one of the external slices of {Ji chose one 
of them, call it b", and take {cJ-I C b"; this inclusion must be strict (otherwise 
one could add a slice to {cJ, obtaining a larger block with volume still smaller 
than v ); therefore at least one of the disjoint blocks in iJ{d-J = U~~ 1 &1-'. say 
b"- 1

, is also strictly included in b" (follows from remark 2 above); thus. if 
d > 2 we may take {,-2 in b"- 1; this can go on until {1 is chosP-11 and clearly 
a), b) and c) will be satisfied. 

Write B" = U~0 B"(v). 
It is clear that, with this definition, if one adds a slice to a block tlie result 

may not be a block. It will be convenient in what follows to distinguish a 
subset 8" of B" of what we call ca11onical elements or cano11i:cal confiyumtio11s 
of those on which each prolttbemnce u :~1,;{; attached to the hlo<"k lk+ 1 ( and 
{ itself) is .,almost a block". that is. is co11tai1wcl i11 ii hlock ('((lli\'illi•nt to 
BA:( I U;<A: {;I) ( the smallest k-dimensioual block with volu111<' not smaller than 
1 u;<A: e~, = Li<k t,;). 

Condition d: {.r E Z" : 1 ::; J:1 ::; li{U,<A:{,)} E [(Bdl U,<k {,I)) for 
lSkS~ - -

Areas of elements of Bd are simple to compute. Take { E 6"( t•) with 
{; = uf= 1{;, {; E £(b;(v;)) as in (8). 

Then 
cl 

A"(fl = L Ai({;) (!J) 

where Ai({;) is the area of the block{, within the co1T<·spo11ding i-di11w11sio11al 
subspace of Z". 

Write a~ for the smallest possible area in the d~s of rn11fig11ratio11s in z,1 
with volume v 

(t~ = min{Ad(cf>); tP C zd. l<PI = "}. 
Our main result is as follows 

Theorem: In. any ,limensio11 ti 

5 
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This result identifies a class of configurations with volume v that we can 

use to rnmpute a~. It is not true. however, that all subsets of Z" with 

volume ,, and area "~ belong to B"( ,, ). A simple example in d = 2 of a set 

with smallest area not in 8 2 is obtained from a square of lenght larger or 

equal 3 by removing two points at the corners on the same diagonal. 

This theorem provides the answer for the variational problem. For a 

numerical example, it follows from it that the smallest possible area of a 

subst•t of zs with volume 15111 is 22,tl0. 

Ratlwr than working with ru·ra of a configumtion it is simpler and suf­

ficient for our purposes to introduce the auxiliary notion of p1'ojecled ai·ea 

of a co11fi911ralio11 </>, denoted by PAd(¢). We define it as twice the number 

of lines in zd which intersect the given configuration. With this definition 

PAd(t/>) is equal to Ad(¢) for a class of configurations which includes Bd(r,). 

More precisely if I is a line in Zd. that is 

I= {.r E zr1: .r = .r0 + i:e;; k E Z} 

where 1 1 is I.lit' unit Yect.or along direction i. l ~ i ~ d. J'u E Z'1 and if C is 

the set of a 11 lines of zr1 we define 

( 11 ) 

If r/> hcl,mgs to an j-dimcnsional subspan• .',' or Z" Wf' also dr>fi1w its 

projt•cll·d area wit.hi11 this suhspac<' by considering only lines in S 

PA1(q,) = 21{1 EC: IC S;ln<t> i- 01 
It is simple to ,·erify the following 

Le1111na 1: 

a)P ,11 (t) ~ .·\'1(t), Jo,· all t E Z" 
b}P i \,I(() = Ad(t) if t E 6d 
c}PA'1(() = PAd(<I>) if both( a11do bt.lo11g toB" 

Th<' Tlwon·m is a consequ<·nce of thr following 

Lemma 2: f'o,- ti 2: I Id 

(j 

(12) 



i 
! 

I ... 

... 1 

p~ = min{PA"({): { C zd. l{I = ,,}. 

then p~ = PAd({) for llll ~ E Bd(1,). 

( I :JI 

That Lemma 2 implies the theorem is a consequcuce of LP111111a I: if w,• 
assume Lemma2 and~ E 8 4 (v) then p~ = PAd(O $ PA4(¢>) for any<{> E zd, 
14>1 = v; by parts a) and b) of Lemma l PAd( 4>) ~ A"( 4>) and P.4,1({) = A"(O 
so that A4

(~) $ Ad(¢,) for any¢, C zd, 1¢>1 = v and the theorem is true. 
We prove Lemma 2 using induction in the dimension d . Let P(d) he till' 

property that Lemma 2 is true for dimension d, that is 
Fo1· follice dime11sion ti we l11tvf' p~ = PA"(O fol' all ~ E 6,1(1>) . 
ln dimension <l= 1 this property is trivial and 6 1 ( ,. ) rn1-r,·spu11ds tu I Ill' 

set of all intervals of-lenght v in Z. 
We now prove that P(d-1) implies P(cl) ford~~- To do tliis w,, start 

with an arbitrary initial configuration in zd an<l m;c• P(d-1) t.o 111odify it st.,•p 
by step into a configuration in 8d with the same ,·oluuw but srnalkr or equal 
projected area. From this the validity of P(d) follows. We u:.c s111.:cssiv<' 
Greek letters to denote the configurations in each step of I his process . 

Leto C ~d, lo! = ti. As mentioned before this is the most gPneral ca,;e ~ 
any configuration in Z" has a equi,·alcnt one in ~". Write a, = lo n {.r 1 = i} I 
for the volume of o in the i-th slice across dire<:tiou I. 

If A= max{ai; I~ i $ li(n)} with l,(o) gi\'1'11 hy 1:11 a11d ( 1 c Lis till' 
set of lines in Zd which are perp<'11dicular to dirc·ct io11 I. clwn 

1,la) 

p Ad ( 0) = 2 I { I E C \ c! : / n Ct =/:- 0} I + L PA d- l ( n n { .I' I = i } ) ( 1-1) 
i=l 

l,lo) 

2: :!A+ L PA"- 1(0 n {i:, = i}) 
i=I 

since the 11umb<'r of lines along direction I i11t1•rs1·l"li11i;" rn11 11ut I .. , ,-11lillli·r 
than A and if/ E ,C,1 then IC {.r 1 = i} for som<' i. 

By (13) we have 

l,lol 

P.·ld(o) 2: :U + L ,,.!~ 1 
( J.j) 

,=I 

7 



Now we verify that if P(d-1) is true then the right hand side of ( 15) 

actually corresponds to the projected area of a subset of Zd. 

Lemma 3: If B"(t•) is the set of mnonical elements of Bd(I'). as defined 

before, .J!,1e11 

a) Bd( u) :/- 0 for all d ~ I and v ~ 1. 

b) If { E B"(1• - I) for some d ~ 1 and v > 1 then then exists 11 E Bd(t') 

with { C ,-, . 
Proof( of Lemma 3 ): First note that any set with a single point of zd 

is in B"( l) for ti 2:'. I. Therefore the lemma is proven if we verify b ). 

Let {v;};'=• and {(P - 1);}1=1 be the decompositions of u and t• - I. re- • 

spectivPly, as in (7) and let/= max{i: (t•- l)i f 1•i} 2: I. If/> I and L = 
L,(r,[=1 t•,) and.\/= M1(Lf= 1 l'i), L,(''f:,f=t ti;) and 1'/1(''i:,[=1 t•,) as defined in 

(-1) we hav<' 1·1 = 0 for i < I as 11, = lAf(l- I)'-"', Lf=i u; = r_f=.(u-1); + l 
and r,[= 1 ( ,, - I )i < L"' ( L - I)'-"' (the first equality is the definition of v,, 
the second holds because u; = ( 1• - I),- for i > I and the third follows from 

the definition of/). Therefore t•t = L,< 1(u - l); + I. 
for an arbitrary(.= ut=1{~E B"(v-- 1) fort•> I with {~.}1= 1 as in (8) 

we are going to construct 11 E Bd(t1) with { C 11. 

If uf=i{i = 0 take 11; = {; for i > I and ,,, = {x} with .i: E ~>tlJ!;. 

The existence of such a point follows from remark 2 and the fact that the 

inclusion in condition c must be st.rict. 

If I uf=• (,I=,.> 0 take 1/i =(;for i > I (if/<,/) and,,, E f(b,(c+ l) 

such that,,, :J u1= 1(,. To see that this is possible first note that there exists 

a hlo<·k b such that uf= 1(; C b E £(B,(c)) by condition d in the dc-finilion 

of ijd_ Now lbl 2'._ c (by definition of B,(c)) but since 1•1 = r + I E A 1 (there 

exists an I-dimensional block with volume c) we also musl han• lbl :S c + I. 

Ther<'for<'. hy remark :J. there exists a block with volu111f' c + I that contains 

band henc<' U~= 1(,. 

□ ,~"Ulnlfl : l 

Let ✓ 1 1 2'. Ai 2'. ... 2'. -"1it<>I be 1111 ordering of the ~mbcrs a1, a-i, .... "Idol• 

For each.·\;. I :Si :S /i(o). find a .-J, C {.r 1 = i} in Bd- 1 (.-\,) so thal if/ E C, 1 

anJ Ind; f:. 0 t.lwn l n di -:/:- 0 for all l $; j :S i so that <'ach J, is srna1lrr 1 Iran 

.ii if I :S i < j :S li(£1 ). Tlris can lw <l011c by Lemma :3, In this case \\'c• sa.v 

t.hat. { J,} '.~;JJ is a 11011 increasing s<'qu<'nce of f'lemf'nts in i3J-r 

8 
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Then /3 = u'.~~l /3; satisfyies 

l,(o) 

PAd(o) ~ 2.-1 + L p~~ 1 = PAd(/1) (16} 
i=I 

Configuration /3 is the union of la(/3) ~ la(o) (d-1)-dimensional configu­
rations which may be different. In the next step we see that the projected 

. area is smaller if all the ( d-1 )-dimensional blocks in each /3, are equal for 
i < 11(,0). 

The idea is that if two slices are smaller than the first and larger one, 
{31, the best is to enlarge one as much as possible at the expense of the 
other with the restriction that both should remain smaller than /31• This 
restriction assures that the number of lines along directio11 l intersecting the 
configuration remains equal to A. The following rPstdls arc used lo lllake 
these remarks precise. 

Lemma 4: Lei P(11) be true a11d (i and l2 be two 11rbitrary conji911mlio11.5 
in Z"', d ~ l. Then 

( 17) 

/01· any111,'l2 such that 'h E Bn(l6 n~2I) and '72 E Bn(ll1 UciD-
Proof:(of Lemma 4) If P(n) is true it is t:•nm1gh to provt> ( 17) with 111 = 

6 n 6 and 112 = l1 u 6-
Let [ be a line in zn. First consider the case Oil which/ n Ctn (2 = ~- If 

/n(6 U6) is also empty this line does not contribute to an_,· of tlw projPctcd 
areas in the inequality. If/ n (c1 u c2 ) is not empty this line rnutrilrntes to a.t 
least one of the projected areas in the left ha11d ~ide whil<· it. doc·s t.fw sa11w 
only for thP SPcond term in the right hand side. 

If / n 6 n 6 is not empty then / intersects ~,, c2 a11<l ~, U 6 therefore 
contributing to all terms in the inequality ( 17). 

□Lemm~◄ 
For p C Z 11

• finite. define 

li(p) = { 1 ~ .r; ~ /,(p): I ~ i ~ d} 

Corollary 1: ld P(11) be tnlf. [ and o br t.lrmrn/8 of i..f• .,urh that 



and b be a 11 -di111rn;;io11al block salisfyi11g b(</>) Cb, b(<P) # Ii. 
Then /h ere r.risl a a11d T i11 fF. salisf ying 

lal < l~I, 

TC b, 

1(1 + l</>I = lal + lrl and 

/J 11"(0 + PA"( <:> ) 2 PA"(a) + PA"( r) 

Proof:(of Corollary I) ,\s /1( ¢) is srnalkr t.hil11 b l<-L 

.J = 111in{i;l,(ip) < /,(b)} E {t, ... , 11.}. 

Ddi nc d> = { .r E 1." ; .:; -.r+c .1 E ,~}, whcr<' .:; = (I.( <P )+ I. .... /,, ( O) + I ) am! 
tJ is tl1c unit. ,·c·<·t.or 011 direct.ion J . This is the rnnfiguration ol1Lc1incd from 
</> by invPrsio11 on all lattice directions in side b(</>) followed by a translation 
of one unit. along direction J. 

Apply Lc!11111a -I with ( 1 = 1> <111d ( ·i == ( and t,tke 11 1 = (]' i111d l/2 = r. 
Then lal = 1¢n<I < 1(1 because tl1c point with all rnordinat<'s equal one is in 
( (as 0 #- ( E :: 11

) but docs not li<'long Lo 9 (as it would imply t.hat the point. 
with coordinr1Lc:s .r, = 1,(¢). i =J .I , a11d .l'J = l.1( ,1i) + I lw lo11 gs t.o <P). It is 
also clear t.h,it. l?U( can 11ot ha,·c 111orc than 01w addit.io11al slice on direction 
J . A";; TE 6"(l t; U(I) tl1 c Sillll<' is ll'll<' for it . c111d TC /1 . 

D c;v ,. olforyl 

Corollary 2: /,d /!(11} b, /1·111 . ( 1111d o b< , I< 111< 11/., of 6 11 .,11clt //rnl 

and b be IL 11-ili111rn.sio1rnl block .-11 li-'fyi11g 9 =f li( 9) = /, _ 
Th e11 lh< 1·1 r .nsl (]' 1/l!rl T in if, sali.,fyi11g 

TC b. 

l~I + lt?I = 1171 + lrl 1/llrl 

/>_. \"(() + /! .-\''(o ) 2 />_. \"(17) + /J .- l "(r) 

10 
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Proof:(of Corollary 2) It is \'Cry similiir to tlw proor or ( 'orollarv I. 

Define~= {x E Z"; = - :r E </>},where== (Ii(</>)+ I. ... , ln(O) +I), for the 

configuration obtained from 4> hy inversion 011 all !attic<' direct ions. 

Apply Lemma -1 with ( 1 = J and 6 = ( and take 11 1 = a and 11 2 = r . 

Again lal = 1¢ n (I < 1(1 hecause the point with ,d i rnordi11,1t.es c•q11al 011e is 

in ( (as 0 f ( E ~") but does not belong lo ¢ (as it wo11ld i111ply that th e 

point with coordinates .r; =/;(</>),I :Si :S d belongs t.o 11 co11tr<1dicting the 

hypothesis that</; f Ii(¢)). It is ,tlso clear that JU c ca11 1101 IH' larµ;<'r titan 

band the same is a lso I.I'll<' for TE 6"(1~U cl). 
□corollaryl 

We now apply these results t.o ;J = u'.~~) /:i,, ;is i11 ( IG) , .111d writ<' :-I, = 

uj:: /3;.n {/:1;.J ;:: for their clecornposi tion i II blocks. 
Let us say that /J1 is large if t:1;,d - l is equa l lo d i .cl- I t.rnnsl,ttccl to {.r 1 = j} 

along direction l and that it is sma ll otherwi se. 

A Pi small can be of two types 
l) b(/3;) is sma lln than 131.d-i, that is, b(t:11) C rJ.11( 1-IJ) 1 fl. for fl 1•qual 

the translation of ;-l,,c1_ 1 lo t.hc subspace· {.r1 = j) . 
2) b(/3j) is equal lo t he t.rnslatio11 of .11_,1 _ 1 to {.r 1 = ./ !-
Suppose 1-J is such that there is r1 .11 , I :S .i < /i( ,-J) 1rhicl1 is s111all ol' 1_1pe 

L In this O1se app ly C'orollary I with 11 = cl - I, c 1•q11al ,11,t ,J) lra11slat<'d 

along clircctio11 J to {.r 1 = I}, 4, ccp1.il ,11 transl,it.('(I t.o {.r 1 = I} ;i11d /, <'qual 

/J1.d-l · Let I lw oblai1wd liy n·placing 1-iJ wit.Ii r ,111<1 .11,t .lJ 11_1· a. ~lore· 

precis<'ly 

/J {.r; .I' - (j- l) t 1 Er } is th(' lrn11 slatio11 or T lo {r1 = j) illld 

,1,(IJ) = { .r: .r - (/1(,-J) - I)< 1 E a) 

is tlw t.ra 11 sla.t io11 of r, ,dong t.11<' posit in• clirc·<·t.io11 I to gc·t ;1 rn1dig11r;1t.io11 i11 

{,r1 = li(d)} . 

11 



The number of lines of zd along direction I which intersects , is still 

equal to A and Lemma 4 implies that the modification on slices j and /i(/3) 

does not increase the projected area. Therefore 

(19) 

The procPdure used to go from /3 to"{ can be repeated as long as there is 

a /31 small of type l for some I :s; j < 11(/3). As it always remove points from 

the last slice, J31i(/J), it is possible that eventually this last slice is emptied. In 

this case. the 11rg11mcnt proceeds for the new configuration which is shorter 

along clirPrtion I and with removals now occuring at the current last slice. 

Let b = u'.~:1b., 11(8) ~ 11(/3), be the final coutiguration 011 which this 

procedurP. ran no long<'I" he applied because no l!; is small of type 1 for 

1 ~ i < li(6). 
Suppose that there exists a fi; which is small of type :2. Apply Corollary 2 

again with n = ,L- l. ( equal f3ti(fJI tramilated along direction I to { x 1 = l}, ¢, 

equal bi translated to { r 1 = I } and b equal /31 ,d- • · Let t be the configuration 

obtained by replacing b; with r and f3t,UJI by u given hy the Corollary. As 

before we have 

(20) 

Apply this procedure as many times as possible. Eventually it can no 

longer be applied because all slices are large (exc<'pt. possibly, lhe last one). 

Call ( = U~~~\1 this final subset of zd. Let /{ he the direction along which 

the protulwraures U,9-2 ( 1.i ( ( 1 = U;st:1-i (j,,) are attached to (J,d-l for I $ 

j :s; Ii(() - I 

1,· = min{k: /,.,((j,d-1) = l.1((j.d-1 ), I < t· S ,I} 

for I $ j S Ii(() - I. It does not d<-'pend 011 j. 

Therefor<' ( may not bead-dimensional parallel<'piped with side8 /,((), 

1 $ i $ ,L only bf"Cause two ( (<l-l )-dimensional ) of its .,faces., may he 

"eroded". that is. are partially full, namely, the ones at {:r 1 = /1(()} and at 

{xK = /K(()}. l\lore precisely 

(21) 
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with a1 = l1(() - l,ar, = Ir,(() - l and a; = /;(() for i different from l and 
/(. 

As each (j is in [3d- 1, its lenghts on { x 1 = j} can assume at most t.wo 
consecutive positive numbers. 

Suppose that b(() is not a block (b(() as in (18)). That may he so because 
/ 1 ( () is either too short or too long. 

Consider first the case on which b(() is not a block and /i(() :'.::'. '1,·(() - I. 
Then 

a= I( n {:rr-· = lr,(()}I :'.::'. l1(()IT;t1,1,·l;(() :'.::'. 

(/1,(()- l)IT;t1.1,·l;(() :'.::'. l(n {er,= 1}1 = /, 

In this case define a new configuration ,, obtained rrom ( hy <"xcl11di11g 
the points in (n {.r,,· =//\·(()}and adding them Oil the (d-l)-dimellsional 
subspace { x 1 = Ii(() + I} such that 

1/li('I) = ,, n {J"1 = /,(() + l} E 5d-t(I( n {.r,,- =/,,·(()}I) 

and every line along direction l intersecting 11n{.r1 = /t(11)+ I} also intersects 
( n {x1 = l }. 

This can be done as a consequence of the i1wqualily hel11·Pell a and b 
above and Lemma :J. Note that 

'Ii= ( 1 \ {.i·r.- = lr,·(()J 

is a ( cl-I )-dimensional block by (21 ). Therefore 11 is also a 11011 incrc·asing 

sequence of elements in B" n ~J with /t(1/) = /i(() + I and 

By repeating this procedure if nen·ssary we C'VC'lllualy n·ad1 a nrnliguralioll 
with the appropriate l<'nght Oil direction I. 

Consider now the case /i(() is t.oo big or. more prec·isPly. that Ii(() is not a 
block and Ii(() 2 /2(() + I. 111 this case we l'<'1Ho1·c points 011 (n {.r 1 = 11(()} 

and add them to the subspace {.1·/\· =Ir,·((}+ I}. 
As all lines along direction I which intersect (1110 also i11tPrs<•ct (1 WC' 

have 
(22) 



By (21) we also have 

(23) 

with b1 = 11(() - l, b" = I and b, = l;((} for if/. {l,l\'}. Moreover, as we 

assume 11(() ~ /2(() + l, 
(24) 

with ~1 = 12((), c" = l and c; = Ii((). The right hand side of (24) is a 

(d-1)-dimensional block (therefore an element of Bd-J) with volume that is 

larger or equal l(ii1,il- Thus, by Lemma 3, we can find w E £(ti•) such that 

a) w E {xi,= lid()+ l}, b) ~• E 5ct- 1(l(1,(()I) and c) all lin<>s along direction 

I{ intersecting..., also in~ersects ( \ (1i1<1· If we cldine O = (( \ (1i1, 1) U wJ we 

have 

PAd(() = PAd(( \ (1,m) + p.4d- 1(w) = PAd(O) (25) 

The first equality in (25) is true by (22), a) and b) of the definition of.,.; 

and part b) of Lemma l. The second equality holds by c) ( as in ( 14) above, 

with £ 1 replac<>d by £,'";, the set of lines of zd perpendicular to direction I{). 

Now organize the slices of O as clone in transforming o to ( and repeat the 

previous argument until the appropriate lenght along direction I is obtained. 

Therefore if b(() in (21) is 1101 a block it can lw modified as described 

abov<• to a ronfiguration. say 1, so that {1 S .r, S /;(,), l S i ~ cl}, is a 

cl-dimensional block. By construction we have that I is almost a block in the 

following scnce 

{ l S .r; S e;; 1 Si S d} C I C { l S .r; S £;; l S i S d} (26) 

where t'; = E; = /1(1) for i f/_ {l,Q}, t; + l = £; = /;(1) for i E {l,Q} 

with l S Q S ,l. Q is just the direction snch that 'i \ {.rq = lq(t)} is a 

( d- l )-dimrnsional block with I j = _0 { .r 1 = j} is chosen in Bd-• n I;d-l. 

Supposr that t.lie element of I,d-l rhosen on the subspace {.r 1 = /1(1)}. 

11i10, has IPnght along direction q I hat is smaller than lq( t ). In this case 

11i1,1 and In {.rq = lq(t}} are disjoi11t. 

Therefore 

1-1 



where X = {l ~ .i:; ~ e;; l ~ i ~ d} as in (refl) is the block defined in (26). 
To verify (27) note that the lines that could contribute to both (d-l)­

dimensional projected areas in the right hand side while contributing only 
once to PA"(t) would have to be subset of {x1 = li(t,.1:Q = /Q(t)} which is 
disjoint from t. 

We then apply Corollaries 1 and 2 to l/i(,J and in{.rq = /q(1)}, increa-,ing 
one and decr~ing the other until the largest one. say the one on { ;r 1 = / 1 ( 1)}, 

which is in Bd-t, has its ( d- l )-<linwnsional block equal to tlw face of \. The 
resulting configuration is in Bd and Lemma 2 is pro\·1·11 i11 this ec1.sf'. 

The last possibility to be considen~d is that I Ii(,) aud In { .1·Q = lq( t)} are 
not disjoint. In this case 11i1,J must have its ( d- l )-dimensiomd hlod equal t.o 
a face of \ and t is already in Bd. This finishes the proof of Lemma 2 and 
therefore of the Theorem. 
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