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Abstract

We consider a variational problem on the d-dimensional lattice
Z* which has applications in the study of the metastable behavior
of the stochastic Ising model [Ligg, NS1, NS2, S]. The problem. an
isoperimetric one, is to find what is the smallest area a finite subset
of Z4 can have for each fixed volume. If ¢ is one of these subsets we
define its volume as the number of points in it and its area as the
number of pairs of points in Z¢ which are neighbors and such that
only one of them belongs to ¢.
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In this note we consider the following variational problem on the lattice:
to find, within the class of all subsets of Z¢ with fixed volume . what is the
smallest possible area. For each ¢ C Z?. finite. we define its volume as the
cardinality of this set, denoted by |4|, and its area, denoted by A o). as the
number of edges with only one endpoint in ¢

A4 @) = [{{z.y} € Z'x 2% : d(r.y) = 1.1 € 0.y ¢ o}l (1)



where d(z,y) = TL, |z; — yi| is the lattice distance. If ¢ is a subset of a
i-dimensional subspace S of Z¢ it is also convenient to define the area of ¢
inside this subspace by considering only pairs in it

A()=1{{z,y} € Sx §:d(z,y) =1,z € ¢,y & ¢}I. (2)

To our knowledge this discrete isoperimetric problem was not solved be-
fore though similar questions appear to be natural in the context of combi-
natorics [B1, B2]. The motivation for this problem arises from the analy-
sis of the metastable behavior of the finite volume d-dimensional stochastic
Ising model for very low temperatures [Ligg, NS1, NS2, S]. In this statis-
tical mechanics model to each subset ¢, which is called a configuration, of
{1,2,....N}¥ C Z¢, for some fixed and large N, we associate a real number.
the energy of configuralion ¢, as follows

H(d) = A(¢) — hl¢l

where h > 0. The system moves on the set of configurations as a continu-
ous time stochastic process such that, after a long time, the proportion of time
the system spent in a given configuration @ is proportional to exp(—H(4)/T),
the Gibbs weight, where T > 0 is the temperature. [or low temperatures
the system spends most of the time on the configuration ¢p = {1,2,..., N}"
which is the global minimum of H. In the so called Glauber Dynamics the
system can only change, in one step, between configurations that differ by a
single point. From a given configuration the system choses what will be the
next one in such a way that transitions that decrease the energy are favored.
For low temperatures if the initial configuration is a local minimum of energy
the system may be "trapped” in its vicinity for a long time before reaching ¢p
which is a behavior associated with metastability. The variational problem
posed here provides some of the information about the energy profile on the
space of configurations necessary for the analysis of this kind of problem.

For each volume v, a configuration that solves the variational problem
corresponds, in a sense to be made precise shortly, to the best approximation
of a d-dimensional cube with the given volume. To clarify this statement we
need some definitions.

If 6 C Z% lct £() be the class of all configurations that can be obtained
from o by lattice translations, lattice rotations and lattice reflections which



are therefore equivalent with respect to the variational problem. Write do
for the ezternal boundary of ¢ C 2¢

9¢ = {y & ¢: there exists z € ¢ with d(xr.y) =1}

Let ¢ be the class of éonﬁgurations defined as follows: § € L4 and if
¢#0

i).’t=($1,...,l'd)e ¢=> ;> 1,1< i Sd

i{zi=1}N¢#0,1<i<d

iti)li(¢) > 1;(g) if i < j where, for p C Z4, finite,

L(p)=max{j:pN{z; =7} #0) —max{k:pnN{a; =k} =0} (3

is the lenght of p along direction . To simplify the notation we write {r, = k}
instead of {z = (2,....24) € 2% : 2; = k}.

A set ¢ C Z% is called a j-dimensional block if it is a paralellepiped with
d-j sides with lenght | and the remaining j sides either all cqual or assumning
two successive positive integers. That is. a j-dimensional block 1s a set

pecf{z€ez*:1<e, <L}

with L; = 1ifi> jand L, € {L,L -1}, 1 < < j. for some positive
integer L.

Call ¢ N {x; = k} a slice of ¢ along direction ¢ at position k. Call it
an ezternal slice on the positive (negative) direction ¢ if it is non empty but
pN{zi=k+1} =0 (on{z,=k—1} =0). Clearly any slice of a block is
itself a block.

Remark 1: The external boundary of a block ¢, 9¢. is the union of 2d
disjoint blocks d¢ = UL, b;. Each b may be obtained by tranlation ol one
lattice unit of each external slice towards the outside of 0. Morcover these
blocks are not connected to each other as, if z and y are points in different
blocks, then d(z.y) > 1 ( the notion of connectivity is the usual one in
percolation theory: a set S C Z? is connected if for any pair of its points.
say r and y, there exists a sequence {z}Y,, for some N.in 8 with oy = .
ry=yand d(r,.x,4y)=1for I <7< N).

Remark 2: If ¢ and v are different blocks with o C ¢ then at least one
of the blocks in d¢ (as in Remark 1 above) is contained in e



If A; = {a: therc exists an i-dimensional block with volume a}, for I <
it < d, and for any positive integer v let

v =max{a € 4;:a < v}

and '
7' =min{a € A:a > v}

Define b;(v) ( Bi(v) ) as the i-dimensional block in £¢ with volume v* ( 7*
). bi(v) ( Bi(v) ) is the largest ( smallest ) i-dimensional block with volume
not larger ( smaller ) than v. We now give an explicit construction of b;(v).
If v > 1, let L,(v) and M;(v) be given by

L(v) = min{l € ¥ : I' > v} and (4)

M(r) = max{m € {0.1,...,i} : LP(v)(Li(v) = )™ < v}. (5)
Set b;(0) =0, b(1)={z; =1.1<j<d}and ifv>2

bi(v)={l <x, <{; for 1 £ <d} (6)

with {, = Li(v) for 1 < j < Mi(v), {; = Li(v) =1 for M, (v)+ 1< j <iand
€(,=1fori<j<d

Remark 3: Clearly if b, and b, are i-dimensional blocks with volumes a,
and a; with a; € az then one can find b € £(by) such that &, C b.

For any positive integer v. let {vi}i1<icq, be defined by

va = [ba(v)| and v; = [bi(v = Y v,)| (1)

>

so that v = Z:Ll Gh.

We can now define a class of configurations B*(e) which corresponds to
the best approrimation of e d-dimensional cube with volume v and. as we
will show, realizes the smallest area for a given volume v. A configuration £
belongs to BY(v) if |£| = v and it has a decomposition in blocks

A2 NG (8)

satisfving
Condition a: ENE, =0 ifi#j



Condition b: £, € E(bi(v;)), vi as before

Condition c: For all pairs 1 <1 < 7 <d we have § C J¢;.

Therefore elements of B%(v) may be constructed as follows: start with a
block &4 € E(ba(va)); let 064 = U, b4, with {69}, being the collection of
disjoint blocks, each one attached to one of the external slices of ¢;; chose one
of them, call it 6%, and take £;_, C b%; this inclusion must be strict (otherwise
one could add a slice to £, obtaining a larger block with volume still simaller
than v); therefore at least one of the disjoint blocks in d¢,_; = U“ bd ' say
b?-1, is also strictly included in b¢ (follows from remark 2 above), tlnu:. if
d > 2 we may take £,_, in b%7!; this can go on until £ is chosen and clearly
a), b) and c) will be satisfied.

Write B¢ = U B4(v).

It is clear that, with this definition, if one adds a slice to a block the result
may not be a block. It will be convenient in what follows to distinguish a
subset BY of BY of what we call canonical elements or canonical configurations
of those on which each protuberance Uick€i attached to the block &4y (and
€ itself) is "almost a block”. that is, is contained in a block equivalent 1o
Bk(luigk &:]) (the smallest k-dimeunsional block with volume not smaller than
| Uick &] = Tick vi)

Condition d: {r € Z* : | < r, < [,(U.ck&)} € E(B{| Uik &) for
1<k<d

Areas of elements of B are simple to compute. Take £ € B%(r) with
& = UL, &, & € E(bi(vi)) as in (8).

Then

A%E) = ZA(EJ )
where A'(&;) is the area of the block &, within the corresponding i-dimensioual
subspace of Z¢.

Write a¢ for the smallest possible area in the class ol configurations in Z¥
with volume v

aj = min{A%(¢); 0 C Z% |o| = v}. (10)

Our main result is as follows
Theorem: In any dimension d

= AYE) for all € € B'(v)
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This result identifies a class of configurations with volume v that we can
use to compute a?. It is not true. however, that all subsets of Z? with
volume v and area a? belong to B(v). A simple example in d = 2 of a set
with smallest area not in B? is obtained from a square of lenght larger or
equal 3 by removing two points at the corners on the same diagonal.

This theorem provides the answer for the variational problem. For a
numerical example, it follows from it that the smallest possible area of a
subset of Z® with volume 15141 is 22410.

Rather than working with area of a configuration it is simpler and suf-
ficient for our purposes to introduce the auxiliary notion of projected area
of a configuration ¢, denoted by PA%(¢). We define it as twice the number
of lines in Z¢ which intersect the given configuration. With this definition
PAY() is equal to A4(¢) for a class of configurations which includes Bd(v).
More precisely if [ is a line in Z¢, that is

I={reZ:x=r¢+kesk € Z}

where ¢, is the unit vector along direction i, 1 €7 <d.rg€ Z'and if L is
the set of all lines of Z? we define

PAYS)y=2{le L:1Ns # B} (11)

If ¢ belongs to an j-dimensional subspace S of Z* we also define its
projected area within this subspace by considering only lines in S

PA(p)=2{le L:1CS:lne #0 (12)
It is simple to verify the following

Lemma 1:

a)PAE) < AYE), forallE € 27
b)PAYE) = AYE) if € € B
c)PAYE) = PAYS) if both € and o belong to B?

The Theorem is a consequence of the following
Lemma 2: lford > 1 lct
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pe = min{PA%() : £ C Z°%.|€| = v}. (13)
then pt = PAY(E) for all € € BY(v).

That Lemma 2 implies the theorem is a consequence of Lemima [: if we
assume Lemma 2 and £ € BY(v) then p? = PA%(€) < PA(¢) for any ¢ € Z¢,
|#] = v; by parts a) and b) of Lemma 1 PA4(¢) < A(¢) and PA4(€) = 44(¢)
so that A%(£) < A%(¢) for any ¢ C Z¢, |¢| = v and the theorem is true.

We prove Lemma 2 using induction in the dimension d. Let P(d) be the
property that Lemma 2 is true for dimension d, that is

For lattice dimension d we have pd = PAYE) for all £ € Bi(v).

In dimension d=1 this property is trivial and B'(r) corresponds to the
set of all intervals of lenght v in Z.

We now prove that P(d-1) implies P(d) for d > 2. To do this we start
with an arbitrary initial configuration in Z? and use P(d-1) to modify it step
by step into a configuration in B¢ with the same volume but smalier or equal
projected area. From this the validity of P(d) follows. We use sucessive
Greek letters to denote the configurations in each step of this process.

Let a C £, |a|] = v. As mentioned before this is the most general case as
any configuration in Z¢ has a equivalent one in ¢, \Vrite ¢, = |a N {r1 =1}
for the volume of a in the i-th slice across direction 1.

If A =max{a;;1 i <l(a)) with L(a) given by (3) and £ C C is the
set of lines in Z¢ which are perpendicular to direction 1. then

hi{w)
PAYa) =2[{le L\ L' :Ina # 8} + Yo PAT a0 {ay =4)) (1)
=1

L)
224+ ) PA* N an{x; =1})
=1
since the number of lines along direction | intersecting a can not be smaller
than A and if [ € £" then { C {x, = i} for some i.
By (13) we have

Lia)
PA%a) 224+ 3 pi-! (13)

=1



Now we verify that if P(d-1) is true then the right hand side of (13)
actually corresponds to the projected area of a subset of A

Lemma 3: If Bd(v) is the set of canonical elements of B4(v). as defined
before,ﬂzen

a) B (v)#0 foralld>1 and v 2> 1. _

b) If€ € BYv—1) for somed 21 and v > 1 then there exists n € BY(v)
with £ C n.

Proof( of Lemma 3 ): First note that any set with a single point of Z*
is in B4(1) for d > 1. Therefore the lemma is proven il we verify b).

Let {v;}X, and {(v — 1);}, be the decompositions of v and v — 1. re-
spectively, as in (7) and let [ = max{i:(v—1) #v} 2L HI>1 and L =
LT, v)yand M = My, v, LS, vi) and ML, v,) as defined in
(4) we have v, =0fori < Jas vy = LM(L-1)-M T v = Tile=1)i+1
and Y (v=1), < LM(L = 1)!=M (the first equality is the definition of v,
the second holds because v; = (v — 1); for i > I and the third follows from
the definition of 7). Therelore v; = ¥,(v — 1) + L.

For an arbitrary £ = U'f=l§.-__€ E:‘(v — 1) for v > 1 with (&)L, as in (8)
we are going to construct 7 € Be(v) with £ C 1.

If UL, & = 0 take 5 = & for i > [ and 5y = {z} with & € Ny 106
The existence of such a point follows from remark 2 and the fact that the
inclusion in condition ¢ must be strict.

UL, &l =c>0take =& fori> T (if [ < d)and n € E(bilc+ 1)
such that 5y D U/, £,. To see that this is possible first note that there exists
a block b such that U/_,& C b € E(By(c)) by condition d in the definition
of B¢. Now |b] > ¢ {by definition of B;(c)) but since vy = ¢+ 1 € Ay (there
exists an I-dimensional block with volume c) we also must have |b] < ¢+ 1.
Therefore. by remark 3. there exists a block with volume ¢ + 1 that contains
b and hence U!_,¢,.

Opemmaz

Let A, > A; > ... > Ay (o) be an ordering of the numbers ay. ay, . . . . @y (a)-
For each A;. 1 <i < hi{a). finda 4 C {&y =i} in BI-1(A,) so that if l €
and (N3, # @ then [N 3 # 0 for all 1 < j < i so that cach .3, is smaller than
3, i1 <1<y < h(a) This can be done by Lemma 3. In this case we say

L) - . . o T
that {3} is a non increasing sequence of elements in B2t

3



Then 3 = Uf;‘f)ﬁ; satisfyies

Li(a)
PA%e) 224 + Y pdt = PAYR) (16)
=1

Configuration g is the union of () < li(a) (d-1)-dimensional configu-
rations which may be diflerent. In the next step we see that the projected
_area is smaller if all the (d-1)-dimensional blocks in each 8, are equal for
1 < Li(B).

The idea is that if two slices are smaller than the first and larger one,
B, the best is to enlarge one as much as possible at the expense of the
other with the restriction that both should remain smaller than 3,. This
restriction assures that the number of lines along direction | intersecting the
configuration remains equal to A. The following results are used to make
these remarks precise.

Lemma 4: Let P(n) be true and & and &, be two arbitrary configurations
inZ", d>1. Then

PA™M&) + PA™ &) 2 PA™m) + PA™(i2) (17)

for any ny, 1, such that g, € B™(6, N &) and n, € B™(|&; U E,]).

Proof:(of Lemma 4) If P(n) is true it is enough to prove (17) with m =
§iN& and 7 = & UE,.

Let { be a line in Z". First consider the case on which IN¢ NE& = 0. If
IN(&U&) is also empty this line does not contribute to any of the projected
areas in the inequality. If IN (& U&,;) is not empty this line contributes to at
least one of the projected areas in the left hand side while it does the same
only for the second term in the right hand side.

[fIN¢& N&; is not empty then [ intersects &, & and & U &, therefore
contributing to all terms in the inequality (17).

DLemvmﬂ
For p C Z“. finite, define

bp)={1<ux,<lL(p)l <i<d) (18)

Corollary 1: Let P(n) be truc. € and o be elements of B* such that

W£ECo









The number of lines of Z¢ along direction 1 which intersects v is still
equal to A and Lemma 4 implies that the modification on slices j and l;(/3)
does not increase the projected area. Therefore

PA%a) 2 PAY(B) = PAY(7) (19)

The procedure used to go from 4 to y can be repeated as long as there is
a f3, small of type 1 for some | < j < Li(B)- As it always remove points from
the last slice, i,(s), it is possible that eventually this last slice is emptied. In
this case. the argument proceeds for the new configuration which is shorter
along direction | and with removals now occuring at the current last slice.

Let 6 = Uf‘___(f’b., [,(8) < L(B), be the final coufiguration on which this
procedure can no longer be applied because no ¢; is small of type | for

Suppose that there exists a 6; which is small of type 2. Apply Corollary 2
again withn = d—1.§ equal B,(g) translated along direction 1 to {z; =1}, ¢
equal §; translated to {ry =1} and b equal By .4-1. Let ¢ he the configuration
obtained by replacing 6, with 7 and 8,3 by o given by the Corollary. As
before we have

PAY7) = PAYS) = PAY () (20)

Apply this procedure as many times as possible. Eventually it can no
longer be applied because all slices are large (except. possibly, the last one).
Call ( = Uz'éi)g', this final subset of Z%. Let A be the direction along which
the protuberances U,ca-2G,i (¢ = Uigd-1G;4) are attached to (4 for 1 <

JSh{g)-!

K = min{k : l{u—1) = L(Ciu—r) 1 <k < d}

for 1 <j < 4L(¢)— L. It does not depend on .

Therefore ¢ may not be a d-dimensional parallelepiped with sides {,((),
1 € i < d only because two ( (d-1)-dimensional ) of its "faces” may be
neroded”. that is. are partially full, namely, the ones at {1y = li(¢)} and at
{zx = Ix({)}. More precisely

(Dl €riSa) (21)



with ay = [;({) — l.ax = Ix(¢) = 1 and a; = () for 7 different from 1 and
K.

As each (; is in BI‘, its lenghts on {xy = j} can assume at most two
consecutive positive numbers.

Suppose that b(() is not a block (5(¢) as in (18)). That may be so because
Li(¢) is either too short or too long.

Consider first the case on which b(¢) is not a block and [,(¢) < [ (¢) - L.
Then

a= |C n {'T’\' = ll\(C)}l S ll(C)“i#l.l\'li(C) S
(Ik(C) = DLg s lQ) g0 {xy =1} = b

In this case define a new configuration y obtained from ¢ by excluding
the points in ¢ N {ry = Ix(¢)} and adding them on the {d-1)-dimensional
subspace {z; = [;(¢) + 1} such that

M =00 {r=h(O) +1} € BN fek = I(O)})
and every line along direction 1 intersecting pN{x; = l(n)+1} also intersects
Cn {I] = 1}.
This can be done as a consequence of the inequality between a and b
above and Lemma 3. Note that

;=G\ {rr = k()
is a (d-1)-dimensional block by (21). Therefore 3 is also a non increasing
sequence of elements in 54N ¢ with I;() = §,(¢) + 1 and

PAYe) > PAYC) 2 PAY(y)

By repeating this procedure if necessary we eventualy reach a configuration
with the appropriate lenght on direction 1.

Consider now the case [}{() is too big or. more precisely. that 5(¢) is not a
block and {,(¢) > 6,(¢) + L. In this case we remove points on ¢ N {ry = 4(()}
and add them to the subspace {ry =I5 (¢) + L}.

As all lines along direction 1 which intersect (j,(¢y also intersect () we
have

PAYQ) = PAYCN Guia) + PA (Gio)- (22)
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By (21) we also have

(C\ Cuio) N {zw =1} D {1 S & S bi} (23)

with by = L,(¢) = 1, bx =1 and b, = I;(¢) for i & {1, '}. Moreover, as we
assume [;(¢) = L(C) + 1,

(1<s<bh)o{l<s<al (21)

with ¢ = L(C), cx = 1 and ¢ = (). The right hand side of (24) is a
(d-1)-dimensional block (therefore an element of Bé-') with volume that is
larger or equal |(r, ()l Thus, by Lemma 3, we can find w € E(¢) such that

a)w € {zx = k(()+1},b) ¥ € BI1(|C11(<)|) and c) all lines along direction
K intersecting w also intersects ¢ \ G,q)- If we define 8 = (C\ Cyq)) Uw we
have

PAY(() = PAYC\ Qo) + PAY w) = PAY(0) (25)

The first equality in (25) is true by (22), a) and b) of the definition of w
and part b) of Lemma 1. The second equality holds by c) (as in (14) above,
with £! replaced by L, the set of lines of Z4 perpendicular to direction k).
Now organize the slices of 0 as done in transforming a to ¢ and repeat the
previous argument until the appropriate lenght along direction 1 is obtained.

Therefore if b(¢) in (21) is not a block it can be modified as described
above to a configuration, say ¢, so that {I <xi €U, < i <d}),isa
d-dimensional block. By construction we have that ¢ is alimost a block in the
following sence

{ls.x'ige;;ISiSd}ClC{lS.r,-SE,—;lSiS_tl} (26)

where e; = E; = Ii{¢) for ¢ & {1,Q}, e +1 = E, = L(:) for i € {1,Q}
with 1 < Q < d. Q is just the direction such that ¢ \ {zg = lo(¢)} is a
(d-1)-dimensional block with ¢(; =0 {xy = j} is chosen in B n e,
Suppose that the element of B!~! chosen on the subspace {&; = {i(¢)}.
ty(¢)» has lenght along direction () that is smaller than lo(¢). In this case
1y and 1N {rg = lg(¢)} are disjoint.
Therefore



PAYe) = PAY(\) + PA* Y y,y) + PA* (e {rg = lg(0))) (27)

where x = {1 < z; < €;;1 <7 < d} as in (refl) is the block defined in (26).

To verify (27) note that the lines that could contribute to both (d-1)-
dimensional projected areas in the right hand side while contributing only
once to PA%(1) would have to be subset of {z; = {i(, 29 = lo(¢)} which is
disjoint from .

We then apply Corollaries 1 and 2 to ¢,(,) and (N {xg = {g(¢)}, increasing
one and decrg:f\_sing the other until the largest one. say the one on {z| = {,(¢)},
which is in B4-!, has its (d-1)-dimensional block equal to the face of \. The
resulting configuration is in B? and Lemma 2 is proven in this case.

The last possibility to be considered is that ¢, () and «N {rg = lo(d)} are
not disjoint. In this case ¢;,(,) must have its (d-1)-dimensional block equal to
a face of \ and ¢ is already in B¢, This finishes the proof of Lemma 2 and
therefore of the Theorem.
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