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1  | INTRODUC TION

Free radicals are atoms or molecules with unpaired electrons that 
are highly unstable and active toward chemical reactions with other 
molecules. They are constantly created from cell metabolism and 
can lead to damage to proteins, lipids, RNA, and DNA, among other 
molecules (Chan, Gan, & Corke, 2016). An excess of free radicals is 
related to various severe diseases, including cancer, atherosclerosis, 
stroke, Alzheimer's, and Parkinson's, among others (Aruoma, 1998; 
Carocho & Ferreira, 2013). Antioxidants are substances able to pre-
vent or inhibit oxidation processes in human body as well as in food 
product (Duda‐Chodak & Tarko, 2007). Free radicals can be inhibited 
by antioxidants.

Antioxidant activities of vegetables and fruits have been evalu-
ated by a wide range of methods (Karadag, Ozcelik, & Saner, 2009; 
Thaipong, Boonprakob, Crosby, Cisneros‐Zevallos, & Byrne, 2006), 
such as ferric reducing antioxidant power (FRAP) (Ou, Huang, 
Hampsch‐Woodill, Flanagan, & Deemer, 2002; Tan et al., 2014), 
oxygen radical absorption capacity (ORAC) (García‐Ruiz et al., 
2017; Sueishi et al., 2012), cupric ion reducing antioxidant capacity 
(CUPRAC) (Apak, Güçlü, Özyürek, & Karademir, 2004; Tufan, Çelik, 
Özyürek, Güçlü, & Apak, 2013), total radical‐trapping antioxidant pa-
rameter (TRAP) (Pellegrini et al., 2003), 2,2‐azino‐bis(3‐ethylbenzo-
thiazoline‐6‐sulfonic acid) (ABTS) (Di Mattia, Sacchetti, Mastrocola, 
& Serafini, 2017; Re et al., 1999), and 2,2‐diphenyl‐1‐picrylhydrazyl 
(DPPH) (Bartoszek, Polak, & Chorążewski, 2017; Thaipong et al., 
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Abstract
The in vitro antioxidant properties of golden grass (GG), a grass‐like herb (Syngonanthus 
nitens), were investigated by electron paramagnetic resonance (EPR) spectroscopy. 
We measured the antioxidant capacity of methanolic extracts based on their ability 
to scavenge 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) radical. The kinetics of reaction 
between DPPH and GG extract was determined. This kinetics followed a biexponen-
tial decay, and this behavior was attributed to different flavonoids acting together as 
antioxidants. Isoorientin and luteolin, which are two of the eight flavonoids found in 
GG extract, were used to investigate kinetics of reaction between DPPH and both 
the flavonoids acting separately and together. The antioxidant activity of GG extract 
was determined in terms of the vitamin C equivalent antioxidant capacity (VCEAC). 
Compared to other well‐known plant‐based antioxidants, such as pulp and peels of 
fruit and vegetables, S. nitens presented a high antioxidant capacity 
(VCEAC = 1,485 ± 198 mg/100 g), indicating that it should be regarded as a valuable 
source of antioxidants and also that it may bestow health benefits when consumed.
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2006). However, the antioxidant activity cannot be accurately and 
quantitatively measured by a simple universal method. To directly 
detect free radicals, EPR spectroscopy is the only analytical tech-
nique available. EPR methods have been successfully applied to the 
determination of antioxidant activity of fruits, herbs (Santos et al., 
2009), propolis (Pazin et al., 2017), teas (Popa, Raita, & Toloman, 
2015), and spirits (Bartoszek & Polak, 2012; Polak, Bartoszek, & 
Stanimirova, 2013).

The antioxidant capacity is determined by measuring changes 
in the EPR spectrum of stable radicals, such as DPPH, as a conse-
quence of their interaction with antioxidants (Zang et al., 2017). 
DPPH has a maximum UV‐vis absorption within the range of 515–
520 nm, presenting a purple color in solution. The radical solution 
becomes discolored upon reduction, and the reaction progress 
can be monitored by a UV‐vis spectrophotometer (Brand‐Williams, 
Cuvelier, & Berset, 1995). However, in the case of antioxidant con-
stituents whose spectra overlap DPPH at its maximum absorbance, 
the use of EPR spectroscopy is preferred, since it measures the free 
radical concentration directly (Locatelli et al., 2009). In addition, the 
decrease in the maximum UV/vis spectrum does not always result 
in the decrease of the free radical concentration (Yordanov, 1996). 
Thus, the EPR methodology seems to be more effective to deter-
mine the antioxidant activity.

Natural antioxidants occur in all higher plants and in all parts 
of the plant and are typically phenolic or polyphenolic compounds, 
including phenols, phenolic acids, flavonoids, tannins, and lignins 
(Pietta, 2000; Pratt, 1992). In particular, due to their strong capacity 
to donate electrons or hydrogen atoms, most flavonoids outperform 
well‐known antioxidants, such as vitamins C and E, in in vitro assays 
(Hernández, Alegre, Van Breusegem, & Munné‐Bosch, 2009).

Many beneficial activities of flavonoids have been described, 
for example the use as powerful antioxidants against many diseases 
including cancers, tumors, allergies, and different free radical‐me-
diated disorders (Sengupta, Banerjee, & Sengupta, 2005). There is 
significant increase in using of flavonoids as food additives for health 
purposes (Tsuchiya, 2010), and other studies indicate that the con-
sumption of foods and beverages rich in flavonoids is correlated 
with the lower risk of certain cancers, cardiovascular diseases, and 
oxidative stress‐related diseases (Sisa, Bonnet, Ferreira, & Van der 
Westhuizen, 2010).

Substances rich in flavonoids are good antioxidant candidates. This 
is the case of the Brazilian native herb‐like Syngonanthus nitens (Bong.) 
Ruhland, called the golden grass (GG) due to its flower stem or scape 
that shine like spun gold (Schmidt, Figueiredo, & Scariot, 2007). Their 
peculiar optical properties are related to the presence of several flavo-
noids at the surface epidermis of the dry scapes (Berlim et al., 2014). 
GG stem flavonoids were described as being composed by three flava-
nones and five flavones (Pacifico et al., 2011). Nowadays, the extract 
of S. nitens stems has been studied as a natural product against differ-
ent Candida species and clinical isolates from patients with vulvovag-
inal candidiasis (VVC), which results demonstrated that the antifungal 
properties are effective and it has the ability to inhibit the fungal‐host 
invasion on human cells (de Freitas Araújo et al., 2013; dos Santos 

Ramos et al., 2016). Recently, a work suggested that the study of crude 
extracts can provide explanations about the compounds behaviors and 
it shows the importance of possible bioinspired applications of a com-
plete scientific understanding of S. nitens (Berlim et al., 2018). Despite 
the considerable amount of flavonoids in the composition of GG, low 
attention has been paid to their possible antioxidant properties. In this 
context, this study aims to investigate the antioxidant properties of the 
GG.

2  | MATERIAL AND METHODS

2.1 | Material

DPPH was purchased from Sigma. Ascorbic acid (AA) was purchased 
from Panreac (Barcelona, Spain) and used as an antioxidant standard 
to quantify the antioxidant capacity of GG. Methanol, isoorientin, 
and luteolin were purchased from Sigma. All reagents were used 
without further purification. GG was obtained from commercial dec-
orative items available on the market. Fruits used in this study were 
bought from local market.

2.2 | Sample preparation

In a plastic tube, an aliquot of 20 µl of methanol (control), AA, isoorien-
tin, luteolin, tangerine extract, or GG extract (samples) was mixed with 
20 µl of 1 mM DPPH solution. Immediately after mixing, 25 µl of the 
homogenate was transferred to a glass capillary tube which was sealed 
with wax and accommodated within a standard EPR quartz tube. This 
was in turn placed in the resonance cavity of the EPR spectrometer.

2.3 | EPR measurement and data analyses

Electron paramagnetic resonance measurements were performed 
with a JEOL FA‐200 X‐band spectrometer (JEOL Ltd., Tokyo, Japan) 
at room temperature (21°C). The acquisition conditions were as fol-
lows: field modulation frequency, 100 kHz; field modulation am-
plitude, 1.2 G; sweep width, 80 G; and microwave power, 2.3 mW. 
Data presented here are an average of six experiments and the 
uncertainties are the respective standard deviations. The analyses 
were carried out using the Microcal Origin 7 software.

2.4 | GG extraction

The extracts of GG were obtained suspending the scapes in metha-
nol (1 g of dried GG per 150 ml) for 24 hr at 25°C and low pressure. 
After this procedure, the extract passed by a Qualy filter paper, with 
80 g/m2 of paper weight, 205 µm of thickness, pores with 14 µm, 
and air permeability at 20 mmCa of 14 L/m2s.

2.5 | Isoorientin and luteolin solutions

Both flavonoids were dissolved in methanol at the desired 
concentration.
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2.6 | Fruits extraction

Tangerine (Citrus reticulata Blanco) was peeled and the peels were 
blended with water in a hand mixer. The mixture was dried by trans-
ferring it to a plastic tube and centrifuged for 7 hr at low pressure 
(Savant Speedvac plus‐Thermo Quest). Part of the powder was 
weighted and transferred to another tube to which was added 
methanol in a proportion of 3.61 mg of powder to 1 ml of methanol. 
The tube was incubated at room temperature, under slow mixing, 
for 2 hr. After that, it was centrifuged for 20 min at 16,100 g and the 
supernatant was used as the fruit extract. The same procedure was 
used to make methanolic extracts of pulp and peels of banana (Musa 
acuminata).

2.7 | Antioxidant capacity

The area of the integrated EPR spectrum was referred to as EPR sig-
nal. The reduction of DPPH EPR signal was calculated using the fol-
lowing equation:

where I correspond to EPR signal reduction, and SDPPH and Ssample 
correspond, respectively, to the EPR signals for solution containing 
0.5 mM DPPH in the absence (control) and presence of the metha-
nolic extract (sample).

The antioxidant capacity was expressed in terms of the vitamin 
C equivalent antioxidant capacity (VCEAC), defined as the amount in 
mg of ascorbic acid (vitamin C), which causes the same reduction as 
100 g of the dry extract (Kim, Lee, Lee, & Lee, 2002). In order to cal-
culate the VCEAC, we first obtained a standard curve by measuring 
reduction of 0.5 mM DPPH by ascorbic acid with concentrations in a 
range from 0.01 to 0.03 mg/ml (Figure 1). Using Equation (1), we ob-
tained the reduction caused by a volume of 12.5 µl of GG extract at 

0.22 mg/ml concentration and then calculated the equivalent reduc-
tion of 100 g of extract. This equivalent reduction was used in the 
linear equation to then get the ascorbic acid concentration, in mg/
ml, needed to produce the same reduction as 100 g of the extract. 

(1)I (%)=100× (SDPPH−Ssample)∕SDPPH

F I G U R E  1   Standard curve: reduction 
of the electron paramagnetic resonance 
(EPR) spectrum of 2,2‐diphenyl‐1‐
picrylhydrazyl (DPPH) as a function of 
the ascorbic acid concentration. Fitting 
parameters: y = 6.40 + 1,949.88x; R2 = 
0.998

F I G U R E  2   The effect of different concentrations of golden 
grass on the EPR spectra of DPPH
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Finally, we obtained the VCEAC multiplying this concentration by 
the volume used of ascorbic acid (12.5 µl).

3  | RESULTS AND DISCUSSION

Figure 2 shows the EPR spectra of DPPH dissolved in methanol in 
the presence and in the absence of GG extract. The spectra are char-
acterized by five lines due to the interaction of the two equivalent 
nitrogen nuclei (g = 2.0036) with the unpaired electron. The de-
crease in the line intensity of the EPR spectrum with the increase in 
GG concentration indicates that there is a chemical reaction occur-
ring between DPPH and the extract. This reaction clearly shows that 
GG extract presents an antioxidant effect.

The spectra presented in Figure 2 were measured right after 
mixing the DPPH solution with the GG extract. However, the reac-
tion does not occur instantaneously. To monitor the time evolution 
of the reaction, the EPR spectrum of DPPH with a GG extract was 
measured along 48 hr, and the respective EPR signal reduction was 
calculated along this time. Figure 3a presents the average of six dif-
ferent samples, resulting in error bars around 10% for each time. 
Considering these error bars, we must wait for at least 3 hr to have 
a reliable value of the EPR signal reduction and, consequently, to 

quantify the antioxidant effect properly. It is important to empha-
size that in most DPPH assays reported in the literature, the antiox-
idant activity is measured after an incubation time between 15 min 
and 2 hr. In a recent work, Fadda et al. stressed this point, drawing 
attention to the fact that the use of short reaction times may pro-
vide underestimated values of the antioxidant activity (Fadda et al., 
2014).

The stable free radical DPPH behaves as an electron acceptor 
from antioxidants (HA). The reaction between DPPH and an anti-
oxidant can be described by the follow equations (Brand‐Williams 
et al., 1995).

The radicals ·A sometimes can be seen by EPR. However, 
due to the vanishing of these radicals via disproportionation or 

(2)∙

DPPH+HA↔DPPH−H+
∙

A

(3)∙

DPPH+A
−
↔DPPH

−
+

∙

A

(4)∙

A+
∙

X→nonradical products

F I G U R E  3   Time effect in the reaction of DPPH with golden grass. (a) Time dependence of the average of EPR signal reduction of five 
different samples of golden grass. (b) Time decay of EPR signal of DPPH with golden grass. Inset: DPPH spectrum with golden grass along 
time
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recombination, usually the concentration of ·A is low and therefore 
they cannot be observed by EPR spectroscopy.

The reduction of DPPH at low concentrations occurs with 
pseudo‐first‐order kinetics, and this result depends on constituents 
of the extract. The data presented in Figure 3 follow a first‐order 
decay until ca 15 hr. However, in order to include all the points in the 
curve, we had to fit the EPR signal decrease using a biexponential 
exponential decay described by the equation:

This behavior is compatible with the action of more than one an-
tioxidant substance with different kinetic rates and also is compati-
ble with a nonpurified extract. The GG stem extract is composed by 
eight flavonoids, five of which are flavones and the other three are 
flavanones. Their structures and names are presented in Figure 4.

(5)EPRsignal=S0+ A×exp
(

−t∕t1
)

+ B×exp
(

−t∕t2
)

F I G U R E  4   Molecular structure of the 
flavonoids contained in the golden grass 
extract

F I G U R E  5   (a) EPR signal kinetic of 
luteolin and isoorientin acting on DPPH 
separately and together. Molar ratio 
DPPH:flavonoid = 10:1 (separately) and 
DPPH:isoorientin:luteolin = 10:0.5:0.5 
(together). (b) Kinetic parameters 
of biexponential fitting, 
S = S0 + A × exp(−t/t1) + B × exp(−t/t2)
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Except by luteolin, all the flavonoids have glucose at carbon po-
sition 6 or 8. Generally, the antioxidant activity increases with the 
number of hydroxyl groups and decreases with the number of gly-
cosylation. Phenolic compounds with similar structures exhibit com-
parable trends in antioxidant activity (Fukumoto & Mazza, 2000). 
Following this rule, luteolin and swertisin should present the higher 
and lower antioxidant effect, respectively, and all the other flavo-
noids should present a similar antioxidant effect, since they have 
the same number of hydroxyl groups and glycosylation. However, 
despite the similarity between their structures, Choi et al. showed 
that the C‐glycosylation position in luteolin affects its antioxidant 
activity. Indeed, their results showed that isoorientin had four times 
higher scavenging activity against DPPH than luteolin (Choi et al., 
2014). As a very simplified model for a methanolic extract containing 
more than one antioxidant, we used a solution containing isoorientin 
and luteolin. We measured the time effect on the DPPH scaveng-
ing by both flavonoids acting together and separately (Figure 5a). 
Isoorientin presented an antioxidant activity 40% higher than lute-
olin, in qualitative agreement with the results obtained by Choi et 
al. The EPR signal decrease caused by both isoorientin and luteolin, 
acting separately and together, also followed a biexponential expo-
nential decay (until ca 3 hr we could fit a first‐order decay for both 
flavonoids). When acting separately, isoorientin and luteolin have 
similar values for t1 and t2. However, when they acted together, there 
was an increase in t2, and the decay became sharper than when the 
flavonoids were acting on DPPH separately. The concentration of 
flavonoids acting together was 0.05 mM of luteolin and 0.05 mM 
of isoorientin, while the flavonoid concentration was 0.1 mM when 
they were acting independently. This points to a synergic effect of 
luteolin and isoorientin. In the GG extract, the amount of each of the 
8 flavonoids is different, and certainly each flavonoid may contribute 
differently for the antioxidant effect of GG. We also expect a syner-
gism of all flavonoids leading to an increase in the antioxidant activ-
ity of GG. Finally, our simple model can corroborate our hypothesis 
for the kinetic behavior of the DPPH scavenging by GG extract.

Although the antioxidant activity of chemicals or foods is usually 
expressed in terms of Trolox (6‐hydroxy‐2,5,7,8‐tetramethylchro-
man‐2‐carboxylic acid) equivalent antioxidant capacity (TEAC) or 
IC50 values based on molar units, these results are difficult to under-
stand, in particular to nonexperts, leading several authors to suggest 
VCEAC as a more adequate way to express the antioxidant capacity 
(Kim & Lee, 2004; Kim et al., 2002). We obtained the VCEAC for 
extracts of GG, pulp and peels of banana, and tangerine, as shown 

in Table 1. Flavonoids are one of the most important compounds in 
the citrus fruits, and several studies have shown that the antioxi-
dant activity of fruits is higher in peel than pulp (Guo et al., 2003; 
Shin, 2012). In this context, we used extract of tangerine peels as a 
pattern of high antioxidant activity, as well as a tool to validate the 
method. In addition, we also measured the VCEAC of banana pulp, 
which should present a low antioxidant activity.

We measured the EPR signal decay along time, in the same way 
showed in Figure 3, and fitted the curves using a biexponential ex-
ponential decay (not shown). For each fitting, we obtained the EPR 
signal, denoted by Ssample in Equation (1), by extrapolating time to 
infinity, and calculated VCEAC as described in the section 2.5.

Golden grass extract presented VCEAC higher than tangerine 
peels, banana pulp and peel, and other plant‐based antioxidants. As 
expected, the peels of banana present a higher antioxidant activity 
than the pulp, in agreement with reported by other authors (Guo et 
al., 2003). In a comparative study of antioxidant activity of 17 com-
mon herbs, chamomile presented the highest antioxidant activity 
with 916 mg VCEAC/100 g (Yoo, Lee, Lee, Moon, & Lee, 2008). In 
another study, with twenty‐one fruits, Zang et al. obtained a VCEAC 
range from 11 to 509 mg/100 g (Zang et al., 2017). Thus, GG can be 
denoted as a good plant‐based antioxidant.

Araújo et al. demonstrated that the methanolic extract of scapes 
from S. nitens is a natural product with antifungal properties against 
several species of Candida (de Freitas Araújo et al., 2013). We spec-
ulate that the high antioxidant activity of GG could be related to this 
antifungal effect and this relation should be investigated.

4  | CONCLUSIONS

In this study, the antioxidants properties of the GG were inves-
tigated for the first time. We showed that methanolic extracts of 
the stems of GG exhibit a high antioxidant activity, expressed by a 
VCEAC of 1,485 ± 198 mg/100 g. We attributed this high antioxi-
dant activity to the several flavonoids present in the surface of the 
stem. GG should be regarded as a valuable source of antioxidants, 
and it may probably bestow health benefits when consumed. Tea in-
dustry could explore the peculiar properties of GG for two reasons. 
First, its high antioxidant activity contributes to a healthy appeal. 
Second, the glycoside flavonoids compounds of GG give it a natural 
sweet flavor. These two reasons point to GG as a good candidate for 
becoming a popular tea.

ACKNOWLEDG MENT

This research was supported by USP, FAPESP (Grants No. 
2014/26895‐2 and 2015/18390‐5), and CNPq (Grants No. 
308380/2013‐4, 305771/2016‐7 and 400621/2015‐0).

E THIC AL S TATEMENT

Human and animal testing is unnecessary in this study.

TA B L E  1   Antioxidant capacity of plant‐based antioxidants 
measured as vitamin C equivalent antioxidant capacity (VCEAC)

Extract VCEAC (mg/100 g)

Golden grass 1,485 ± 198

Banana pulp 165 ± 111

Banana peel 883 ± 150

Tangerine peel 913 ± 84
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