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Modelagem e Simula¢do da Prétese
Mecatronica BRAHMA 1 - Brazilian
Anthropomorphic Hand
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Jean M. Santa Cruz Yabarrena
Benedito de M. Purquerio
Dept. Eng. Mecanica - EESC- USP

Figura 1 Ilustragéo do protétipo BRAHMA
1. Introducio

Este paper apresenta o desenvolvimento das
equacdes que descrevem  comportamento
cinematico do prototipo BRAHMA (Brasilian
Anthropomorphic Hand), este paper apresenta os
resultados obtidos na primeira etapa de uma
seqiiéncia de trabalhos que visam descrever a
modelagem completa do sistema em estudo. O
prototipo BRAHMA (Figura 1) compreende um
novo conceito de mao artificial, cujo mecanismo
se baseila nas caracteristicas construtivas,
funcionais e motoras de uma mao humana. Nao
existem juntas do tipo pino; as articulagdes atuam
por contato, semelhante ao mecanismo biofisico.
Toda a parte estrutural é constituida de material
polimérico  bio-compativel, sendo que o
mecanismo € acionado por um sistema hibrido
composto de cabos (tenddes), musculos artificiais
e servo-motores elétricos de pequeno porte.

O sistema apresenta um total de 22 g.d.1. (graus de
liberdade), sendo 4 para cada dedo e 2 para a
articulagdo do punho. As extremidades dos dedos
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s@o dotadas ainda de sensores de forga cuja fungéo
¢ auxiliar as tarefas de manipulagéo.

2. Tratamento Vetorial de Diferentes
Sistemas de Coordenadas

Para facilitar a compreensdo do equacionamento
cinematico a ser desenvolvido neste documento,
apresentaremos aqui um embasamento tedrico
descrevendo como tratar de forma vetorial os
diferentes sistemas de coordenadas.

Um mesmo vetor pode ser expresso em relagéo a
diferentes sistemas de coordenadas (referenciais).
No desenvolvimento deste trabalho estaremos
considerando que todos os sistemas de
coordenadas adotadas sejam bases ortonormais e
usaremos a seguinte notagdo para expressar um
vetor e suas componentes em relagdo a um dado
referencial:

A= 4
% \% u
vetor componente
do vetor

Onde:
- A é o sistema de coordenadas no qual o
vetor V est4 expresso.

- A direcio da componente do vetor V é
especificada pelo indice u, que representa
a diregdo do versor de A associado a este
componente.

Seja ¥V um vetor qualquer expresso em um
sistema de  coordenadas B={5 b l;z}

X2y

Queremos encontrar as coordenadas de V em
relagdo a outro sistema de
coordenadas E ={éx,év,§z}distinto do primeiro.

Usando a notagZo anterior:

B§=Bvx5x+8vy5v+8v: : 1)
Ev=fve +ve +7v.e, an

Inicialmente vamos tratar o caso em que €, =b_,

com Ex deslocado de um 4angulo 6 de e,
conforme mostra a figura abaixo.




Podemos expressar as componentes de B em
relagdo a E:

b, =b,cosf e +b,senbe,

b,=-b,senf e +b,cosbe,

Substituindo estas componentes na expressio (I) e
depois igualando a (II) temos:

E—

_B B
v,="v.b, cos -"v b, sen &

E= _B B
v,="v.b sen6+"v b, cos

Como b, = by = 1 (base ortonormal), temos:

E=~ _B B
v,="v cos@-"v senf

£%,="v, sen 6+%v, cos 6

Reescrevendo este sistema de equagdes na forma
matricial:

By cosd send 0| °v,
Ev,|=|-sen@ cosé O *v,
v, 0 0 1]| %v

O mesmo raciocinio pode ser feito para rotagdes
em torno dos versores €€ €,

e =b,

Rotaco em torno de €, :

Fv, 1 0 0 By,

E B
v, |= 0 cosa -—-sena | v,

Ey 0 sena cosa ||°%v

Rotagdo em tomno de é'y :

By cosf 0 —senp]|®v
Ev I=1 o0 1 0 | 2y

y y

Ey senB 0 cosp || v

z

X

z

No desenvolvimento das equagdes, € de interesse
que trabalhemos com matrizes, o que facilita a
implementagido computacional.

Em geral, a notagdo “v=;C®V ¢ usada para se
representar as operagdes acima, onde f Cé

chamada matriz de rotag&io ou matriz de co-senos
diretores do vetor V .

J4 sabemos representar um mesmo vetor em
diferentes referenciais com origens coincidentes.
No entanto, o que aconteceria se a origem do
segundo sistema de coordenadas nZo fosse
coincidente com a do primeiro? Tal questdo pode
ser solucionada com uma simples extensdo do
sistema anterior.

SejaBP o vetor posi¢io do ponto P em relagdo ao
referencial B. Se existe um referencial E distante
rgg de B, entdo o vetor posi¢do do ponto P em
relagdo ao referencial E pode ser expresso como:

ED _ E= EBD
P ="rp + ;C°P

A expressdo anterior pode ser reescrita na
seguinte forma matricial:

'P| | icC 27 || 2P
11 lo o o!:1 |1
N ~~ = e
EP| — gT BPv

Eq ; 5
onde ;7 é chamada matriz de transformagdo
homogeénea.



Com base no exposto, uma transformag@o
homogénea complexa pode ser representada por
meio de uma composi¢do de transformagSes mais
simples:

im__ i i+l i+2 n-1
= T.7'T,

1T i+27 043

onde a seqiiéncia de transformagdes deve ser
efetuada (interpretada) da direita para a esquerda,

; n—lT E 3 5 - iT
ou seja, ,/ € a primeira transformagéo e ;,;/ a
ultima.

3. Determinacio da posicdo espacial das
pontas dos dedos

Uma vez estabelecida a metodologia para o
tratamento do mecanismo da mio, podemos agora
determinar facilmente as coordenadas retangulares
das pontas dos dedos em relag@o a um sistema de
coordenadas fixo ao punho (referencial inercial).

Com excegdo do polegar, todos os dedos da mé@o
artificial podem ser tratados de forma anéloga.
Inicialmente, iremos desenvolver o raciocinio para
um dedo genérico, e posteriormente tratar o
polegar como um caso particular.

metacarpo

Figura 2 Representagdo de um dedo genérico

Definiremos sistemas de coordenadas
independentes para cada corpo rigido do dedo.
Para que a exposi¢do do raciocinio seja mais
clara, vamos dividir este procedimento em etapas.

1° Etapa
Nesta etapa consideremos apenas os trés ultimos
corpos do dedo, ou seja, a falange, a falanginha e

a falangeta. Com base na geometria da mé&o
artificial verificamos que, independentemente do
movimento executado, estes corpos se mantém
coplanares. O sistema de coordenadas associado a
cada corpo i tem sua origem posicionada na
articulagdo anterior do mesmo, encontrando-se o

versor X, alinhado com o eixo longitudinal do
corpo. O versor Z, tem a dire¢do do eixo de

rotagdo da articulag@o correspondente e o versor
¥, € definido pelo produto vetorial de Z; com X; .

. eixo
longitudinal

~
eixo de rotagdo

Figura 3 Representagdo do referencial fixo ao
corpo.

ponta (P)

Figura 4 Modelagem dos trés ultimos corpos do
dedo (falange, falanginha e falangeta).

A posi¢do da ponta P em relagéo ao referencial 6
pode ser expressa diretamente pelo vetor:



ap

ap
4 componentes 6 0
6= _ em - _
f=| 0| /"% %=
0
1

Observando a Figura 4, podemos determinar as
matrizes de transformag&o que nos interessam.

Matriz de transformagZo de 6 em 5:

cosf, —senf, 0 a,
Sy _ seng, cosfg, O
T=
0 0 1 0
0 0 0 1

Matriz de transformag&o de 5 em 4:

cosf; —senf; 0 a,

op _|SED 6; cosf; 0 O
=

0 0 1 0

0 0 0 1

Matriz de transformag&o de 4 em 3:

cosd, —senf, 0 O
" send, cosd, 0 O
d =
0 0 10
0 0 0 1
2" Etapa

Consideraremos aqui a parte referente a “palma”
da mio, ou seja, do metacarpo ao punho.

E importante notar que esta parte deve ser tratada
como um corpo rigido, j& que o vetor definido
entre as origens dos referenciais 2 e 3 ndo sofre
deformagZo ao longo do tempo. Assim, o dngulo
¢n descrito na Figura 5 resulta das caracteristicas
geométricas da mio artificial, ou seja, ¢, nio €
uma variavel.

metacarpo
ay

(punho)

Figura 6 Modelagem da parte referente a “palma
da m30” - do metacarpo ao punho.

Com base na Figura 6, a matriz de transformagéo
que relaciona os referenciais 3 e 2 pode ser escrita
como:



cos(6, +¢,) 0 —sen(d, + 0,) a,

2 _ 0 1 0 0
¥ sen(0, +@,) 0 cos(6, + »,) d,

0 0 0 1
3"Etapa

Ap6s o desenvolvimento das duas etapas
anteriores, resta-nos considerar os dois graus de
liberdade do punho.

2,1 }]
(punho)

Figura 7 Modelagem do punho com dois graus de
liberdade.

Neste caso, as matrizes de transformagdo que
procuramos s2o:

[cosf, —senB, 0 0
. senf, cosf, 0 O
I =
0 0 10
| O 0 0 1
€
[cosf, 0 —send, 0
. 0o 1 0 0
T =
" |senf, 0 cosh, O
. 0 0 0 1

Figura 8 Representagdo geométrica do dedo
polegar.

Modelagem do Polegar

O dedo polegar difere um pouco dos demais, por
apresentar o eixo z do referencial fixo a sua
falange rotado de ¢, em torno do eixo x deste
mesmo corpo. Assim, o desenvolvimento do
célculo para o polegar sugere o uso de uma
transformagdo  adicional, que leve em
consideragio o angulo ¢, Fagamos entio uma
transformag@o de rotagdo em torno de x; do
referencial 3 em um novo referencial 3

1 0 0

7 0 cosp, -—sengp,
0 senp, cosg,
0 0 0

— o O O

Para manter a coeréncia das notagdes, chamemos

éT de 32.T , Ou seja:

cos(é’3 + ¢m) 0 - sen(H3 + (pm) a,

2y _ 0 1 0 0
* | sen(6,+0,) 0 cos(6,+9,) d,
0 0 0 1

E importante esclarecer que o dngulo @,,, assim
como o0 @, também resulta das caracteristicas
geométricas da méo artificial, e ndo sdo variaveis.



4. Cinemadtica direta para posi¢io

Para o mecanismo de um dedo, a cinematica
direta consiste na determina¢do das coordenadas
retangulares da ponta do dedo a partir dos valores
das coordenadas angulares 6)(2), 65(), 6(2), G4(2),
5(1) e Os(1).

Assim, por meio de uma composigio das matrizes
de transformagdo encontradas anteriormente,
podemos expressar a posi¢do da ponta P em
relagdo ao referencial inercial 0:

0

*p

0

0= _| Yol oplp2m3m3mamsme=

p =1, Eid L ugd sgd gl g gl ~ By
Zp

1

Dedo III

Dedo IV

Figura 9 Notag¢do adotada para cada dedo.

Para identificarmos cada dedo, precisamos definir
algumas notagdes, conforme mostrado na Figura
9:

e Dedo I: Minimo
e Dedoll: Anular
e  Dedo III: Médio
e Dedo IV: Indicador
e Dedo V: Polegar

Finalmente, para aplicarmos o equacionamento do
sistema a cada um dos dedos, basta substituirmos
os valores usados pelos correspondentes a cada
dedo, conforme mostra a tabela abaixo:

Dedo | Dedo | Dedo | Dedo | Dedo
I 11 111 v VvV

d, dyg Ganr | danr | darv | duy
a4 asr Qa1 Qa1 Qv Qv
ag agr ag.ir ag.imn asrv agy
ac acr acir Acan acrv acyv
ap ap.r ap.ir ap.rr ap.1v apy

€6 06 VA 96 /i 06,”] 96 IV 06 4

Gs G5 Gs.11 Os.1ur Gs.1v G5y

94 04 4 84 I 04 17 94 V4 94 14

93 93 g 93 /A 63 1 63 Ji4 93 |4

& 6, () [2) ) &

o g, 6 G, G, (%1

om I | omIl | om I | omIV | om,V

(5 0 0 0 0 o,

Tabela 1 Valores de dngulos e dimensdes para
cada dedo.

Nota: E importante salientar que os angulos e as
dimensdes acima devem respeitar o sentido dos
referenciais adotados na dedugio anterior.
Note também que os angulos 6, e 6, por
pertencerem a articulagdo do punho, apresentam
valores iguais para todos os dedos da mao.

5. Cinemitica inversa para posi¢io

A cinemdtica inversa trata o processo inverso ao
da cinematica direta, ou seja, visa a determinacéo
das coordenadas das articulagbes 6;(2), 6x(2), 6(2),
G4(t), 65(t) e Os(t) - a partir das coordenadas
retangulares da ponta do dedo.

A determinagdo analitica da cinematica inversa
para calculo de posi¢do torna-se bastante
complexa para um sistema com mais de trés graus
de liberdade e caracteriza-se normalmente pela
existéncia de multiplas solugdes. Neste caso, a
aplicagdo de métodos numéricos iterativos é uma
melhor alternativa para a resolugdo do problema

[1].
6. Determinacio das velocidades
Velocidades lineares

Um procedimento para se determinar a velocidade
linear da ponta do dedo consiste na diferenciagéo

temporal do vetor posi¢ao OFP :




d X
0= 0= [
—_—— r —1
P ( P ) oJ.) P
Zp
Velocidades Angulares

A existéncia de velocidades relativas sugere a
definigdo de uma nova notagdo que permita uma
representagdo mais clara da relagdo entre os
corpos ou referenciais envolvidos. Assim,
adotemos:

A=
D(3.Cyu

Onde:

e A ¢é o referencial no qual o vetor velocidade
angular esta expresso.

e B, Cindica que o vetor em questdo representa
a velocidade angular do corpo (ou referencial)
C em relagdo ao corpo (ou referencial) B.

e A diregdo da velocidade angular ¢é
especificada pelo indice u, que representa a
diregdo do versor de 4 associado a @ .

punho

Figura 10 Velocidades angulares relativas

De acordo com a Figura 10, podemos definir as
seguintes velocidades angulares relativas:

0 0

6 = _ 5= _
Ds.6): =| 0 Das): =| 0
(2 6;
0 0
4= _ 4= .z
D4, =| 0 Dz 4, =| s
6, 0
0 0
'@, =| 0 @, =0
onz — ony — | ™
o, 0

Para a determinag@o das velocidades angulares de
cada corpo em relagdo ao referencial inercial,
faremos wuso das matrizes de rotagdo.
Desenvolveremos inicialmente o raciocinio para a
falange, como mostra a Figura 11 abaixo:

3,3 Z,

Figura 11 Tratamento do 4dngulo ¢,.

Neste caso, a matriz de rotagéo de 3 em 3’ €:

1 0 0
3C=|0 cos p, —senp,
0 senp, cosg,

Computando a rotagdo da falange em torno do
eixo y:

(punho)

Figura 12 Tratamento dos dngulos ¢,, € 6;.



A matriz de rotagdo de 3’ em 2 é:

cos(p, +6;,) 0 —sen(p, +6,)
§C = 0 1 0
sen(p,, +6;) 0 cos(p, +6;)

Note que, neste caso, ¢, € 6 apresentam valores
negativos.

Computando os graus de liberdade do punho:

2,1 551
(punho)

Figura 13 Tratamento dos dngulos 6;¢e 6.

A matriz de rotagdo de 2 em / é:

cos@, —senf, 0
,C=|senf, cosh, 0
0 0 1

A matriz de rotagdo de / em 0 é:

cosf, 0 —senb,
= & 1 0
senf 0 cosé,

Podemos entdo determinar a velocidade angular
00_3(3’4)2 através do seguinte calculo matricial:

0
"B =IC.JC.2CIC] 0
&,

s 0=
Por serem paralelos & "@;,,, os vetores

0= 0
@y5. € @sg, podem receber o mesmo

tratamento. Assim:

0
By 5,=1C1C2C3CC| O

0;
€
0
"B, =1C 4 CHCC2CC) D
b

A velocidade angular OCT)(“)), pode ser obtida

fazendo-se o seguinte célculo matricial:

0
"B OO 2620l 8,
0

A velocidade angular 00'5(0,1)}, ndo necessita de

célculo matricial, pois estd ja estd expressa em
relag@o ao referencial inercial 0.

Para obtermos a velocidade angular oa-)(o 1y basta
que multipliquemos o vetor la_i(o 1y: bela matriz

de rotagdo ?C -

0
Oa_j(O,l)z =?C- 0
6,

Assim, a velocidade angular absoluta da falangeta
do dedo em relagdo ao referencial inercial pode
ser descrita como a soma vetorial das velocidades
angulares determinadas anteriormente:

0= 0= _0= 0= 0=
Wp="Wy = Ds6).F Dys5),t D34, +

(1%~ 0 — 0 —
T 0,4y, F Dot Doy,

Embora o desenvolvimento tenha sido
desenvolvido para o dedo polegar, ele é também
aplicado a todos os outros dedo da mio (casos em

que @, = 0).

Para tommar mais eficiente o tratamento das
grandezas de velocidade introduziremos o uso da



matriz  Jacobiana relacionando velocidades
lineares de um ponto na extremidade de um dedo
no espago cartesiano com as velocidades
angulares nas coordenadas das articulagdes
(coordenadas generalizadas).

Fazendo uso das expressdes de velocidade linear e
velocidade angular apresentadas anteriormente, a
relagdo com as coordenadas generalizadas pode
ser expressa da seguinte forma:

o )
vxP 61
" ]
vyP 62
0 .
v 0.
o P
Ov = 0 & = J o .3
D6 6,
0 .
Dyo6 6;
5 .
| @06 | _96_

Pela complexidade do sistema, cada um dos 36
elementos que compde a matriz Jacobiana (J)

(Figura 14) representa uma  expresso
transcendental complexa.
Para ilustrar a composicdo desta matriz

apresentamos como exemplo na Figura 15 o
elemento da segunda linha e segunda coluna

c0s(62) a4 +(cos(62) cos(8s) cos(03 + @) — ST(64)
(cos(p ) sM(62) +€0S(62) SIN(63 +Pm) SN p))) aB +
(cos(62) cOS(83 + @) COS(85 +04(2)) — S04 + 65)
(cos(pp) SIN(62) +C0S(62) SI(B3 +Prm) St p))) ac +
(cos(B2) cos(04 + 65 + 66) cOs(03 + @,y,) — S(4 + 05 +6)
(cos(pp) sn(82) +cos(82) SI(B3 +¢m) Silep))) ap

previamente simplificado por relagdes
trigonométricas conhecidas.

o a5 o % o o

P P P P P P

301() 30y  B03() B64) Ibst)  HBg)

B ]

P P P P P P

301(D  B0,) D63  Ibun)  F6s) DD

oy o on o o

P P P P P P

P 30, 30,) D6 by  F6st) 6

= 0

0y B A 0 Oy duy

P P P P P P

by oB o0 B  GOKD IO

0

o8, ad ad ol & o

P P P P P P

0D o0 0D 00D 0D 0

0

6(22 aa?z aa()'z 6(2,_ au(;)z dwy

P P P P P P

ey o8y 364  I0yD  ABLH BB

Figura 14 Composi¢do da matriz Jacobiana

Figura 15 Exemplo de um termo simplificado da
matriz Jacobiana (J[2,2]).

7. Determinacio das aceleracdes

A aceleragdo da ponta do dedo pode ser
determinada pela diferenciag@o temporal do vetor

. 0— ~
velocidade "V,. Da mesma forma, a aceleragdo

angular da falangeta pode também ser obtida pela
diferenciagdo temporal do vetor velocidade

angular °@ ¢ .

No entanto, para fins de implementagdo
computacional, € interessante representarmos
essas aceleragdes em um unico vetor de dimenszo
seis, onde os trés primeiros elementos
correspondem as componentes da aceleragdo
linear e os trés tltimos correspondem as
componentes da aceleragdo angular, conforme
mostrado abaixo:

Qi
Il

8. Resultados

Para ilustrar o uso das matrizes e elementos
algébricos mostrados nos paragrafos anteriores,
utilizamos os valores mostrados na Tabela 2




Dedo | Dedo | Dedo | Dedo Dedo
1 1T 11X v A%
dy dar danr | dan | daav 13,5
ay s Qs | @umm | Qurv 22
ag ag.r ag.nm aginr agv 50
ac acr | acn | @cm | acw 42
ap apr a@pn | @pmr | apiv 33
(3 Bs.1 Os.ur Osir | Gsav | -0,2618
& 651 Gy | G | Oy | -0,48869
O Bs1 Os.nr O | Guv | -0,34907
& G5 Gs.11 G | Gy | 008727
& 6, 6, () 6, 0
o [ G 6 6 0
omI | om Il | em I | om IV | 1,11701
e 0 0 0 | 062832

A equagdo que descreve a reta mencionada € dada

por:
%z, =2, 2%, +232,7636
Tempo x y z
(1x107%s)
0 101.4800 -31.0003 91.8042
1 101.4300  -30.9003 91.7042
2 101.3800  -30.8003  91.6042
98 96.6300  -21.3003 82.1042
99 96.5800  -21.2003  82.0042
100 96.5300  -21.1003  81.9042

Tabela 3 Valores numéricos para a reta no espago

Tabela 2 Valores numéricos para o polegar da a
mao robdtica.

Como mencionado no paragrafo 5, as solugdes
encontradas para a cinematica inversa foram mais
faceis de serem tratadas utilizando-se de métodos
de resolug@o numeérica iterativa.

Para o exemplo mostrado neste paragrafo,
consideramos que os angulos &, &5 ¢ &5 do
polegar permaneceram constantes, sendo que os
angulos &), 6, e &5 serdo as nossas variaveis.
Sendo assim, da composi¢do das matrizes de
transformagdo homogénea que foram introduzidas
no paragrafo 4, obtemos o seguinte conjunto de
equagoes:

sin(f;) (—61.0075 cos(f3) — 79.6736 si(f3) — 13.5) +
cos(f1) (62.1638 sin(f) + cos(F2) (79.6736 cos(F3) —
61.0075 sin(83) +22)) == 101.48

sin(@y) (89.6253 cos(63 + 1.12) +45.1344 sin(g5 + 1.12) +
22) - 62.1638 cos(6y) == —31.0003

sin(61) (62.1638 sin(f7) +
c0s(62) (79.6736 cos(F3) — 61.0075 sin(63) + 22)) +
cos(f;) (—45.1344 cos(63 + 1.12) +
89.6253 sin(f3 + 1.12) + 13.5) == 91.8042

Figura 16 Sistema de equagdes para cinematica
inversa do movimento,

Vamos supor agora que queiramos fazer que a
ponta do polegar percorra uma linha reta no
espago, procedemos a descrever tal movimento
como mostrado na Tabela 3 (os valores estéo
expressos em milimetros).

Apds encontrar as solugdes numéricas dos valores
dos angulos para a reta mencionada, podemos
observar seu comportamento na Figura 18.
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Figura 17 Deslocamento da ponta do polegar ao
longo do eixos cartesianos.
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Figura 18 Movimento angular das juntas &, &; e
6; da mao robdtica.

As velocidades angulares das juntas foram
determinadas derivando o movimento angular ao
longo do tempo, e elas sdo mostradas na Figura
19.



Podemos observar na Figura 18 a presenga de
altos indices de movimento angular realizado para
o percorrido da reta. Os deslocamentos nos eixos
x, y e z foram 495; 9,9 e 9,9 milimetros
respectivamente. No entanto, tal quantidade de
deslocamento ndo justifica os altos indices de
movimento angular obtidos, que foram da ordem
de -27,8383°, 49,3721° e 57,9226° para G;, 6; e
s, respectivamente.
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Figura 19 Velocidades angulares nas juntas &, &,
e 6; da mio robotica.

Podemos inserir restrigdes para otimizar a
obtengdo da cinematica inversa do movimento.
Neste caso em particular, restringiu-se o
movimento do dngulo 6;, enquanto que os dngulos
6, e 0; permaneceram varidveis. Ao realizar tal
restri¢@o, obtiveram-se os resultados mostrados na
Figura 20.
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Figura 20 Movimento angular de 6;, 6, com
restricoes em 6

Observando a Figura 20, podemos ver que existe
uma maior concordancia entre o deslocamento no
espago cartesiano e o movimento angular obtido,
o qual foi da ordem de -5,3774° e 5.0932° para 6},

6,, respectivamente. Pa esse caso, o dngulo &5 foi
restringido em 4.9962°.

9. Conclusdes

Apresentamos neste paper um procedimento
completo para a modelagem cinematica de uma
mio artificial com cinco dedos. O procedimento
mostra que, apesar de mecanicamente diferente
dos projetos convencionais, este sistema pode ser
modelado de forma analoga a sistemas
convencionais.

Tomou-se cuidado para que o tratamento da
complexidade do sistema produzisse um conjunto
de equagdes cinematicas claras de facil uso e
capaz de ser alterado em caso de melhorias e
otimizag¢des no sistema.

As expressdes desenvolvidas aqui servirdo de base
para o tratamento dindmico do sistema em
trabalhos futuros.

O numero de graus de liberadade necessarios na
matriz Jacobiana foi ajustado para obtermos uma
matriz quadrada. Tal modelagem possibilitaria
uma facil resolugdo do modelo cinematico
inverso.
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