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Modelagem e Simulação da Prótese
Mecatrônica BRAHMA l - Brazilian

Anthropomorphic Hand

Glauco A. P. Caurin

Adriano Ribeiro
Jorge A. Felix Herrera

Jean M. Santa Cruz Yabarrena

Benedito de M. Purquerio
Dept. Eng. Mecânica - EESC- USP

são dotadas amda de sensores de força cuja função
é auxiliar as tarefas de manipulação.

2. Tratamento Vetorial de Diferentes
Sistemas de Coordenadas

Para facilitar a compreensão do equacionamento
cinemático a ser desenvolvido neste documento,
apresentaremos aqui um embasamento teórico
descrevendo como tratar de forma vetorial os
diferentes sistemas de coordenadas.

Figura l Ilustração do protótipo BRAHMA

l. Introdução

Este paper apresenta o desenvolvimento das
equações que descrevem comportamento
cmemático do protótipo BRAHMA (Brasilian
Anthropomorphic Hand), este paper apresenta os
resultados obtidos na primeira etapa de uma

sequência de trabalhos que visam descrever a
modelagem completa do sistema em estudo. O

protótipo BRAHMA (Figura l) compreende um
novo conceito de mão artificial, cujo mecanismo
se baseia nas características construtivas,
funcionais e motoras de uma mão humana. Não

existem juntas do tipo pmo; as articulações atuam
por contato, semelhante ao mecanismo biofísico.
Toda a parte estrutural é constituída de material
polünérico bio-compatível, sendo que o
mecanismo é acionado por um sistema híbrido
composto de cabos (tendões), músculos artificiais
e servo-motores elétricos de pequeno porte.

O sistema apresenta um total de 22 g.d.l. (graus de
liberdade), sendo 4 para cada dedo e 2 para a
articulação do punho. As extremidades dos dedos

C^3 ~PT.^

155GK=
'} '<

Um mesmo vetor pode ser expresso em relação a
diferentes sistemas de coordenadas (referenciais).
No desenvolvimento deste trabalho estaremos
considerando que todos os sistemas de
coordenadas adotadas sejam bases ortonormais e
usaremos a seguinte notação para expressar um
vetor e suas componentes em relação a um dado
referencial:

Av

vetor componente

do vetor

Onde:

A é o sistema de coordenadas no qual o

vetor v está expresso.

A direção da componente do vetor v é

especificada pelo índice u, que representa
a direção do versar de A associado a este
componente.

Seja v um vetor qualquer expresso em um

sistema de coordenadas B=^,b ,b^\.

Queremos encontrar as coordenadas de V em

relação a outro sistema de

coordenadas E=^^, e ,e^\ distinto do primeiro.

Usando a notação anterior:

BV=BV^+BV^+BV^ (I)

EV=Evxëx+Evyéy+EVÃ (n)

Inicialmente vamos tratar o caso em que e= b ,

com 6 deslocado de um ângulo O de e^,

conforme mostra a figura abaixo.

e.=b^

SYSNC \.^^_^_
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Podemos expressar as componentes de B em

relação a E:

E

E

E

v.

vy

v.

cos y? O - sen P

O l O

sen R O cos /?

b^ = b^ cos 0 e^+b^ sen 0 e^,

b = -b sen (9 e, + b cos 6» e

Substituindo estas componentes na expressão (I) e
depois igualando à (II) temos:

Ev^=Bv,b^ cos 0-B v yb y sen (9

EVy=Bv,b, sen 0+BVyby cos ^

Ev.=ev.

Como 6, =&„ =1 (base ortonormal), temos:

Ev,=Bv,cos0-Bv sen ^

Ev =Bv, sen 6+sv cos 6

EV.=BV,

Reescrevendo este sistema de equações na forma

matricial:

E

E

E

vx

v./

v.

cos 6 sen 6 O

- sen 9 cos 0 O

o o l

B

B

B

v,

v.
-r

v.

O mesmo raciocínio pode ser feito para rotações

em tomo dos versares ë e e '.

e^b,

Rotação em tomo de e

l o o
O cos a - sen a

O sen a cos a

No desenvolvimento das equações, é de interesse
que trabalhemos com matrizes, o que facilita a
implementação computacional.

Em geral, a notação E^=JCB v é usada para se

representar as operações acima, onde j C é

chamada matriz de rotação ou matriz de co-senos

diretores do vetor v .

Já sabemos representar um mesmo vetor em
diferentes referenciais com origens coincidentes.

No entanto, o que aconteceria se a origem do
segundo sistema de coordenadas não fosse
coincidente com a do primeiro? Tal questão pode
ser solucionada com uma simples extensão do
sistema antenor.

Seja P o vetar posição do ponto P em relação ao
referencial B. Se existe um referencial E distante
FEB de B, então o vetor posição do ponto P em
relação ao referencial E pode ser expresso como:

Ep= E^ + Er.B~D
^

EB

A expressão anterior pode ser reescrita na
seguinte forma matricial:

Ep

l o

E(
B'

o o

E^B

l

Bp

l

£ DlF = E.T B Dl

Rotação em tomo de e,, : onde gT é chamada matriz de transformação

homogénea.



Com base no exposto, uma transformação
homogénea complexa pode ser representada por
meio de uma composição de transformações mais
simples:

7: i r^i Ï+\rp Ï+2tTi n-1 rp
ï-t • í-Ll-í ••• *,-í';+1J j+2-' <+3J

onde a sequência de transformações deve ser
efetuada (mteipretada) da direita para a esquerda,

n-lr

ou seja,

última.

y é a primeú-a transformação e ^T a

3. Determinação da posição espacial das
pontas dos dedos

Uma vez estabelecida a metodologia para o

tratamento do mecanismo da mão, podemos agora
determinar facilmente as coordenadas retangulares
das pontas dos dedos em relação a um sistema de
coordenadas fixo ao punho (referencial inercial).

Com exceção do polegar, todos os dedos da mão
artificial podem ser tratados de forma análoga.
Iniciahnente, iremos desenvolver o raciocínio para
um dedo genérico, e posteriormente tratar o
polegar como um caso particular.

falmgeta

O punho

Figura 2 Representação de um dedo genérico

Defmü-emos sistemas de coordenadas
independentes para cada corpo rígido do dedo.
Para que a exposição do raciocínio seja mais
clara, vamos dividir este procedimento em etapas.

a falangeta. Com base na geometria da mão
artificial verificamos que, independentemente do
movimento executado, estes corpos se mantêm

coplanares. O sistema de coordenadas associado a
cada coipo ; tem sua origem posicionada na
articulação anterior do mesmo, encontrando-se o

versar X, alinhado com o eixo longitudinal do

corpo. O versar z; tem a direção do cuco de

rotação da articulação correspondente e o versar

y, é definido pelo produto vetorial de z, com X, .

eixo

longitodmal

eüco de rotação

Figura 3 Representação do referencial fixo ao

corpo.

ponta (P)

Figura 4 Modelagem dos três últimos corpos do
dedo (falange, falangmha e falangeta).

A posição da ponta P em relação ao referencial 6
pode ser expressa diretamente pelo vetor:

1a Etapa
Nesta etapa consideremos apenas os três últimos
corpos do dedo, ou seja, a falange, a falangmha e



6
r̂ 'o =

^D

o
o

em 4 componentes 6^

Observando a Figura 4, podemos determmar as
matrizes de transformação que nos interessam.

Matriz de transformação de 6 em 5:

5.r-

Matriz de transformação de 5 em 4:

cos 9^

sen 6^

o
o

- sen 6^

cos 9^

o
o

o
o
l
o

ac

o
o
l

Figura 5 Representação geuï.^üica do ângulo (pm.

4T-
5-' =

cos 0^

sen 6^

o
o

- sen 6^

COS 0,

o
o

o
o
l
o

as

o
o
l

Matriz de transformação de 4 em 3:

\T=

COS ^

sen 6 s,

o
o

- sen ^

cos ^4

o
o

o
o
l
o

o
o
o
l

2a Etapa

Consideraremos aqui a parte referente a "pabna"

da mão, ou seja, do metacaipo ao punho.
È importante notar que esta parte deve ser tratada
como um corpo rígido, já que o vetor definido
entre as origens dos referenciais 2 e 3 não sofre

deformação ao longo do tempo. Assim, o ângulo

(pn, descrito na Figura 5 resulta das características

geométricas da mão artificial, ou seja, pm não é
uma variável.

(punho)

Figura 6 Modelagem da parte referente à "paüna
da mão" - do metacarpo ao punho.

Com base na Figura 6, a matriz de transformação
que relaciona os referenciais 3 e 2 pode ser escrita
como:



\T=

~cos{0,+^) O -sen(0,+<p^) a^

0100

sen(0,+<pj O cos(^+^) ^
0001

3a Etapa

Após o desenvolvimento das duas etapas
anteriores, resta-nos considerar os dois graus de

liberdade do punho.

(punho)

(punho)

Figura 7 Modelagem do punho com dois graus de
liberdade.

Neste caso, as matrizes de transformação que
procuramos são:

\T=

cos 9^

sen 0^

o
o

- sen 0^

cos 6^

o
o

o
o
l
o

o

o
o
l

OT _^ ~

cos ^ O -sen^ O

0100

sen6^ O cos 6^ O

0001

Figura 8 Representação geométrica do dedo

polegar.

Modelagem do Polegar

O dedo polegar difere um pouco dos demais, por
apresentar o eixo z do referencial fixo à sua

falange rotado de (pp em tomo do eüco x deste
mesmo corpo. Assün, o desenvolvimento do

cálculo para o polegar sugere o uso de uma
transformação adicional, que leve em

consideração o ângulo (pp. Façamos então uma
transfoimação de rotação em tomo de xj, do
referencial 3 em um novo referencial 3':

\T=

10 00
O cos (pp -sen<p O

O sen(pp cos<pp O

00 01

Para manter a coerência das notações, chamemos

•y de yT , ou seja:

^cos(03+^J O -sen(0,+<pj

ÏT=
0100

sen(0,+(p^) O cos(03+^) ^

O lo o

E importante esclarecer que o ângulo (ppoi, assim

como o <pm, também resulta das características
geométricas da mão artificial, e não são variáveis.



4. Cinemática direta para posição

Para o mecanismo de um dedo. a cinemática
direta consiste na determinação das coordenadas
retangulares da ponta do dedo a partir dos valores

das coordenadas angulares Qi(t), 0i(t), 0j(t), 64(1),

0sft) e Osft).

Assim, por meio de uma composição das matrizes
de transformação encontradas anteriormente,
podemos expressar a posição da ponta P em
relação ao referencial mercial 0:

°r.='p

"y. QT< l T< 2'7-f3''7^3TTt4/7-r5'7^6^
\=i1 •i1 •y1 •31 •41 •51 •61 • rP

Dedo III

Dedo U Dedo IV

Dedo I
Dedo V

Figura 9 Notação adotada para cada dedo.

Para identificarmos cada dedo, precisamos definir

algumas notações, conforme mostrado na Figura

9:

• Dedo I: Mínimo

• Dedo II: Anular

• Dedo III: Médio
• Dedo IV: Indicador

• Dedo V: Polegar

Finaünente, para aplicarmos o equacionamento do
sistema a cada um dos dedos, basta substituirmos
os valores usados pêlos correspondentes a cada
dedo, conforme mostra a tabela abaixo:

AL.
<tA

as

ac

ffo

A.
A.
A.
A.
A.
A.
Vm

%

Dedo
I_

dA.,

IAJ

ttBJ

UÇJ

ttpj

AL.
9s,

â,/

03J

A.
A.
qjm.I

o

Dedo
u

ÒAM

(IA.II

UBjr

ac.n

UDJI

06.11

85,11

04.1!

63.11

A.
A.

(pm.II

o

Dedo

m
dAjn

IA.HI

aB,nr

ac.m

a-D.m

06.1H

QS.III

64.111

ffj.m

A.
A.

(pm.III

o

Dedo
IV
ÒAJV

UAJV

«BJV

<tC.JV

UDJV

06JV

05JV

Ô4JV

QS.IV

A-
A.

(pm.IV

o

Dedo
v

<ÍA,V

UA.V

IB.V

ff c. v

ap.v

06. V

75.V

QÍ.V

'3. V

A-
A.

<pm,V

%
Tabela l Valores de ângulos e dimensões para
cada dedo.

Nota: E importante salientar que os ângulos e as
dimensões acima devem respeitar o sentido dos
referenciais adotados na dedução anterior.

Note também que os ângulos 02 e 9i, por
pertencerem à articulação do punho, apresentam
valores iguais para todos os dedos da mão.

5. Cinemática inversa para posição

A cinemática inversa trata o processo inverso ao
da cinemática direta, ou seja, visa a determinação

das coordenadas das articulações Oi(t), 0j(t), ffjft),

04(t), 9s(t) e Qsft) - a partir das coordenadas
retangulares da ponta do dedo.
A determinação analítica da cinemática inversa
para cálculo de posição toma-se bastante
complexa para um sistema com mais de três graus
de liberdade e caracteriza-se normalmente pela
existência de múltiplas soluções. Neste caso, a
aplicação de métodos numéricos iterativos é uma
melhor alternativa para a resolução do problema

[l].

6. Determinação das velocidades

Velocidades lineares
Um procedimento para se determinar a velocidade
linear da ponta do dedo consiste na diferenciação

temporal do vetor posição "r? :



)vp=ÍÏ(orp}=\oyp

Velocidades Angulares

A existência de velocidades relativas sugere a
definição de uma nova notação que permita uma
representação mais clara da relação entre os
corpos ou referenciais envolvidos. Assim,
adotemos:

Aa(B.C).

Onde:

• A é o referencial no qual o vetor velocidade
angular está expresso.

• B, C indica que o vetor em questão representa
a velocidade angular do corpo (ou referencial)
C em relação ao corpo (ou referencial) B.

• A direção da velocidade angular é
especificada pelo índice u, que representa a
direção do versar de A associado à d).

'(5,6)2

'(4,5)z

'(3,4)z

'(0,1)2

punho

Figura 10 Velocidades angulares relativas

De acordo com a Figura 10, podemos defmir as
segumtes velocidades angulares relativas:

-ío(5,6)z =

'<ü(3,4)z

'%),l)z =

o
o

Â
o
o

A
o
o

4.

'íü(4,5)z =

1<0(3,4)^

~ct)W)y =

o
o

4.
o

ë,

o

o

^
o

Para a determinação das velocidades angulares de
cada corpo em relação ao referencial inercial,
faremos uso das matrizes de rotação.
Desenvolveremos inicialmente o raciocínio para a
falange, como mostra a Figura 11 ababco:

'(3,4)z

Figura 11 Tratamento do ângulo (pp.

Neste caso, a matriz de rotação de 3 em J' é:

!;c=

l O o
O cos (pp -sen (p p

O sen(p cos ^

Computando a rotação da falange em tomo do
eïxoy:

03

(punho)

Figura 12 Tratamento dos ângulos (pm e 63.



A matriz de rotação de 3' em 2 é:

2r=

cos^+â,) O -sen((p^+0^)

o l o
sen((p^+0^~) O cos((p^+0,)

Note que, neste caso, (pm e Os apresentam valores

negativos.

Computando os graus de liberdade do punho:

Vi

Vi

::Y
211. ^

(punho)

M(punho)

Figura 13 Tratamento dos ângulos 61 e 0i.

A matriz de rotação de 2 em l é:

,'c=

cos 6^ - sen 6^ O

sen9^ cos 9^ O

o o l

A matriz de rotação de 7 em O é:

°r=
1*~" -

cos ^i O -senô^

O l O

sen6^ O cos 0^

Podemos então determinar a velocidade angular

o<ü(3,4)z através do seguinte cálculo matricial:

o
O —. 0/-.l/-t2^-í3'

-'(3,4)z-l>^-2*^-3'*^-3^-|

Por serem paralelos à Õ>^^ , os vetares

<)(ü(4,5)z e <)ú)(5,6)2 podem receber o mesmo

tratamento. Assim:

°/7i.. -. =°r. lr 2.r.3'r3i
'(4,5)z~l'^-2 '^•3' '"•3 '^•4 '^•1

O-> 0^ 1^ 2^ 3'^. 3^i 4
'(5.6)z~\^-2 ^-'•!' ^•Ï ^•4 '-"•5

A velocidade angular Ô^^y pode ser obtida

fazendo-se o seguinte cálculo matricial:

°Ã,
'(3,4);>--1 .'; \-/.^1 \^.^ \^.\

0;sA velocidade angular "W^y não necessita de

cálculo matricial, pois está já está expressa em
relação ao referencial inercial 0.

0^
Para obtennos a velocidade angular "(ü^^ basta

1^
que multipliquemos o vetor "<ü(o,i)z Pela matriz

de rotação (G :

o r, _0,
''(0,l)z—I*^-|

Assim, a velocidade angular absoluta da falangeta
do dedo em relação ao referencial inercial pode
ser descrita como a soma vetorial das velocidades

angulares determinadas anteriormente:

' <»P =~ <»0.6 =' íü(5,6)z + ' íü(4,5)z + ~ íü(3,4)z +

+'(ü(3,4)^+'íü(0,l).-+'íü(0,l^

Embora o desenvolvimento tenha sido

desenvolvido para o dedo polegar, ele é também
aplicado a todos os outros dedo da mão (casos em

que (pp = 0).

Para tomar mais eficiente o tratamento das
grandezas de velocidade introduziremos o uso da



matriz Jacobiana relacionando velocidades
lineares de um ponto na extremidade de um dedo
no espaço cartesiano com as velocidades
angulares nas coordenadas das articulações
(coordenadas generalizadas).

Fazendo uso das expressões de velocidade linear e
velocidade angular apresentadas anteriormente, a
relação com as coordenadas generalizadas pode
ser expressa da segumte forma:

°v-

\.
\.
°^0,6

0<0..0,6

®z0.6

=J»

6>i

4
^
6.

4
Â-

Pela complexidade do sistema, cada um dos 36
elementos que compõe a matriz Jacobiana (J)
(Figura 14) representa uma expressão
transcendental complexa.

Para ilustrar a composição desta matriz
apresentamos como exemplo na Figura 15 o
elemento da segunda linha e segunda coluna
previamente simplificado por relações
trigonométricas conhecidas.

J=

4
p

ae^w

õry
p

ae^f)

4
p

a^o

ôcJjc
p

89{W

ÕÍÜy
p

ae\w

9túz
p

4
p

39^0

õr^

p

aa^fi

a°.
p

ae-^fi

âúJjc
p

aeyn)

ÕCÜy
p

a%«)

Qúï^
p

4
p

ae^í)

4
p

89^1)

4
p

ae^t)

4
p

ae^i)

Ôfy

ae-^o

õf,

383(0

awx
p

av^t)

Ôílïy

p

a%(o

<?<y.

9r<t

p
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Figura 14 Composição da matriz Jacobiana

COS(02) HA + (COS(02) COS(04) COS(03 + Ifm) - SÍnCftt)

(cos(ipp) sin(02) + cos(Ô2) sin(03 +ym) sjs(ipp))) a B +

(COS(@2) COS(03 + ym) 008(65 + e^t}) - sin(@4 + 65)

(.ws((pp) sm(02) + cos(02) sin(83 + fm) sin(yp))) ac +

(003(02) COS(ft» + 05 + 06) COS(03 + Vni) - sin(04 +05+06)

(cos(ipp) sc(»i) + cos(62) stí.63 + Vm) ssa(.fp))) ao

Figura 15 Exemplo de um termo simplificado da
matriz Jacobiana (J[2,2]).

7. Determinação das acelerações

A aceleração da ponta do dedo pode ser
determinada pela diferenciação temporal do vetor

velocidade v p. Da mesma forma, a aceleração

angular da falangeta pode também ser obtida pela
diferenciação temporal do vetor velocidade

angular ©0.6 •

No entanto, para fins de implementação
computacional, é interessante representarmos

essas acelerações em um único vetor de dimensão
seis, onde os três primeiros elementos
correspondem às componentes da aceleração
linear e os três últimos correspondem às

componentes da aceleração angular, conforme
mostrado ababco:

vxP

°ã=

vyP

"zP

"£ü.
'.1:0,6

"(X>,
'y0,6

"CU.
'z0,6

8. Resultados

Para ilustrar o uso das matrizes e elementos
algébricos mostrados nos parágrafos anteriores,
utilizamos os valores mostrados na Tabela 2
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22
50
42
33

-0,2618

-0,48869

-0,34907

0,08727
o
o

1,11701

0,62832

Tabela 2 Valores numéricos para o polegar da a
mão robótica.

Como mencionado no parágrafo 5, as soluções
encontradas para a cinemática inversa foram mais
fáceis de serem tratadas utilizando-se de métodos

de resolução numérica iterativa.

Para o exemplo mostrado neste parágrafo,

consideramos que os ângulos â», 0; e 0( do
polegar permaneceram constantes, sendo que os

ângulos Bi, Oi e 63 serão as nossas variáveis.
Sendo assim, da composição das matrizes de
transfomiação homogénea que foram introduzidas
no parágrafo 4, obtemos o seguinte conjunto de
equações:

sin(0i) (-61.0075 cos(6»3) - 79.6736 sir<03) -13.5) +

cos((9i) (62.1638 sir<6>2) + cos(é>2) (79.6736 cos(@3) -

61.0075sin(6>3)+22)) == 101.48

sii<02) (89.6253 cos(@3 +1.12) +45.1344 sir<03 +1.12) +

22) - 62.1638 cos(e:>) == -31.0003

sin(0i)(62.1638sm(e2)+

cos(02) (79.6736 cos(@3) - 61.0075 stí,^) + 22)) +

cos(0i) (-45.1344cos(63 + 1.12) +

89.6253 sin(03 +1.12) + 13.5) == 91.8042

Figura 16 Sistema de equações para cinemática
inversa do movimento,

Vamos supor agora que quedamos fazer que a
ponta do polegar percorra uma linha reta no
espaço, procedemos a descrever tal movimento
como mostrado na Tabela 3 (os valores estão

expressos em milímetros).

A equação que descreve a reta mencionada é dada
por:

oz^-2\-2°^+232,7636

Tempo x y z
(l x IO-2 s)

101.4800
101.4300
101.3800

98 96.6300
99 96.5800
100 96.5300

-31.0003 91.8042
-30.9003 91.7042
-30.8003 91.6042

-21.3003 82.1042
-21.2003 82.0042
-21.1003 81.9042

Tabela 3 Valores numéricos para a reta no espaço

Após encontrar as soluções numéricas dos valores
dos ângulos para a reta mencionada, podemos
observar seu comportamento na Figura 18.
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Figura 18 Movimento angular das juntas 0i, Q-s e

03 da mão robótica.

As velocidades angulares das juntas foram
determinadas derivando o movimento angular ao
longo do tempo, e elas são mostradas na Figura
19.



Podemos observar na Figura 18 a presença de
altos Índices de movimento angular realizado para
o percorrido da reta. Os deslocamentos nos eücos

x, y e z foram 4,95; 9,9 e 9,9 milimetros
respectivamente. No entanto, tal quantidade de
deslocamento não justifica os altos Índices de
movimento angular obtidos, que foram da ordem

de -27,8383°, 49,3721° e 57,9226° para 61, 6>, e

03, respectivamente.
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Figura 19 Velocidades angulares nas juntas 0i, Oi

e 0j da mão robótica.

Podemos inserir restrições para otimizar a

obtenção da cmematica inversa do movimento.
Neste caso em particular, restringiu-se o

movimento do ângulo 83, enquanto que os ângulos

Oi e 83 permaneceram variáveis. Ao realizar tal
restrição, obtiveram-se os resultados mostrados na

Figura 20.
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Figura 20 Movimento angular de Qi, 62 com

restrições em 0j

Observando a Figura 20, podemos ver que existe
uma maior concordância entre o deslocamento no
espaço cartesiano e o movimento angular obtido,

o qual foi da ordem de -5,3774° e 5.0932° para 0j,

02, respectivamente. Pa esse caso, o ângulo 0j foi

restringido em 4.9962°.

9. Conclusões

Apresentamos neste paper um procedimento
completo para a modelagem cinemática de uma
mão artificial com cinco dedos. O procedimento
mostra que, apesar de mecanicamente diferente

dos projetos convencionais, este sistema pode ser
modelado de forma análoga a sistemas

convencionais.

Tomou-se cuidado para que o tratamento da
complexidade do sistema produzisse um conjunto
de equações cinematicas claras de fácil uso e
capaz de ser alterado em caso de melhorias e
otimizações no sistema.

As expressões desenvolvidas aqui servirão de base
para o tratamento dinâmico do sistema em
trabalhos futuros.

O número de graus de liberadade necessários na
matriz Jacobiana foi ajustado para obtermos uma
matriz quadrada. Tal modelagem possibilitaria
uma fácil resolução do modelo cinemático

inverso.
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