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We study the 1=N expansion in noncommutative quantum mechanics for the anharmonic and

Coulombian potentials. The expansion for the anharmonic oscillator presented good convergence

properties, but for the Coulombian potential, we found a divergent large N expansion when using the

usual noncommutative generalization of the potential. We proposed a modified version of the non-

commutative Coulombian potential which provides a well-behaved 1=N expansion.
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I. INTRODUCTION

The so called 1=N expansion was proposed in 1974 [1]
as a scheme to nonperturbatively study QCD in the strong
coupling region. In that context, calculations using a large
N expansion for the group SUðNÞ have been shown to
provide results with good agreement with experimental
data for the SUð3Þ chromodynamics (see [2] for a review).
Since then, the 1=N-expansion was used as an approxima-
tion method which generally gives very accurate results
and can be applied to different fields, including atomic and
particle physics. For massless two-dimensional models
where severe IR divergences prevent the use of perturba-
tion methods, the 1=N-expansion allows one to uncover
very interesting peculiarities as dynamical mass genera-
tion, dynamical generation of gauge bosons, confinement,
and so on [3]. Other applications include studies of Bose-
Einstein condensation, stochastic quantization, and non-
commutative quantum field theories [4–9], to name a few.
Recently, the large N limit has become fundamental in the
study of the Maldacena conjecture [10], which allows one
to obtain nonperturbative information on conformally in-
variant quantum field theories.

The 1=N-expansion has also been used in quantum
mechanics for a large class of potentials, since it produces
good results for the determination of the ground and low
excited states energies. The 1=N-expansion can be used
even when the Hamiltonian cannot be separated in a solv-
able part plus a small perturbation; besides that fact, find-
ing energies and wave functions is achieved by solving
iterated algebraic equations, instead of solving a differen-
tial equation. This iterated procedure can be neatly imple-
mented in any CAS (computer algebra system), for
example.

In this paper, we are interested in the application of the
1=N expansion in the context of noncommutative quantum
mechanical models. There has been a lot of interest in the

last decades in studying theories defined over a spacetime
where coordinates do not commute, in part following the
discovery of noncommutative gauge theories as a low
energy limit of the string theory in certain backgrounds
[11]. The general motivation for spacetime noncommuta-
tivity is the idea that, in distances of the order of the Planck
length, the measurement of the coordinates loses all its
sense due to the production of intense gravitational fields.
For this reason, the usual concept of a point cannot be
adopted and this suggests the use of position operators that
do not commute [12].
These motivations rendered to noncommutative spaces a

wide variety of theoretical applications. Several works
studying the effects of the noncommutativity of space in
quantum mechanics have appeared recently, either in non-
relativistic or relativistic situations, see for example [13–
20]. We extend these studies by the use of the 1=N expan-
sion applied to some quantum mechanical potentials.
This work is organized as follows. In Sec. II we review

the machinery of the large N expansion in quantum me-
chanics and show how it can be implemented in the non-
commutative context. We start the application of this
method in Sec. III by studying the anharmonic oscillator.
In Sec IV, we show that the 1=N expansion diverges when
applied to the usual noncommutative generalization of the
Coulombian potential. We argue that this divergence is due
to a strong singularity of the potential at the origin, and we
propose a modification that produces physically significant
results. Our conclusions are summarized in Sec. V.

II. NONCOMMUTATIVE QUANTUM MECHANICS
AND 1=N EXPANSION

Noncommutative spaces are characterized by the posi-
tion operators x̂� satisfying the relation

½x̂�; x̂�� ¼ i���; (1)

where ��� is a constant antisymmetric matrix of dimension

length squared. Quantum field theories can be formulated
on these spaces, involving field operators which are func-
tions of x̂�. However, it is more usual to employ the Weyl’s
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correspondence, which results in models defined in a com-
mutative spacetime, but with the pointwise product of
fields replaced by the noncommutative Moyal product

�1ðxÞ ��2ðxÞ ¼ lim
y!x

eði=2Þ���ð@=@y�Þð@=@x�Þ�1ðyÞ�2ðxÞ; (2)

where �1 and �2 are two arbitrary functions.
In noncommutative quantum mechanics, a similar ap-

proach can be implemented, so we could study a non-
commutative Schrödinger equation involving a Moyal
product VðxÞ � c ðxÞ, but it is preferred to perform the
change of variables

x̂j ¼ xj � 1

2

X
k

�jkpk; (3a)

p̂j ¼ pj (3b)

from noncommutative (hatted) operators to new variables
xj and pj satisfying the Heisenberg algebra

½xi; xj� ¼ ½pi; pj� ¼ 0; (4a)

½xi; pj� ¼ i@�ij: (4b)

In this way, the noncommutative Schrödinger equation has
the standard form, involving the modified potential

V

�
xj � 1

2

X
k

�ijpj

�
: (5)

For simplicity, we shall consider a particular form of the �ij

matrix, where the noncommutativity is nonvanishing only
in a particular spatial plane.

To fix our notations, we shall briefly review the con-
struction of the 1=N expansion for the N-dimensional
Schrödinger equation [21]

½�1
2r2

N þ VðrÞ�c ðr;�Þ ¼ Ec ðr;�Þ: (6)

Here, r2 ¼ P
N
i¼1 x

2
i , � is the set of N � 1 angular varia-

bles, and we are using natural units, so that @ ¼ c ¼ 1;
also, as we use an unitary mass, the energy will have the
unusual dimension of ½L��2. The Laplace operator is given
by

r2
N ¼ @2

@r2
þ N � 1

r

@

@r
� 1

r2
�̂2ðNÞ ¼ �r � 1

r2
�̂2ðNÞ;

(7)

where �̂2ðNÞ is the generalized angular momentum

squared [we define �̂2ð1Þ ¼ 0]. The wave function of
this system can be separated in radial and angular parts,

c ðr;�Þ ¼ Rn‘ðrÞYð�Þ; (8)

where Rn‘ðrÞ is labeled by two quantum numbers n and ‘,
and the generalized spherical harmonics Yð�Þ ¼
Y‘1;‘2;...;‘N�2;‘N�1

ð�1; �2; . . . ; �N�1Þ are labeled by N � 1

quantum numbers ‘1; ‘2; . . . ; ‘N�2; ‘N�1 ¼ ‘. Replacing
Eqs. (7) and (8) in Eq. (6), the Schrödinger equation is

separated into a radial

�
� 1

2

�
d2

dr2
þ N � 1

r

d

dr

�
þ ‘ð‘þ N � 2Þ

2r2
þ VðrÞ

�
Rn‘ðrÞ

¼ ERn‘ðrÞ (9)

and an angular equation

�̂ 2ðNÞYð�Þ ¼ ‘ð‘þ N � 2ÞYð�Þ; (10)

where the allowed quantum numbers for the generalized
spherical harmonics are ‘ ¼ 0; 1; 2; . . . , ‘j ¼
0; 1; 2; . . . ; ‘jþ1 for j ¼ 2; 3; . . . ; N � 2, and ‘1 ¼ m ¼
�‘2;�‘2 þ 1; . . . ; ‘2 � 1, l2 [22]. The label ‘1 corre-
sponds to the eigenvalue of the L12 component of the
angular momentum and shall be further called m for simi-
larity with the three-dimensional case.
It is customary to eliminate the first order derivative in

Eq. (9) by means of the substitution

�ðrÞ ¼ rN�1=2Rn‘ðrÞ; (11)

which leads to

�
�1

2

d2

dr2
þ k2

�ð1� 1=kÞð1� 3=kÞ
8r2

þ V̂ðrÞ
��
�ðrÞ ¼ E�ðrÞ;

(12)

where k ¼ N þ 2‘, and the normalized potential V̂ðrÞ is
defined as V̂ ¼ V=k2.
The above equation shows that k2 behaves as a mass and

the kinetic term can be disregarded in the k ! 1 limit.
Thus, when k is very large, the ground state of the system is
located at the minimum, r0, of the effective potential

VeffðrÞ ¼ 1

8r2
þ V̂ðrÞ; (13)

so that the ground-state energy is, in the leading approxi-
mation,

E0 ¼ k2Veffðr0Þ; (14)

with r0 defined by

dVeff

dr

��������r¼r0

¼ 0: (15)

To obtain higher-order corrections to the ground-state
energy, it is convenient to redefine the radial wave function
and to rescale the radial coordinate according to

�ðrÞ ¼ expAðrÞ; (16)

and

u ¼ r

r0
; (17)

thus obtaining a Riccati equation
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� 1

2r20
½U2ðuÞ þU0ðuÞ� þ k2VeffðuÞ þ

�
� k

2
þ 3

8

�
1

r20u
2
¼ E;

(18)

where U ¼ 1
r0

dA
du and U0 ¼ 1

r0
dU
du . This equation can be

solved in a power series in 1=k, using

E ¼ X1
n¼�2

EðnÞk�n; (19a)

U ¼ X1
n¼�1

UðnÞk�n: (19b)

Replacing these expressions in Eq. (18) and equating to
zero the coefficient of each power in 1=k, we get the
following set of equations:

� 1

2r20
Uð�1ÞðuÞUð�1ÞðuÞ þ VeffðuÞ ¼ Eð�2Þ; (20)

�Uð�1ÞðuÞUð0ÞðuÞ ¼ r20E
ð�1Þ þ 1

2u2
þ 1

2
Uð�1Þ0ðuÞ; (21)

�Uð�1ÞðuÞUð1ÞðuÞ ¼ r20E
ð0Þ � 3

8u2

þ 1

2
½Uð0Þ0ðuÞ þUð0ÞðuÞUð0ÞðuÞ�; (22)

�Uð�1ÞðuÞUðnþ1ÞðuÞ

¼ r20E
ðnÞ þ 1

2

�
UðnÞ0ðuÞ þ Xn

m¼0

UðmÞðuÞUðn�mÞðuÞ
�
;

n > 0; (23)

which, in principle, can be solved iteratively up to any
order in 1=k. By evaluating Eq. (20) at u ¼ 1 we reobtain
Eq. (14) for the leading approximation to the ground-state
energy,

Eð�2Þ ¼ Veffðr0Þ: (24)

By replacing this result back in Eq. (20) and solving for

Uð�1Þ, one gets

Uð�1ÞðuÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r20ðVeffðuÞ � Eð�2ÞÞ

q
: (25)

In this equation the ð�Þ signal has to be chosen so that the
function U ¼ dA=dr is positive for u < 1 and negative for
u > 1, since the wave function has a maximum at the point
r0. This procedure should be repeated order by order in k to
obtain the higher-order corrections.

Two remarks are now in order: First, excited states are
considered by modifying the ansatz in Eq. (16) to

�nðrÞ ¼
�Yn
j¼1

ðr� rjÞ
�
expAðrÞ; (26)

to account for the n nodes of the nth excited state [21].

Second, one alternative way to obtain an 1=N expansion
would be to expand Eq. (12) in a power series in

x ¼ kp
r� r0
r0

; (27)

where p is some (positive) constant [23]. For k very large,
Eq. (27) shows that the wave function should be highly
concentrated around x ¼ 0, so it could be calculated as a
power series around the minimum of the potential. At the
dominant order, Eq. (12) reduces to an harmonic oscillator
equation. Higher-order corrections in k are included using
standard perturbation theory. In this work, we shall use the
approach based on Eq. (20), where the eigenvalues and
eigenfunctions are expanded in powers of 1=k and solved
order by order by algebraic procedures, and no further
approximation schemes are necessary. This scheme can
be extended to the noncommutative situation by using
the modified potential specified in Eq. (5).

III. THE NONCOMMUTATIVE ANHARMONIC
OSCILLATOR

As a first example, we shall now consider a noncommu-
tative anharmonic oscillator in N-dimensional space, with
an Hamiltonian defined as [24]

Ĥ ¼ XN
i¼1

�
1

2
p̂2
i þ

!2
0

2
x̂2i þ

g

N
ðx̂2i Þ2

�
: (28)

After performing the change of variables of Eq. (3), we
obtain the following Schrödinger equation:�
� 1

2

�
r2

N � 1

r2
�̂2ðNÞ

�
þ Vðx; pÞ

�
Rn‘ðrÞYð�NÞ

¼ ERn‘ðrÞYð�NÞ; (29)

with the potential

Vðx; pÞ ¼ !2
0

2

�
r2 �X

ij

�ijxipj

�
þ g

N

�
r4 � 2r2

X
i;j

�ijxipj

�
:

(30)

The potential in Eq. (30) has two parameters, !0 and

g1=3, with dimensions of energy. Following [24], we in-
troduce a new parameter ! that will fix the energy scale,
and we shall work with the adimensional energy E ¼ E=!
and adimensional coupling constant � ¼ g=!3. The rela-
tion between g, !0, �, and ! is given by

!2
0

!2
¼ 1� 2�; (31a)

� ¼ g

!3
: (31b)

Because we are not interested in studying symmetry break-
ing we shall consider !2

0 > 0, thus � is constrained by 0 �
� � 1=2. We shall perform the rescaling xi ! xi=

ffiffiffiffi
!

p
and

� ! �=! to obtain the Schrödinger equation in the very
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same form as Eq. (29), but involving the adimensional
energy E in the right-hand side, and the potential

Vðx; pÞ ¼ 1� 2�

2

�
r2 �X

ij

�ijxipj

�

þ �

N

�
r4 � 2r2

X
i;j

�ijxipj

�
; (32)

in the left-hand side.
For simplicity, we assume that the only nonvanishing

component of �ij is �12 ¼ ��21 ¼ �. In this case,P
ij�ijxipj simplifies to �L12, the component of the angular

momentum perpendicular to the plane of noncommutative
coordinates.

As discussed in Sec. II, the first label ‘1 ¼ m of the
generalized spherical harmonic Yð�Þ corresponds to the
eigenvalue of L12. By using this fact in Eq. (29), we can
finally write the potential for the noncommutative anhar-
monic oscillator as

VðrÞ ¼
�
1� 2�

2
� 2�m�

N

�
r2 þ �

N
r4; (33)

apart from a constant term ��mð1� 2�Þ=2. The effective
potential reads

VeffðrÞ ¼ 1

8r2
þ 1

k2

��
1� 2�

2
� 2�m�

N

�
r2 þ �

N
r4
�
; (34)

and its minimum is located at r0 satisfying the equation,

� 1

4
þ ð1� 2�Þ r

4
0

k2
þ 4�

k2N
r60 �

4�m�

N

r40
k2

¼ 0: (35)

Since the above equation involves bothN and k ¼ N þ 2‘,
we choose to find its solution as a power series in 1=N, by

defining r0 ¼
ffiffiffi
N
2

q
�r0,

�r 0 ¼ 1þ r1

�
1

N

�
þ r2

�
1

N

�
2 þ . . . ; (36)

where
ffiffiffiffiffiffiffiffiffi
N=2

p
is the solution for the commutative, ‘ ¼ 0

case. We quote here the explicit form for r0 up to the first
order in 1=N and �,

r0 ¼
ffiffiffiffi
N

2

s �
1þ

�
‘

1þ �
þ ��m

1þ �

�
1

N
þ � � �

�
: (37)

The Riccati equation for the noncommutative anhar-
monic oscillator, in terms of the variable u ¼ r=�r0, reads

� 1

N �r20
ðU0 þU2Þ þ NWðuÞ þ

�
3

4

1

N �r20
� 1þ �

�r20

�
1

u2
¼ E;

(38)

where

WðuÞ ¼ 1

4

�
1þ �

�r0

�
2 1

u2
þ

�
1� 2�

2
� ��m�

‘

�
�r20u

2

2

þ �

4
�r40u

4: (39)

The leading order contribution to the ground-state energy
in the noncommutative case coincides with the commuta-
tive one,

Eð�2Þ ¼ NWð1Þ ¼ N

�
2� �

4

�
; (40)

since the �-dependent term in Eq. (34) is subleading in the

1=N expansion. By subtracting Eð�2Þ from both sides of the
Eq. (38), we obtain

� 1

N �r20
ðU0 þU2Þ þ N

�
WðuÞ �

�
2� �

4

��

þ
��

3

4
� 2‘

�
1

N
� 1

�
1

�r20u
2

¼ E� N

�
2� �

4

�
¼ E0: (41)

Each term involving �r0 is expanded as a power series in
1=N and so will be the energy E0

E0 ¼ Eð0Þ þ X
j�1

EðjÞ 1

Nj (42)

and

UðuÞ ¼ NUð�1ÞðuÞ þUð0ÞðuÞ þ X
j�1

UðjÞðuÞ 1

Nj : (43)

With these formulas, one is able to calculateEðjÞ andUðjÞ
to an arbitrary 1=N order, at least in principle. In practice,
calculations by hand are amenable up to order 1=N; further
corrections can be calculated using a computer. For ex-
ample, the first two corrections to the ground-state energy
are

E0 ¼ �1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p þ ‘� ��mþ
�
�ð4‘2�þ 4‘2 � 8‘�þ 12‘

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

p � 8‘þ �� 12
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

p þ 12Þ
4ð�þ 1Þ2

þ �ð�2m‘�� 2m‘þ 2m�þm�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

p � 2m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

p þ 2mÞ
ð�þ 1Þ2 �

�
1

N
: (44)
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Equation (44) correctly reproduces the results of the com-
mutative anharmonic oscillator when ‘ ¼ 0 and � ¼ 0
[24].

We found that, even using a standard desktop computer,
the fully analytical calculation could not be done beyond
the 1=N3 order in reasonable time; however, by choosing
some particular numerical values for ‘ and �, one can
quickly calculate the corrections up to 1=N12 or even
more. Some results are shown in graphical form in
Fig. 1: the horizontal axis is the order of the 1=N expansion
used, i.e., for each nmax we calculate the adimensional
energy E0 ¼ E0 þ �E� up to order 1=Nnmax . These graphs
suggests that the convergence is quite good, at least for
small enough � and for ‘ ¼ 0. For higher ‘, the results are
not so stable, and the reason is clear from Eq. (37): The first
correction for r0 is of order ‘=N, so Eq. (36) does not
provide a good approximation to r0 if ‘ is not much smaller
than N.

IV. THE NONCOMMUTATIVE COULOMBIAN
POTENTIAL

We now focus on the noncommutative generalization of
the Coulombian potential, which is usually given in terms
of the noncommutative coordinates x̂ as

Vðx̂Þ ¼ � Ze2ffiffiffiffiffiffi
x̂ x̂

p : (45)

As described in Sec. II, the customary way to work
with this potential is by means of the change of variables
in Eq. (3), which yields

Vðx; pÞ ¼ � Ze2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �P

ij
�ijxipj þ 1

4�j‘�jkp‘pk

r : (46)

A direct treatment of this potential is quite difficult from a
technical viewpoint. This is why, in the literature
[14,25,26], it has been studied using standard perturbation
theory after an expansion up to the first order in � as
follows:

V ¼ �Ze2

r

�
1þ 1

2r2
X
ij

�ijxipj

�
: (47)

We notice that the noncommutative correction to the po-
tential behaves as 1=r3, so it is more singular at the origin
than the one in Eq. (45). We shall also stress that Eq. (47) is
not a valid approximation when r is very small. Such issue
has not been considered in the literature so far because in
standard perturbation theory one is interested in integrals
of the general form hc jVðrÞjc i, which are actually regular
despite the singularity at the origin. As we shall see, when
using the 1=N expansion, this singular behavior near the
origin will be a major issue we will have to deal with. In
this work, we will show how to generalize the potential in
Eq. (47) so that it produces a meaningful 1=N expansion.
Hereafter, all our expressions are calculated up to the

first order in �. As before, we shall consider the particular
case �12 ¼ � with all other components of the matrix �ij
vanishing, such that

P
ij�ijxipj ¼ �L12. In this case,

Vðx; pÞ reduces to

VðrÞ ¼ �Ze2

r

�
1þ �

L12

2r2

�
: (48)

We start by taking the potential in Eq. (48) as our starting
point. By means of the change of variables

	 ¼ 4Zê2r; �̂ ¼ �ð4Zê2Þ2; (49)

the Schrödinger equation becomes�
� 1

2

d2

d	2
þ k2Veffð	Þ þ

�
3

8
� 1

2
k

�
1

	2

�
�ð	Þ ¼ E�ð	Þ;

(50)

with the effective potential

Veffð	Þ ¼ 1

8	2
� 1

4	
� �̂m

8	3
: (51)

Here, ê2 ¼ e2=k2, m is the eigenvalue of L12, and the
adimensional energy E is measured in units of 16Z2ê4.

For simplicity of notation, we shall drop the hat in �̂ from
now on.

2 4 6 8 10
nmax0.0450

0.0455
0.0460
0.0465
0.0470
0.0475
0.0480
0.0485

E0

0 2 4 6 8 10
nmax0.100

0.099
0.098
0.097
0.096
0.095

E

N 3, l 0, 0.1

2 4 6 8 10
nmax0.150

0.155
0.160
0.165
0.170
0.175
0.180

E0

2 4 6 8 10
nmax0.40

0.39
0.38
0.37
0.36
0.35
0.34

E

N 3, l 0, 0.4

2 4 6 8 10
nmax3.05

3.10
3.15
3.20
3.25
3.30
3.35
3.40

E0

2 4 6 8 10
nmax0.30

0.25

0.20

0.15

0.10

E

N 3, l 3, 0.1

FIG. 1 (color online). Ground-state (adimensional) energy for
the noncommutative anharmonic potential calculated up to order
nmax, in the form E0 ¼ E0 þ E��, for different values of ‘ and �.
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The minimum of the effective potential in Eq. (51) is
located at

	0 ¼ 1� 3�m

2
: (52)

The leading approximation to the ground-state energy is
given by

Eð�2Þ ¼ Veffð	0Þ ¼ � ð1þ �mÞ
8

: (53)

To find higher-order corrections, we solve the Riccati
equation

� 1

2	2
0

½U2ðuÞ þU0ðuÞ� þ k2VeffðuÞ þ
�
3

8
� 1

2
k

�
1

u2
¼ E;

(54)

where u ¼ 	=	0. Both U and E are expanded in orders of
1=k as in Eq. (19). In the leading order, the wave function is
given by

Uð�1ÞðuÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	2

0ðVeffðuÞ � Veffð1ÞÞ
q

¼ 1� u

2u
þ �m

4u2
ðu� 1Þð2uþ 1Þ; (55)

whose derivative at u ¼ 1, using Eq. (21), gives the sub-
leading correction to the energy of the ground state,

Eð�1Þ ¼ �1
4ð1þ 9

2�mÞ: (56)

Inserting back this value of Eð�1Þ in Eq. (21), one obtains
the subleading contribution to the wave function,

Uð0ÞðuÞ ¼ � uþ 1

2u
� 5u2 þ 6uþ 3

4u2
�m: (57)

For the noncommutative Coulombian potential, this pro-
cedure can be repeated to higher orders in 1=k. A simple

computer program was used to calculate both EðnÞ and UðnÞ
up to nmax � 50 in a few seconds. Up to order 1=k10, the
energy of the ground state was calculated as

E ¼ �


4
� 3

8
� 1

2

� 5

8
2
� 3

4
3
� 7

8
4
� 1


5
� 9

8
6
� 5

4
7
� 11

8
8
� 3

2
9
� 13

8
10
þ �

�
� 9


8
� 49

8
� 211

8

� 199

2
2
� 1385

4
3

� 4579

4
4
� 14 645

4
5
� 91 667

8
6
� 282 815

8
7
� 864 359

8
8
� 2 625 269

8
9
� 3 970 323

4
10

�
: (58)

From this result, we see a quite different behavior for
the �-independent terms and for the �-dependent ones.
This result is graphically represented in Fig. 2; the
�-independent contribution to the energy converges
quickly and this convergence is very stable for higher
orders of 1=k, while the �-dependent ones badly diverge.

Divergences of the 1=N expansion are not surprising,
since the expansion is usually stable up to some order but it
diverges at higher orders (see for example [27]). However,
in our case, there is no convergence at all, so the 1=N
expansion does not provide a useful calculational scheme.
However, it is interesting to notice that this problem is
restricted to the �-dependent part of the energy, so its
origin is in the noncommutative part of the potential. The
main particularity of this term is the stronger singularity at
the origin, and we will now show that modifying the
potential in Eq. (48) to soften this singularity will indeed
avoid the divergence of the 1=N expansion.

We propose a modified version of the noncommutative
Coulombian potential as follows:

VðrÞ ¼ �Zê2

r

�
1þ m

2r2
ð1� e��r�Þ �

k

�
: (59)

With this modification, the noncommutative part of the
potential behaves as 1=r3�� near the origin, so it is actually
less divergent than the usual Coulombian potential if �>
2. The factor � has dimension ½length���, so it defines the
characteristic length scale of the modification we are in-
troducing. In proposing this potential, we have also rede-
fined the noncommutativity parameter � as � ! �=k: this
is needed because, due to the exponential function in
Eq. (59), the equation defining r0 would be transcendental
and no analytic solution could be found [28]. With the
rescaling � ! �=k, the effective potential does not include
any � dependence,

VeffðrÞ ¼ 1

8r2
� Zê2

r
; (60)

and all the modification due to the noncommutativity
enters through subleadings corrections obtained from the
Riccati equation,

0 5 10 15 20 25 30
nmax1.410

1.408
1.406
1.404
1.402
1.400

E0

0 5 10 15 20 25 30
nmax700

600
500
400
300
200
100

0

E

FIG. 2 (color online). Ground-state energy of the noncommu-
tative Coulombian potential calculated up to the order 1=knmax .
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� 1

2r20
½U2ðuÞ þU0ðuÞ� þ k2VeffðuÞ

� k

2

�
1

r20u
2
þ Zê2

r30u
3
�mð1� e��r�Þ

�
þ 3

8

1

r20u
2
¼ E: (61)

We remark that such rescalings are usual in 1=k expansion,
as discussed in [23].

By redefining coordinates as

	 ¼ 4Zê2r; ~� ¼ �ð4Zê2Þ2;
~� ¼ �

ð4Zê2Þ� ;
~E ¼ E=ð4Zê2Þ2;

(62)

we rewrite Eq. (61) as (dropping the tildes)

� 1

2
½U2ð	Þ þU0ð	Þ� þ k2Veffð	Þ

� k

�
1

2	2
þ �m

8	3
ð1� e��	�Þ

�
þ 3

8	2
¼ E; (63)

where the effective potential is given by Eq. (60). The
minimum of Veffð	Þ is located at 	0 ¼ 1, the leading order

energy reads Eð�2Þ ¼ �1=4, and

Uð�1Þ ¼ 1� 	

2	
; (64)

which is the same as the commutative case. We follow the
procedure outlined in Sec. II to calculate higher-order
corrections to E and U, the only modification is in
Eq. (21) for the subleading order, which is modified to

� 1

2
½2Uð�1ÞUð0Þ þUð�1Þ0� � 1

2	2

� �m

8	3
ð1� e��	�Þ ¼ Eð�1Þ; (65)

now including the noncommutative correction, which will
therefore appear starting in the subleading order.
We have calculated analytically the energy up to the

order 1=k8 using a MATHEMATICA program, and we plotted
E ¼ E0 þ �E� for several orders of the 1=k expansion,
looking for values for � and � which would provide a
reasonable convergence and stability of the 1=k expansion.
Some results are depicted in Fig. 3. We found that for � of
order unity and � ¼ 2 we obtained the best convergence
results. In this situation, we obtained

E ¼ �0:25
� 0:375� 0:5



� 0:625


2
� 0:75


3
� 0:875


4
� 1:0


5
� 1:125


6
� 1:25


7
� 1:375


8
�

�
�0:079 015 1
� 0:297 271

� 0:338 563



� 0:592 782


2
� 0:393 406


3
� 1:40 262


4
þ 0:674 301


5
� 2:543 31


6
� 15:0062


7
þ 124:537


8

�
: (66)
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FIG. 3 (color online). Ground-state energy of the modified
noncommutative Coulombian potential calculated up to the
order 1=knmax , for different values of � and �.
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FIG. 4 (color online). Same as in Fig. 3, for fixed � ¼ 2 and
different values of �.
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For smaller �, the convergence is even better, but this
would imply in a larger length scale of the modification,
which may not be natural. In Fig. 4 we present our results
for fixed � ¼ 2 and different values of �, showing that if �
is taken to be greater than 1, the convergence of the 1=N
expansion is not adequate.

V. CONCLUSIONS

In this work, we studied the noncommutative quantum
mechanics using the 1=N expansion for the anharmonic
and Coulombian potential. We showed that, for a particular
choice of the noncommutativity matrix �ij, we could apply

the 1=N expansion for a noncommutative potential de-
pending only on a noncommutativity scalar parameter �.
With this simplification, we studied the anharmonic oscil-
lator, calculating the ground-state energy up to the order
1=N12. For this potential, the expansion presented good
convergence properties.

For the Coulombian potential, however, the usual pro-
cedure of expanding in powers of the noncommutative
matrix is invalid leading to a divergent 1=N expansion.
In fact, the noncommutative modification to the potential,

Zê2

2r3
�m; (67)

is highly singular near r ¼ 0. We therefore proposed a
modified version of the noncommutative Coulombian po-
tential, where Eq. (67) is replaced by

ð1� e��r�ÞZê
2

2r3
�m: (68)

The included term, Zê2

2r3
e��r��m, vanish exponentially for

large r, so this modification is intended to modify the
potential in the r� 0 region, softening the singularity at
the origin. We calculated the ground-state energy of such a
modified potential up to the order 1=N7, finding a good
convergence for certain values of � and �. The best choice
for � is � ¼ 2, and for �, the range 0<�< 1 provided a
well-behaved expansion.
We concluded that the 1=N expansion can indeed be

applied in noncommutative quantum mechanical systems,
but it seems more sensitive to the singularities of the
potential than the usual perturbative expansion.
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