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ABSTRACT
Homogeneous and isotropic turbulent fields obtained from two direct numerical simulation databases (with Reλ equal to 150 and 418) were
seeded with point particles that moved with the local fluid velocity to obtain Lagrangian pressure histories. Motivated by cavitation inception
modeling, the statistics of events in which such particles undergo low-pressure fluctuations were computed, parameterized by the amplitude
of the fluctuations and by their duration. The main results are the average frequencies of these events and the probabilistic distribution of
their duration, which are of predictive value. A connection is also established between these average frequencies and the pressure probability
density function, thus justifying experimental methods proposed in the literature. Further analyses of the data show that the occurrence of
very-low-pressure events is highly intermittent and is associated with wormlike vortical structures of length comparable to the integral scale
of the flow.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5110265., s

I. INTRODUCTION

The study of pressure fluctuations in turbulent flows has been
the subject of significant theoretical, numerical, and experimental
work over more than eight decades. Over the years, much knowl-
edge has been gained about the intensity of fluctuations, their scaling
properties, their energy spectrum, and the probability density func-
tion (PDF) as well as about their spatial structure and their relation
to other flow variables. The reader is referred, among others, to the
works of George et al.1 Pumir,2 Cao et al.3 Gotoh and Rogallo,4 and
the references therein for further details.

Pressure fluctuations have important practical consequences in
many physical situations since they intervene in the forces exerted
by the fluid on adjacent and immersed bodies and are also key
to acoustic noise. The specific motivation of the study reported
herein is the phenomenon of incipient cavitation in turbulent liq-
uid flows, which is a macroscopic consequence of pressure fluctu-
ations on microscopic bubbles (or nuclei) present in the liquid.5,6

Although the dynamics of cavitation bubbles has been well estab-
lished following the pioneering work of Plesset,7 accurate prediction
of cavitation inception in technologically relevant flows remains a
challenge.8,9

A seminal work on cavitation inception in turbulent flows
was published in 1979 by Arndt and George.10 It puts forward
the main ingredients for turbulence-induced inception: that the
cavitation nuclei are subject to pressure fluctuations as measured in
a Lagrangian frame and that (a) the pressure must dip below a crit-
ical level (pcav, the cavitation pressure, also called Blake threshold11)
and (b) the low pressure must persist below the critical level for a
time that exceeds the time scale for bubble growth. The picture has
been confirmed and enriched over the years by several authors,12–15

including the role of coherent structures and the possibility of using
incipient cavitation bubbles as pressure sensors.

Typically, cavitation inception is defined by the inception cavi-
tation index σi = (pref,i − pcav)/( 1

2ρU2), where pref,i is the value of
the reference pressure of the flow at which cavitating nuclei first
become observable, ρ is the liquid’s density, and U is the global veloc-
ity scale. By observable, it is meant that the frequency of cavitation
events growing bubbles to a large enough size is high enough to
be experimentally detectable. In view of criteria (a) and (b) above,
inception modeling thus requires knowledge about the frequency
ζ at which random turbulent fluctuations take the pressure, as expe-
rienced by the minute nuclei transported by the flow, below pcav for
long enough time. Such knowledge is, however, not as yet available
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in the literature. The purpose of this contribution is to provide
data about ζ in the simplest turbulent flow, homogeneous isotropic
turbulence (HIT). As such, the results are related to the so-called
homogeneous nucleation of cavitation, in which the events take
place far away from walls. To address heterogeneous nucleation, one
should increase at least one step further the complexity of the flow
and consider boundary layer turbulence.

The pressure PDF in HIT is known to be negatively skewed and
exhibit an exponential tail at very low pressures.2–4 On the basis of
physical intuition, several authors have argued that the frequency
ζ(δp) of pressure fluctuations below δp should also exhibit an expo-
nential tail for large and negative δp.10,12,14 Mathematically, this is
far from obvious. In fact, consider a p(t) that exhibits logarithmic
pulses of the form ln(t − ti), where t1, t2, . . . are random times which
arise with average frequency f. It is easy to check that in such a case
PDF(p) has an exponential tail for p ≪ 0. However, the frequency
ζ(δp) is not exponential, as it equals f for any (sufficiently nega-
tive) δp. The temporal structure of the pressure excursions is thus
crucial in determining the statistics of occurrence of low pressure
events.

Having in mind cavitation modeling, in this investigation, we
perform Lagrangian sampling of two Direct Numerical Simulation
(DNS) databases counting events at which the particles go below
some given pressure threshold δp for a longer time than some
given minimum duration d ≥ 0. Note that each excursion, even if
the pressure dives well below δp for a time much greater than d,
is counted as a single event. The rationale behind this is that, if
the given δp and d are likely to produce cavitation of the particle
(nucleus), then the gaseous phase will violently grow and increase
the local pressure so that no similar event will take place within the
same pressure excursion. The results obtained from our Lagrangian
counting experiments confirm the exponential dependence ζ(δp)
≃ C exp(βδp) for δp ≪ 0. The factors C and β are retrieved by fit-
ting the data. We also address the random structure of the pressure
fluctuation events by building the PDF of interarrival times. It shows
that low-pressure events do not behave as a Poisson process, exhibit-
ing a marked burstiness that increases as δp becomes more negative.
It is appropriate to point out that, since the tracking method does
not incorporate any relative velocity between the Lagrangian parti-
cles and the fluid, the results only apply to the smallest cavitation
nuclei.

II. DEFINITIONS AND METHODS
Two databases containing Direct Numerical Simulation (DNS)

results of Forced Homogeneous Isotropic Turbulence (FHIT) were
queried. They consist of fully resolved numerical solutions of the
incompressible Navier-Stokes equations in a periodic domain, with
forcing applied to a narrow band of low wavenumber modes in such
a way that a statistically steady flow develops.

The DNS results are time series of velocity and pressure spa-
tial fields with zero mean from which statistical averages of kinetic
energy ⟨K⟩ and viscous dissipation ⟨𝜖⟩ were computed. From these
values, the basic scales characterizing each flow were defined as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Velocity scale: u′ =
√

2⟨K⟩
3 ,

Length scale: λ = u′
√

15ν
⟨𝜖⟩ ,

(1)

where ν is the kinematic viscosity and unit density is used. The
length scale so defined is the Taylor length microscale. With these
two basic scales, all variables were rescaled (nondimensionalized),
dividing velocities by u′, lengths by λ, pressures by ρu′2, times by
λ/u′, etc. All reference to the DNS data made throughout this arti-
cle concerns the scaled (dimensionless) variables. In particular, the
scaled velocity field u satisfies

⟨∥u∥2⟩ = 3, ⟨∥∇ × u ∥2⟩ = 15. (2)

The nondimensional parameter that characterizes the flow is the
Reynolds number Reλ = u′λ/ν. Two values were considered: Reλ
= 150, obtained from the database maintained by Jiménez and
coworkers at Univ. Politécnica Madrid,16 and Reλ = 418, obtained
from the Johns Hopkins Turbulence Databases.17–19

Note that, under this scaling, the Kolmogorov scales20 are given
by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Length: ηK = 15−
1
4 Re

− 1
2

λ = 0.508 Re
− 1

2
λ ,

Velocity: uK = 15
1
4 Re

− 1
2

λ = 1.968Re
− 1

2
λ ,

Time: τK = 15−
1
2 = 0.2582.

(3)

Notably, τK is independent of Reλ. The Reynolds number based

on the Kolmogorov length is then Reη = u′ηK/ν = 15−
1
4 Re

1
2
λ

= 0.508Re
1
2
λ .

The Lagrangian trajectories are computed by numerically solv-
ing the equation

dr
dt
(t) = u(r(t), t) (4)

from time t = 0 to t = T, with initial condition r(0) = X, for a large
number M of initial positions, i.e., X ∈ X = {X1,X2, . . . ,XM}.
The adopted time-integration method is a Runge-Kutta scheme of
order ≥2, with a time step smaller than the Kolmogorov time scale
(Δt < 0.05). The required spatial interpolation was accomplished
using Lagrangian polynomial interpolants of degree three or greater,
depending on the case.

Along the set of computed trajectories, several statistical esti-
mates were computed by averaging over the Lagrangian samples
(parameterized by the set X of initial positions) and over time. For
these estimates to be meaningful, recommended practices were fol-
lowed.21 The initial positions were uniformly distributed over the
simulation domain, keeping them at least 2.5 grid spacings apart.
The integration time T extended over several eddy turnover times.
Specifically, the Reλ = 150 field (resolution 2563, time step 0.043)
was sampled with M = 106 particles during a time T = 869.1 (114
turnover times). The Reλ = 418 field (resolution 10243, time step
0.012), on the other hand, was sampled with M = 4 × 105 particles
during a time T = 60.7, which corresponds to 5 turnover times.

In incompressible turbulence, Lagrangian averages of spatial
quantities (e.g., kinetic energy, enstrophy, etc.) coincide with Eule-
rian averages. Due to the finite number of Lagrangian particles and
the finite simulation time, especially in the case with Reλ = 418, the
estimates obtained by averaging over the particles and over time are
not exact. The difference of our estimates with Eulerian averages can
be used as a simple test of statistical significance. The error in the
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rms values of velocity and vorticity was smaller than 2%, value rec-
ommended by Yeung,21 providing some validation of our sampling
procedure.

The Lagrangian “Taylor” time scale of a variable Y is defined
as21

τY = [
Var(Y)

Var(DY/Dt)]
1
2

, (5)

where Var(⋅) denotes the variance of the corresponding quantity
and D/Dt is the material derivative. The Lagrangian autocorrelation
function of a variable Y with zero mean is defined by

ρY(s) =
⟨Y(r(t), t)Y(r(t + s), t + s)⟩

Var(Y) . (6)

The Lagrangian integral time scale of Y, denoted by T(Y), is given
by

TY = ∫
+∞

0
ρY(s) ds. (7)

All the statistical averages in the previous and forthcoming def-
initions are of course replaced by estimates computed over the
numerical approximation of the sampled trajectories.

Finally, the occurrence of low pressure events was investigated
as follows: Some negative pressure values p− were chosen, namely,
−2, −2.05, −2.1, etc. Note that these correspond to nondimensional
fluctuations, since ⟨p⟩ = 0. For a given value of p−, a Lagrangian par-
ticle was defined as undergoing a low-pressure event with threshold
p− that starts at time tstart if its pressure satisfies p(tstart) = p− and
Dp/Dt(tstart) < 0. The end of the event is defined as the first time tend
such that p(tend) = p− and Dp/Dt(tend) > 0. The duration of the event
is defined as tend − tstart.

In this way, given m particles evolving in a turbulent field,
a stochastic counting process n(p−, d, t) can be defined as the
number of low-pressure events (with threshold p− and duration
tend − tstart > d) that have 0 < tstart < t. For each threshold p− and each
minimum duration d, the number n(p−, d, T) of events was com-
puted from the time history of the M Lagrangian particles that are
traced over the time T of the simulation. From this, we computed an
estimate for the rate of such events as

ζ(p−, d) ≃ n(p−, d, T)
MT

. (8)

An analogous processing was carried out for high-pressure events,
denoting the (positive) threshold by p+.

III. RESULTS
A. Basic statistics

We first report some basic statistical quantities obtained from
the computed Lagrangian pressure histories. These include the pres-
sure PDFs shown in Fig. 1, together with the quantities summarized
in Table I.

The results for Var(p) are similar to those of Gotoh and
Rogallo,4,22 who reported a value of about 0.9 at Reλ = 39
which decreased to about 0.7 at Reλ = 172. Cao et al.3 reported

FIG. 1. Pressure PDFs obtained from the Lagrangian data at Reλ = 150 and 418.
The dashed-dotted lines depict the fitted exponentials of Eq. (9), shifted for clarity.

TABLE I. Basic statistics of the computed Lagrangian pressure histories.

Quantity Symbol Reλ = 150 Reλ = 418

Variance of p Var(p) 0.78 0.82
Variance of Dp/Dt Var(Dp/Dt) 1.48 0.36
Time microscale τp 0.73 1.51
Integral time scale Tp 2.30 6.21

Var(p) = 0.883 at Reλ = 131, while Pumir2 obtained Var(p) ≃ 1 for
21.6 ≤ Reλ ≤ 77.5. Lagrangian Taylor and integral time scales for
pressure are not available in the literature, nor is the Lagrangian
pressure autocorrelation function, which is shown in Fig. 2.

FIG. 2. Lagrangian pressure autocorrelation functions at Reλ = 150 and 418.
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The pressure PDFs exhibit the (approximately) exponential
tails previously reported by Pumir2 and Cao et al.3 Specifically, the
data can be fitted by

PDF(p) ≃ {
0.18 exp(1.1 p) for Reλ = 150, −13 ≤ p ≤ −5

0.008 exp(0.65 p) for Reλ = 418, −17 ≤ p ≤ −7
. (9)

B. Average frequency of pressure fluctuation events
The main novel results in this contribution are the values of

ζ(p−, d) as depicted in Fig. 3. Note that ζ is an average frequency of
events per particle. An estimate of its relative statistical error can be

FIG. 3. Nondimensional frequency ζ(p−, d) of low-pressure events as a function
of the threshold pressure p− for several values of the minimum duration d = 0, 0.5,
1, . . .. Results at (a) Reλ = 150 and (b) Reλ = 418.

FIG. 4. ζ(p−, d) for d = 0, 1, . . ., 6, for both values of Reλ, and their exponential
fits.

obtained as 1/
√

n(p−, d, T) for each computed value. This makes the
relative error of ζ to be proportional to ζ−1/2, with a proportionality
constant of 3 × 10−5 for the Reλ = 150 simulation and of 2 × 10−4 for
the Reλ = 418 one. No values of ζ below 10−6 are reported because
for this value the relative statistical error is already at 20% for the
higher Re.

A typical use of these data would be as follows: Consider a
volume V of fluid in a (homogeneous, isotropic) turbulent flow char-
acterized by given values of u′, λ, and Reλ, and assume that the fluid
contains some concentration Z of small particles (per m3) in sus-
pension. Then, F = ZVζ(p−, d)u′/λ is the expected frequency (in
events/second) with which the suspended particles will undergo neg-
ative pressure fluctuations below ρu′2p− (in Pa) that last more than
dλ/u′ (in s) within the volume V. Of course, for this to hold, the
quantity ζ(p−, d) must be evaluated at the flow’s Reλ.

Going back to Fig. 3, note that for any minimum duration d
the average frequency is approximately exponential in p−, i.e., ζ(p−)

TABLE II. Constants C and β of the exponential fits of the data, for low-pressure
events of duration greater or equal than d and for the two datasets (Reλ = 150 and
418). The quality of the fits can be appreciated in Fig. 4.

Reλ = 150 Reλ = 418

Min. duration (d) C β C β

0 0.04 0.80 0.010 0.60
1 0.15 1.35 0.0055 0.68
2 0.08 1.55 0.003 0.72
3 0.07 1.80 0.0025 0.79
4 0.047 1.97 0.0065 1.02
5 0.03 2.10 0.0125 1.25
6 0.014 2.10 0.022 1.50
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≃ C exp(βp−), with C and β depending on d and on Reλ. In fact, some
upward concavity can be observed in the semilog plots for the higher
values of p− (milder pressure fluctuations), but for lower values the
plots closely follow straight lines. This can be more easily seen in
Fig. 4, in which all plots of ζ(p−, d) corresponding to d = 0, 1, 2, . . .,
6 for both values of Reλ have been put together simultaneously with
their exponential fits.

The fitted values of C and β are listed in Table II. Most relevant
is the parameter β, i.e., the slope in the semilog plots. A smaller β
implies that, as the threshold is lowered, the average rate of excur-
sions below the threshold decreases more slowly. For any minimum

FIG. 5. Nondimensional frequency ζ(p−, d) of low-pressure events as a function
of minimum duration d for several values of the threshold pressure (p− = −2, −3,
−4, . . .). Results at (a) Reλ = 150 and (b) Reλ = 418.

duration of the excursions, β is smaller for the higher Reynolds num-
ber. This is consistent with the pressure PDFs, which also show that
lower pressures become more probable at higher Reλ, with expo-
nential tails that behave as exp(γp−), with γ = 1.1 at Reλ = 150 and
γ = 0.65 at Reλ = 418 (see Fig. 1).

By direct inspection of Table II, one notices that γ is, for both
Reλ, close to the parameter β that corresponds to events of mini-
mum duration d between 0 and 1 (i.e., between zero and roughly
four Kolmogorov time scales). The experimental consequences of
this are quite interesting. Assume that, as proposed by LaPorta
et al.,14 one uses the gas nuclei in a liquid as pressure sensors and
measures the average rate of cavitation events as a function of the
(variable) reference pressure pref of the flow. Then, if the nuclei’s

FIG. 6. PDFs of the duration of the low-pressure events for several values of the
threshold pressure (p− = −2, −4, −6, −8). Results at (a) Reλ = 150 and (b) Reλ
= 418.
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reaction time is smaller than a few Kolmogorov time scales, the curve
cavitation rate vs (pcav − pref) will be approximately proportional
to ∫ pcav−pref

−∞ PDF(p)dp and thus, since PDF(p) is exponential, to
PDF(pcav − pref) itself. This has been argued in the literature by sev-
eral authors10,12,14 on the basis of physical intuition and is herein
rigorously confirmed. Note that the short reaction time of the nuclei
is crucial for the proportionality ζ(p−) ∼ PDF(p−) to hold. If the
reaction time is larger than, say, 20τK (corresponding to d ≃ 5),
the dependence of the cavitation rate with pressure will largely dif-
fer from that of the pressure PDF. It is worth mentioning that the
values of β inferred by LaPorta et al.,14 which were in the range 0.14–
0.22 for Reλ between 1658 and 1880, suggest that β keeps decreasing
with Reλ in much the same way as observed from the DNS databases
studied here.

The dependence of ζ with the minimum duration d of the
events is depicted in Fig. 5. An approximately exponential decay
of ζ with d is observed for d greater than a few τK (say, d > 0.5),
with a logarithmic slope that becomes more negative as the threshold
p− is lowered. For any p−, the average rate of long events increases
significantly with Reλ.

It is informative to complement the previous results with fur-
ther analysis of the distribution of the duration (tend − tstart) of the
events corresponding to each threshold p−. The corresponding PDFs
are shown in Fig. 6. It is observed that the peak of the PDF is always
about 2/3 of τK and that the PDFs for each p− have longer tails for
the larger Reλ. As p− decreases, the distribution becomes narrower,
i.e., events that last longer than τK become increasingly improbable.
The means and medians of these PDFs are shown as functions of
p− in Fig. 7. They increase significantly with Reλ, contrary to what
happens with the peak of duration PDFs.

For the purpose of both completeness and comparison, let us
close this section with plots of ζ(p+, d), corresponding to positive
pressure fluctuations. They are shown in Fig. 8. It is evident that pos-
itive pressure excursions are much more rare than negative ones, a
result that is consistent with the rapid decay of the positive side of

FIG. 7. Mean and median duration of the low-pressure events as functions of the
threshold pressure p−.

FIG. 8. Obtained values of nondimensional frequency ζ(p+, d) of high-pressure
events as a function of the threshold pressure p+ for several values of the minimum
duration d. Results at (a) Reλ = 150 and (b) Reλ = 418.

the pressure PDF. For minimum duration d = 0, the rate of events
does not change much with Reλ, but for events significantly longer
than 10 Kolmogorov time scales (d > 2.58), the nondimensional fre-
quency for Reλ = 418 is much greater than that for Reλ = 150, by an
order of magnitude or more.

C. Randomness of low-pressure fluctuations
The occurrence of low-pressure fluctuations (of threshold p−

and minimum duration d) in a turbulent flow is certainly a ran-
dom process. Its stochastic properties can be investigated look-
ing at the arrival process formed by the (monotone increasing)
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sequence t(1)start, t(2)start, . . ., where t(i)start is the starting time of the ith
event. This generates the stochastic process of interarrival times,
Di = t(i+1)

start − t(i)start. If m random particles are seeded into the
flow, then by definition the average interarrival time satisfies D
= 1/(mζ(p−, d)). A totally random arrival process (Poisson process)
exhibits an exponential distribution for D, i.e.,

PDF(D) = 1
D

exp(−D
D
). (10)

Whether the sequence of low-pressure events is a Poisson process
or not can thus be assessed by inspecting the PDF of interarrival
times. This PDF cannot be built from the raw data consisting of all

FIG. 9. PDF of the interarrival times of low pressure events of any duration
(d = 0) for different thresholds p−. The exponential corresponding to a Pois-
son process is also plotted for comparison. Results at (a) Reλ = 150 and
(b) Reλ = 418.

events undergone by the M particles because of the temporal reso-
lution limit imposed by the simulation time step. For example, for
the case of events with p− = −2 and d = 0, the total number of
such events recorded was 2.11 × 107 for the simulation at Reλ = 150
(M = 106) and 3.43 × 105 for that at Reλ = 418 (M = 4 × 105).
Meanwhile, the number of simulated time steps is 20 000 and 5000,
respectively. This makes the interarrival times to be much smaller
than the time step and thus poorly resolved.

The procedure adopted to build PDF(D) was as follows: From
the M particles in the simulation, batches of m particles were
extracted at random, selecting the number m such that D equals 100
simulation time steps. For each batch, the interarrival times were
computed, and PDF(D) was obtained averaging the histograms of
50 000 such batches.

The results considering events of any duration (d = 0) for each
pressure threshold are shown in Fig. 9, where we plot D PDF(D)
as a function of D/D. Also shown is the exponential distribution
exp(−D/D) which would correspond to a Poisson process. Analo-
gous PDFs can be built for other values of d, but they are not shown
since they are quite similar.

The first immediate observation from the plots of PDF(D) is
that low-pressure events do not take place as a totally random, Pois-
son process that would entail an exponential PDF. The semilog-plots
of the PDFs of interarrival times exhibit an upward concavity, or
“heavy tail,” which becomes more prominent as the threshold p− is
decreased. This heavy tail is characteristic of processes that exhibit
burstiness, for which a popular quantitative measure in the literature
is the “burstiness parameter”23 defined by

B = σ(D) −D
σ(D) + D

, (11)

where σ(D) is the standard deviation of D. Note that B = −1 for a
periodic process (σ(D) = 0), B = 0 for a Poisson process (σ(D) = D),
and B = 1 for a highly bursty process (σ(D) ≫ D). The graphs
of B vs p− fixing the minimum duration to d = 0 are shown in

FIG. 10. Burstiness parameter of the low-pressure events as a function of the
threshold pressure p− for the two Reλ considered.
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FIG. 11. Number of events that start within a time bin (size of the bin: 50 time
steps) as a function of time. The plots correspond to events of threshold p− = −2
(dotted line) and −11 (solid line), with minimum duration d = 0, as recorded in the
Reλ = 150 simulation.

Fig. 10 for both Reλ considered. Clearly, the low-pressure events are
more bursty for larger fluctuations (more negative p−). To visual-
ize this, in Fig. 11, we plot, as a function of time, the number of
events that start in temporal bins of 50 time steps for p− = −2 and
p− = −11 in the simulation with Reλ = 150. The number of events
per bin with threshold −2 oscillates moderately around its mean

value, while that with threshold −11 is most of the time near zero
with intermittent bursts that reach 30 or more events per bin. It is
remarkable that burstiness parameters of value 0.3 and higher are
observed. Such values are not frequent in natural phenomena and
can be found in highly intermittent human activities such as e-mail
sending.23

The high burstiness of very-low-pressure events is an indica-
tion of large flow structures being involved in them such that when
one of these structures appears, many particles go through it and
bursts of events take place. This picture is consistent with the inter-
mittent structures of intense vorticity, or worms, first described by
Jiménez et al.,24 which have lengths of the order of the integral scale
of the flow. To confirm this, we looked at the pressure isosurfaces of
the Reλ = 418 simulation, for which a burst of low-pressure events
takes place for nondimensional times between 6 and 18 (the burst
thus lasts about 46 Kolmogorov time scales). The isosurfaces are
shown in Fig. 12 at some selected instants. The lightest surfaces, cor-
responding to p = −2, are present in all snapshots as expected from
the low value of B for p− = −2. At time t = 6.4, a vortical structure
develops, which is most evident at the peak of the burst (between
t = 9.1 and 11.8, third and fourth frames in the figure). It is within
this structure that very low pressures (−8 or lower) occur and affect
numerous Lagrangian particles. By time 14.4, this structure is dis-
solving away, and after the burst, at t = 25.1, the flow has recovered
an isosurface pattern similar to the one observed before the burst.
We have checked that the vertical low-pressure structure is indeed
a high vorticity region, and its shape and length are in agreement
with the intermittent worms reported in the literature (note that
the integral length scale for this flow is 12.1, roughly 1/5 the box
edgelength).24

FIG. 12. Pressure isosurfaces of values
p = −2, −4, −6, −8, and −10 during a
burst of very-low-pressure events. The
corresponding times are, from left to right
and top to bottom, t = 3.8, 6.4, 9.1, 11.8,
14.4, and 25.1. The size of the periodic
box is 55.6, and the integral scale is 12.1.

Phys. Fluids 31, 085111 (2019); doi: 10.1063/1.5110265 31, 085111-8

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

IV. CONCLUSIONS
Motivated by cavitation inception modeling, this work reports

some Lagrangian statistics of the pressure field in forced homoge-
neous isotropic turbulence. It is clear that for a cavitation nucleus
to grow up to detectable size, a pressure fluctuation that takes it
to sufficiently low pressures for long enough time is necessary.
However, the frequency of such low-pressure events was not avail-
able in the literature and is first reported herein for two values of
Reλ, namely, 150 and 418. The main result consists of the aver-
age frequency ζ(p−, d) with which a Lagrangian particle under-
goes a fluctuation that takes its pressure below some threshold
p− for a time longer than some minimum duration d. This aver-
age frequency, for any d, is observed to have an exponential tail
[i.e., to behave as ∼ C exp(βp−)] toward very low pressure thresh-
olds. Furthermore, the value of the logarithmic slope β that cor-
responds to d ≃ 0 is roughly coincident with that of the expo-
nential tail of the pressure PDF. The PDF of the duration of
low-pressure events is also reported, which shows that the most
probable duration is smaller than the Kolmogorov time scale and
quite insensitive to p− for both Reλ considered. On the other
hand, the mean and median duration of the pressure excursions
grow significantly with Reλ and depend strongly on p− but only
for moderate values of this variable. The analysis of the interar-
rival times between low-pressure events shows that their occur-
rence departs from that of a totally random homogeneous stochas-
tic process (Poisson process). This departure becomes more and
more accentuated as the threshold p− is lowered. The distribu-
tion of interarrival times is heavy-tailed, indicative of a bursty
process. In fact, a quantitative indicator of burstiness was com-
puted, yielding values indicative of a highly intermittent process.
This suggests that the bursts of low-pressure events are associ-
ated with intermittent large-scale vortical structures,24 as confirmed
by examination of the pressure isosurfaces at the time of the
bursts.

The reported results provide useful quantitative data to pre-
dict the frequency, intensity, and duration of pressure fluctua-
tions experienced by very small particles that are passively trans-
ported by a turbulent flow. They can be used, for example, to
inform modern models of numerical cavitation.25–27 The behav-
ior at higher Reynolds numbers and in other turbulent flows
should certainly be explored to gain further understanding. Also,
the relative velocity that develops between non-neutrally buoy-
ant particles of finite size and the surrounding liquid could
attract bubbles toward vortex cores and strongly affect the
computed frequencies. These issues are the subject of ongoing
work.
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