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Abstract

We show that the family of recognizable Z-subsets of A* is closed
under (integer) division by a positive integer. The technique that
we use to prove this result is constructive and, by generalizing
this construction, we obtain a characterization of recognizable
Z-subscts of At as a sum of finitely many simple Z-subsets of
A*. We also show that the family of recognizable Z-subsets of
A® is not closed under division by a negative integer, or under
taking the remainder of the division by a non-zero integer.

Introduction

In the seventies, S. Eilenberg [2] studied the recognizable subsets with multi-
plicities in an arbitrary semiring /\', paying special attention to the cases of
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semiring and the identities with respect to minimum and addition are oc
and 0, respectively.

The subsemiring 2~ of Z consists of the nonpositive integers and oc. It
is isomorphic to M7, the dual of M, whose support is NU —oc and whose
operations are the maximum and the addition.

Let A be a finite alphabet. A Z-subset X of A" is a function X : 4 — 2.
For each w in A°, wX is called the multiplicity with which w belongs 10 X
If 1X = oc then we also say that X is a Z-subset of A7,

The following operations are defined over Z-subsets of 4%, where { X, |
¢t € 1} is a family of Z-subsets of A* indexed by a set /, X and Y are 2Z-
subsets of A*, and m € Z. For (a) and (b) we assume that / is finite. and
for (e) and (f) we assume that 1.X = oc. ‘

(a) Vw e A*, w(ming, X,) = mine(wlX;) (minimum)
(b) Vwe A", w(Zies X)) = Lies(wX,)) (addition)
(c) Vwe A", w(XY) = mingou(r X +3)) {concatenation)

(d) Vvwe A*, w(m+X)=m+ wX
(e) Vwe A”, wX* = w(min,y; X") = mingy; (wX™)

(f) X* = min(1, X*), where the Z-subset 1 is defined by Vw € A*. «1 =0
if w =1 and wl = oo, otherwise.

Recall that, for any semiring /', one naturally has the operations of ad-
dition, intersection, and multiplication of K -subsets. In the case in which
K = Z, these operations are, respectively, the ones given in (a), (b) and (c)
above.

Observe that if I = @, mingi(m;) = oo and ¥ ;¢ym; = 0.

The family Z{(A)) of all Z-subsets of A® with the minimum (a) and
concatenation (c) operations constilutes a semiring, whose identities are, re-
spectively, the Z-subset @ (where, for all w € A®, wl = co) and the Z-subset
1.

A Z-A-automaton A = (Q,1,T) is an automaton over A. with a finite
set Q of states, two Z-subsets J and T of Q and a Z-subset E4 of Q x A x Q.






and, morcover. there are neither edges with terminus 1 nor edges with origin
t.

Lo d

We say that a Z-A-automaion A = (Q,1,T)is simple if
(Qx AxQ)laC{0,1,-1l.0c}. QIC {0,00} and QT C {0.x} .

It is important to observe that in a normalized or simple Z-A-automaton
A, every victorious path 7 with label w satisfies [|P|| = w]||A| (because
Q1,QT C {0,0c}) and every successful path P’ with label w is such that
wllAll < J|IP|| (because [[P)| < |P'}]). These properties will be frequently
used in the proofs.

A Z-subscl of A" is rccognizable if it is the behavior of some Z-A-
automaton. It is well known that every recognizable Z-subset of A™ is the
behavior of a normalized Z-A-automaton. The family of all recognizable
Z-subsets of A" is denoted by Z Rec A™.

A class of recognizable Z-subsets of A* that has received some attention
is that of simple Z-subsets of A", denoted by Z SRec A”. A Z-subset of A”
is simple if it is the behavior of some simple Z-A-automaton. We showed
(7, 8] that the family of simple M-subsets of A" is a proper subfamily of
all recognizable M-subsets of A", This result can be easily extended to the
family of recognizable Z-subsets of A"; that is, Z SRec A ¢ Z Rec A",

Let us denote by A* thie Z-subset of A~ such that

Ve A", wAt = { oo ifw=1

0  otherwise .
Then, one can casily verify the following result.

Proposition 1 For every recognizable Z-subset X of A there erists a nor-
malized Z-A-automaton A such that | A}l = X + A*.

38 Closure of Z Rec A* under the division by
an integer

We studied the closure properties of the family of recognizable M-subsets
of A and of two of its sublamilies under several operations. These results






e ifi>r, j=1—rand ake = k; thus,
o Ey=kd+r=daE)+1-]:
eifi<r,j=i—r+dand oL =k + 1; thus,

dEy=kd+r=kd+d+r—d=dk+1)+r—d=dlake)+i-j .

In both cases, j € [1,d] and o’E4 = d(aE¢) + i — j. Note that this condition
uniquely defines both j and aFy. for every ¢ and o' E 4.

Let us see what we can say about the edge multiplicities of C when d is the
maximum of the absolute values of the multiplicities of the useful edges of A.
This is, in fact, the situation we will have in the next section. If each useful
edge o of A is such that 0 < |a’E4] < d. it results that k = o'E4 div d
isOorlor =1 Also, & =1 if and ouly if &’£4 = d and, in this case,
r=a k4 modd=0. Then,

_ | & (which can be 0 or 1 or —1) ifi>r

vie(l.d, TS { k (which can be 0 or —1) +1 fi<r.

Thus the edge multiplicities of C are in {0,1,—1, 00}.

In the sequel, we study some properties relating paths in A with the
corresponding paths in C and vice versa.

Let P4 and Pr be the sets of useful paths in A and in C. respectively. Let
us define a function ¥: Pr — P4 as follows. If

P = ((PO, iO)aah (Ph il))((pllil)a az, (P?»h)) g G ((pn-l! in—l)| Qn, (in ‘ﬂ))

is a useful path in C, then

PY = (lm'“lvl)l)(pha%m)'--(pn-lwampn) .

It is easy to sec that PW¥ is a useful path in A and we say that PV is the
projection of P in A. Ou the other hand, one can see that for each useful
path P’ in A and for each i € [1.d]. there exists a unique useful path P in C,
with origin in Q4 x {1}, whose projection in A is /. Such a path P will be
called the i-lifting of P’ in C. The following lemma relates the multiplicities
of a useful path in C and of its projection.
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Lemma 3 Let P be a uscful path in C from (p,i) Lo (q,7). ¢ and j € [1,d).
Then its projection P’ in A salisfies

1P =djiPll+:-3 .

Proof. Let P be a useful path in C from (p,?) to (¢,j). Let w be the label
of P, w=w...w, with wy € A, (1 <! <t). The proof is by induction on
the length ¢ of the path P.

Ift =1, then P = ((p,1),w,(q,j)) is a useful edge of C. Let P’ = (p.w, q)
be the projection of P in A. By the construction of C, we can verify that

1Pl =djlPll +i-j

as required. Hence, let us suppose that £ > 1 and that the lemma is valid for
useful paths in C of length less than ¢. Then, the path P = ((p,1).w, (¢, 7))
can be decomposed in the path P, = ((p,7),w,...w,—y, (s,1)) and in the
edge a = ((s,1),w, (¢, 7)), for some s € @ and ! € [1,d], such that P = Pja.

By the induction hypothesis applied to the path P, = ((p,1),w; ... w,_,,
(s,1)), its projection P, = (p,wy...ws—1,8) in A satisfies

1P| = d|P|+i—1.

Let o' = (s,w:,q) be the projection of a = ((s,1),wi,(¢,5)) in A. By the
construction of C. we have that

lell = dljall+1-j .

Thus, the path P’ = P/'a’ = (p,w, ... w,_1,8)(s, wy, ) from p to ¢ is the
projection of P in A and

Il = 1Pl + lloll = dli Pyl + i = L+ dllall +1 = j = d(LP | + ol +i - j -
Therefore, |[P'|| = d||P]| + 7 — j.

The crucial property of the construction of C is stated in Lemma 3 above:
it says that for every useful path P in C and its projection P’ in A, the
difference ||P’|| — d|| P|| only depends on the origin and the terminus of the
path P.
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Corollary 4 Let P be a useful path in C from (p,1) to (¢,j), ¢ end j € [1,d].
Let P’ be the projection of P in A. Then

o= { 1P divd ifi-j>0
L+||P|divd  ifi-j<0.

Proof of Theorem 2. For d = 1 we have nothing to prove.

Let d > 2. Let X be a recognizable Z-subset of A* and let A =
(Qa4, 14, T4) be a normalized Z-A-automaton such that [|A|| = X.

Let us construct a Z-A-automaton B = (C,!,T) from the Z-A-semiau-

tomaton C = (Q, E¢), whose construction and properties we just described.
For this, let us define the Z-subsets I and T of Q:

(g.d) = qla (Vg€ Qi) and (¢, j) =00 (Vg€ Q4 Vje€([l,d-1]);

(qu)T= f]T_A (Vq € Q.A, VJ € llsd]) o

We wish to prove that ||B]| = ||A]| divd. Let w € A* be such that
wl||.A]| # oo and let P’ be a victorious path in A, with label w. By Corollary 4,
the d-lifting P of P’ in B satisfies

Pl =Pl div d ;

hence,
w||B|| < || Pl = || Al divd . (1)
Let now P, be a victorious path in B, with label w. Let P’ be the

projection of P, in A. Then, remembering that the origin of P, lies in
Q. x {d}, and using Corollary 4, we have that

w|B|| = |1P]l = ||| div d 2 ||P'|| div d = w||A] div d . 2)

Thus, from (1) and (2), we have that w||B|| = w||A|| div d.

Moreover, we observe that 1||B]] = oo and if w||A|| = oo then Corollary 4
implies that w||B|| = oco. Thus, ||B|| = |A|l divd = X div d. Therefore,
X div d is a recognizable Z-subset of A*.
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In the proof of Theorem 2, if A is an M-A-automaton (resp. Z7-A-
automaton), B will be an M-A-automaton (resp. Z~-A-automaton). Thus,
Theorem 2 is also valid to the recognizable M-subsets (resp. Z~-subsets).

Corollary 5 Let d be a positive integer. If X is a recognizable M-subset
(resp. Z~-subset) of A* then X div d is a recognizable M-subset (resp.
Z~-subset) of A*.

Theorem 2 can be easily extended for the family of all recognizable Z-
subsets as can Corollary 5 for the family of all recognizable M-subsets and
Z~-subsets of A",

Corollary 6 Let d be a positive integer. Z Rec A*. M Rec A™ and Z~ Rec A*
are closed under div d.

Proof. Let X € ZRec A*. By Theorem 2, (X + A*) div d is a recognizable
Z-subset of At. Thus, X divd = min((X + At)divd,(1X divd)+1)isa

recognizable Z-subsct of A
The proof for X in M Rec A* or Z~ Rec A" is similar.

It follows from Theorem 2 and Corollary 6 that the family of simple Z-
subsets of A® is also closed under integer division by a positive integer.

Corollary 7 Let d be a positive integer. Z SRec A* is closed under div d.

In the sequel, we verify that if d is a negative integer, Z Rec A™ is not
closed under div d.

Lemma 8 Let d be a negative integer. Z Rec A™ is not closed under div d.

Proof. Let A = {a,b} and let X be the Z-subset of A™ defined by 1X = oo
and Yw € At wX = min{—|w|,. —|wls}. It is clear that X' € Z Rec A~.
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Let us consider the Z-subset Y = X div — 1. By the definition of }'. we
have 1Y =oc and Vw € AT . wY =w(X div = 1) =wX div -1 = —wX =
— min{—|w|o. =|w],} = max{|wla. [w]s}.

Suppose that )" is a recognizable Z-subset of A". Then, there is a nor-
malized Z- A-automaton A such that ||A|| =Y.

Consider the word w = a™b®, where n is the number of the states of A.
Then wY =n.

Let P be a victorious path in A, spelling w. Then, | P|| = w||A| = wY =
n and exist naturals r, s and ¢, with s > 0 and r + s + { = n such that the
path P can be factorized as

n r L] ¢

P b b
- o (h —r g2 — 2 —*" 43 .

Consider the factor Py = (qz,b%,¢2) of P. If |Pll <0, exists a successful
path P’ in A,

” r * 2 t

i b
Plige g g 2o g = @ g
spelling the word w’ = a™b™** such that
P <NPll=n .
Then w'||A]| € ||} € n. This is a contradiction because
w'Y =max{n,n+s}=n+1.

Thus, [|Af| > 0. And, in this case, exists a successful path P” in A,

r ]

P":‘Io:l’ln = ¢ g,
spelling the word w” = a™b"~* such that
1P| < 1Pl =n .
Then w"||Alj < |P”|| < n. This is a contradiction because
w"Y = max{n,n—s}=n.

Hence, Y is not a recognizable Z-subset of A°. Therefore, Z Rec A™ is
not closed under div d, when d is a negative integer. [

A consequence of the proof of the previous lemma is the statement in the
next lemma (see [8]) which was also showed by Krob [10] in another context.
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Lemma 9 There is a Z-subsct X of A such that X 1s recognizable but — X
ts nol.

We saw that Z Rec A™ is closed under the div d operation when d is a
positive integer. It turns out that, however, this is not true for the mod
operation.

Lemma 10 Let d be an infeger, d # 0. Z Rec A* is nol closed under mod
d.

Proof. Let A = {a,b,c} and let X be the Z-subset of A* defined by
Ywe A*,  wX = min{|w]., =2|wl|, =2|w]s — 1} .

It is clear that X € Z Rec A".
Let us consider the Z-subset ¥ = X mod 2 = X mod —2. Then,

. - _ ] 0 if (w € ¢ and |w]. is even) or fw|, > |wl
i R { K cilsfiine eeaand [islciaeddiosial < fid;

Suppose that Y is a recognizable Z-subset of A*. In this case, there is a
Z-A-automaton A = (Q, I, T) such that ||A] =Y.

Let n = |@| and let us consider the word w = a™*'b". Then, there is
a victorious path P in A4, with |P| = w and ||P]| = w||A]| = wY = 0.
Moreover, there are naturals r, sand {, withs > 0and r+ s+t = n + 1
such that the path P can be decomposed as

P:iu—rbpil—»pibqibf,

Consider the factor (p,a*,p) of P. If ||(p, «*, p)]| > 0. the path

Plzi—a—r-opﬂ—!vq—&f

spells the word w' = a"*'=*)” and we have that

Wl Af < [Pl < IP|=0 .
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But w'Y = 1, contradicting that Y = || A]|.
Hence, [|(p,a*,p)|| < 0 and in this case, the path

P S p g Ny

spells the word w” = «"*'**)" and we have that
w'|Al < ||Pfl < ||P| =0 .

But w"Y = 0, contradicting that Y = || A|.

Therefore, Y = X mod 2 = X mod -2 is not a recognizable Z-subset of
A®.

n

The quotient (div) and the remainder (mod) were defined in such a way
that the remainder is always non-negative. However, there are cases in which
one defines the integer division { div’ and mod’) so that the remainder has
the same sign as the dividend. That is,

Vd#0, oodivvd=00, ocomod'd=c0 and

Vmez, mdivvd=%t and mmodd=r,

where k and r are the unique integers such that kd +r =m, 0 < |r| < |d|
and rm > 0.

The following properties are also satisfied:
mdivvd=—(mdiv' —d) and mmod d=m mod —d .

As before, we can extend the operation div' and mod’ to the Z-subsets
of A*. Let X be a recognizable Z-subset of A* and let d # 0. The 2- subset.s
X div' d and X mod’ d of A* are defined by

Ywe A, w(X div'd)=wX div'd and w(X mod'd)=wX mod'd .

Let us see how the two operations div' and mod’ relate to the standard
div and mod.
Let d # 0 and m € Z be given, and let

m div d = ky, mmodd=r,,
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m div' d = ky, mmodd=r; .

Then

ki+1 ifm<Oandr; >0andd>0

k fm>00rr =0
kz:
by =1 ifm<Oandr, >0and d<0

d _n fm>00rr; =0
and 2= p —|d| ifm<Oandr; >0.

Let us show that there is a recognizable Z-subset X of A™ such that
X mod’' d and X div' d are not recognizable Z-subsets of A™.

Theorem 11 Lel d be a positive integer. Z Rec A* is nof closed under div'd.

Proof. Let A = {a,b} and let X be the Z-subset of A~ defined by
Vwe A*. wX = 2(jw|, — |wls) +1 .

It is clear that X is a recognizable Z-subset and we observe that Yw € A~,
wX mod 2 = 1.

Consider the Z-subsets of A*, F = X div2 and G = X div' 2. Then,
from the observations in the definition of div’, we have that -

wF fwF >0

oy wG:{wF‘+1 if wF <0 .

But, we can observe that, Yw € A*, wF = |w|, — |w|s. Therefore, G can be
described by

lwla — Jwle if wla 2 |wly

Vw € A7, wG={ lwla = |wls +1 i |wls < fwls

We will show that G is not a recognizable Z-subset of A*.

Let us suppose that G is a recognizable Z-subset of A*. In this case,
there is a Z-A-automaton A = (Q, I, T) such that ||Al| = G.

Let n = |@| and let us consider the word w = a™b". Then, there is
a victorious path P in A, with |P| = w and ||P|| = w[|A] = wG = 0.

14



Moreover, there are naturals r, s and t, with s > 0 and » + s + ¢ = n such
that the path P can be decomposed as

P:iZhp2p g,

First, suppose that the multiplicity of the factor (p,a’,p) of P is zero or
negative. In this case, the path

Plzic—'»pivpiop-i»q-ﬂ-.f

spells the word w' = a"**b" and ||P,|| £ ||P}|. Then, we have that
[ Al <Al <]P|=0.

But
WG =uw,-|w=s>0,

contradicting that G = || Al].
Now, suppose that 0 < ||(p.a’,p)|| < s. In this case, for the path P, and
the word w’ described above, we have that

w'| A S |Al <|[Pl+s=s .

But w'G = s. contradicting that G = || A]|.
If [|(p,@*, p)l| 2 s, the path

PiiZhp gy

spells the word w” = a"~*0" and || ]| = [|P]| — ||(p. ¢*,p)l| £ —s. Then, we
have that
w A < [[Pf) < -5 .
But
w'G = =W +1=—-s+1,

contradicting that G = || All.
Therefore, there can not exist a Z-A-automaton whose behavior is G.
Thus, G is not a recognizable Z-subset of A®.
.

A consequence of the proof of Theorem 11 is given in the sequence.
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Corollary 12 There is a rccognizable Z-subset X of A™ such that the Z-
subset Y defincd by

wX fwX 20

NI “”={w_\’+1 fwX <0

is not recognizablc.
=
Lemma 18 Lcl d be a negative integer. Z Rec A” is not closcd under div'd.

Proof. For all s € Z. mdiv —1 =m div’ — 1, because in this case the
remainder is zero. Thus, from the proof of Lemma 8, we can conclude that
Z Rec A” is not closed under div’' d, when d is a negative integer. (]

Lemma 14 Let d be an inleger, d # 0. Z Rec A” is not closed under mod'd.
Proof. Let us consider the Z-subset X in the proof of Lemma 10:

Vw € A7, wX = min{|w|., —2|wl|a, —2|w]s — 1}
and take ¥ =X mod’2 = X mod’ — 2. Then,

0 if (w € c" and |w] is even) or |w|, > |wls
YVwe A, wY =1 ifwé€c and |w| is odd
-1 if jwls £ |wh

Suppose that ) is a recognizable Z-subset of A”. In this case, there is a
Z-A-automaton A = (Q,1.T') such that |JAl| =Y.

Let » = |Q} and let us consider the word w = a™b". Then. there is
a victorious path 7 in A, with |P| = w and ||P}| = w||A]| = v} = -L
Moreover, there arc naturals r, s and £, with s > 0 and r + s+t =n such
that the path I’ can be decomposed as

P:i-i'pi.-»p-i»qivf.

Consider the factor (p,a*,p) of P. If ||(p,a* p)|| £ 0, the path

16



Poiippp gy

spells the word w’ = «"**§" and we have that
Al < A L IPl=-1.

But w'Y = 0, contradicting that ¥ = || A||.
Hence, ||(p,a’,p)|| > 0 and in this case, the path

P;:i—a;p—ibqi»f

spells the word «w” = @"~*0" and we have that
" A L [Pl < [IPlf = -1 .

But w"Y = —1, contradicting that Y = || A]].
Therefore. Y = X mod’ 2 = X mod’ — 2 is not a recognizable Z-subset
of A~
.

The closure properties of Z Rec A® that we have seen in this section are
summarized in Table 1.

Table 1: Closurc properties of Z Rec A* under quotient and remainder by a
non-zero integer

[ Operator [d>0[d <0 |

div ves no

mod no no

div’ no no
Y]

mod no no
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4 A characterization of recognizable Z-sub-
sets of A"

Eilenberg [2] showed that, for any semiring i, the family of recognizable
K -subsets is closed under intersection. But we showed [7] that the family
of simple M-subsets, M SRec A”, is not closed under addition. (Recall that
the addition of M-subsets plays the role of intersection of A'-subsets for a
general semiring ) This fact led us to investigate the following question:

Is every recognizable M-subset of A* the sum of a finite number
of simple .M-subsets of A+?

For instance. onc can verily that the recognizable M-subset X' defined by
Ywe {a,b}", wX = 2w, + 3|wls

is not a simple .M-subsct, but it can be described as the sum of five simple
M-subsets X;, X3, X3,.X; and X5 defined by

Yw € {a,b}", wX, =wX;=|wl, and wX3= wXy = wXs = |wly .

In fact, X may also be written as the sum of three simple .M-subsets Y},

and Y3 defined by
VY € {a,b}*. w); =w); =|w| and w)3=|w|, .

We obtained an affirmative answer for this question (see [7] and [§]). The
next theorem generalizes this result to the semiring Z.

Theorem 15 A Z-subsel of A% is recognizable if and only if it is the sum
of a finite number of simple Z-subsets of AY.

Proof. Let X be a recognizable Z-subset of A*. Let A = (Qa./4,T4) be a
normalized Z-A-automaton such that ||A|| = X and let d be the maximum
of the absolute values of the multiplicities of the useful edges of A.

Let us construct d 2-A-automata A, (1 <i < d) such that &0, || 4]l =
lIAll-



For each 7 € [1.d]. the 2- A-automaton A, = (C. 1, T) is constructed from
the Z-A-semiautomaton C = (Q, E¢) which was introduced in the previous
section. We define the Z-subsets I; and T of Q:

(Vq € QAs Vj € llv d]) (Qsj)li = 6(1,]) "7 ql.A ’

i B 7
where  6(i,j) = { 00 :)therviise :

(Ve Qa, VYie[ld)) (6T =qTa.

Note that QI,.QT C {0,00} and as the edge multiplicities of C are in
{0,1, —1.00} (as we saw in the previous section). A; is a simple Z- A-automa-
ton. We can also observe that the Z-A-automata A, (1 < i < d) differ from
each other only in the initial states.

Before we continue the proof of this theorem. we study, through the next
lemmas, the properties which relate the paths in each A; (1 < i < d) with
their projections in A. We also study the relations existing between the paths
in A; and in A,, for i # j.

Let i € [1,d]. Let P be a victorious path in A; with terminus in Q4 x {j}.
for some j € [1,d]. We say that P is a tallest victorious path in A;, if there
are no victorious paths in 4; with the same label of P and with terminus in

Qi x {k}, for k € [1,d], k > ;.

Lemma 16 Let P be a tallest victorious path in A;, i € [1,d]. Then its
projection P’ is a victorious path in A.

Proof. Let P be a tallest victorious path in A;. Then, P has its origin in
Q. x {i}. Let us suppose that the terminus of P lies in Q. X {j}, for some
j € [1,d]. If the projection P’ of P is not a victorious path in A, there is a
victorious path P, in A such that |P’| = |P'| and | A']] < [|P]|.

Let P, be the i-lifting of P’ in A; and we suppose that P; terminates in
Q4 x {k}, for some k € [1,d]. Then, using Lemma 3.

diP|| = |P ) =i+k < |Pl|-i+k=d|P|+i-j—i+k=d|Pl+k—] .

Therefore, \
diJAll - 1I1PIN < k=7 -
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Moreover, P, is a successful path in A,. In fact, its origin (p.7) and its

terminus (¢, k) satisfy (p,i)]; = pl4 # oo and (¢, k)T = ¢T4 # oo, since that

its projection Py’ is a victorious path in A. But, as P is a victorious path in

A, 1B 2 1]l |
If || P|| = | P|| then P is also a victorious path in A; and k — ) > 0. That

is, k > j. So, I’ is not a tallest victorious path in A;: a contradiction.
Thus, ||A]] > || P]l. Then,

d<d(||P] - I1PI) <k=J -

This is impossible, because k,j € {1,d]. Therefore, P’ is a victorious path in

A.

Lemma 17 Lci P (i € {1,d]) be a tallest victorious path in A, with label
w and lel us assume thal P, lerminales in Qa x {j} (J € [1.d]). Let Py
(k € [1,d] and k # 1) be a tallest victorious path in Ay with label w and let
us assume that P. lerminates in Q4 x {I} (1 € [1,d]). Theni—j = k-1
(mod d).

Proof. Let P, be a tallest victorious path in A; with terminus in Q4 X {7}
and label w. Let P be a tallest victorious path in Ay with terminus in
Qa x {1} and label w.

Let us consider the projections P, and P’ of P, and P, respectively, in
A. From Lemma 16. it results that P’ and P’ are victorious path in A.
Then || P’|| = || P'|l. But, from Lemma 3,

WP/l =dP]l+i-j and ||| =dllPll +k—1.
So, from || 2| = ||P']|, it follows that
diP||+i-j=d|P|+k-1.

Then
i—j=d(|Pfl =R +k-1.

Thus, i — j= k=1 (mod d).



Note that the previous lemma implies that | # j and if & =141 then
[=73+1 (modd).

We continue the proof of Theorem 15 considering .X; = [|4,|| (1 £i L d).
Then, X; (1 <1 < d) are simple Z-subsets of A*. Moreover. one can verify
that YVw € A+, wX = oo il. and only if, Vi € [1,d], w.X, = oc. Hence,
wX = o if wEl, X, = oc. Then, for w € A*, we can assume that
wX # oo and wX; # oo (1 L1 L d).

For each i € [1,d], there is a tallest victorious path P in A,. with |P| = w
and

1A = wllAill = wXi . (3)

Thercfore, by Lemma 16, for cach i € [1,d], the projection I/ of P, in A
is a victorious path and

12/ = wllAll = wX .
Then )
S NP = dwX) . (4)
=1

We suppose that for each i € [1,d), P; terminates in Q4 x {k;}. for some
ki € [1,d]. Then, by Lemma 17, for each pair j and I € [1.d], if 7 # it
results that k; # k. Therefore,

d
Soki=D0i . (5)

But, by Lemma 3. for cach i € [1,d],
1PN =Pl +i— ki .
Then, using (4) and (5) we have:

d d d d o d
d(wX) =3[P/l = 3_(d| Aill+i—ki) = z_:dllP-'lHZ i—; ki = d; A1 -

1=1 =1
Hence, from (3).

d d
wX =Y [Pl = L wX: .
1=}

=i
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Thus,
d d
YVw € AT, wX = z wX; = wz X, .
=1 =1

Therefore, b
X=X .
1=1

The converse of this Theorem follows from the definition of simple Z-

subset and the closure of Z Rec A® under addition.
=

In the proof of Theorem 15, if A is an M-A-automaton (resp. Z--A-
automaton), from Corollary 5 it follows that each A; (1 <7 £ d) is an
M-A-automaton (resp. 2~ -A-automaton). Moreover. Lemmas 16 and 17
stay valid when each A; is an M-A-automaton (resp. Z7-A-automaton).
Thus, the characterization given in Theorem 15 is also valid to M-subsets
(resp. Z~-subsets).

Corollary 18 An M-subsel (resp. £ -subset) of At is recognizable if and
only if it is the sum of a finile number of simple M-subsets (resp. Z~ -subsets)

of A*.

The following corollaries consider the general case of recognizable Z-
subsets, M-subsets and Z~-subsets of A",

Corollary 19 Let X be a recognizable Z-subset (resp. M-subset, Z~ -subsel)
of A°. Then, X is the sum of a finite number of simple Z-subsets (resp. M-
subsets, 2~ -subsets) of A* if and only if 1X € {0,00}.

Proof. Let X be a recognizable Z-subset of A™ such that 1X € {0,00}. By
Theorem 15. it is enough to consider the case in which 1.X = 0. Let X/'s
(1 € i < d) be the simple Z-subsets of A*, obtained from Theorem 15 for
X + A+, For each i € [1,d], let us consider the Z-subset Y; = min(X;,1). It
is clear that Y; is simple and 1}; = 0. Then, X = ',-’=, Y

[
(8



The converse of this corollary follows immediately from the definitions of
simple Z-subscts and of the Z-subsets addition operation.
The proof for X in M Rec A" or Z~ Rec A* is similar.

Corollary 20 Le! X be a recognizable Z-subset (resp. M-subset, 2~ -subset)
of A* such that 1X ¢ {0,00}. Then, there is a positive integer d and there
are d simplc Z-subsels (resp. M-subsets, 2~ -subsets] of A", Xi...... X,.
“and a recognizable Z-subset (resp. M-subset, Z~-subscl) Y of A~ such that

d
X =min(}yX,,Y) .

1=1

Proof. It is enough to consider X = min(¥%, X;,1X + 1). where the Z-
subsets (resp. M-subsets. Z~-subsets) X;'s (1 < i < d) are obtained from
Theorem 15 (resp. Corollary 18) for X + A*,
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