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Origin of sandy substrates
controlling the distribution of
open vegetation ecosystems in
Amazonia
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Thomas K. Akabane®, Alberto Vicentini? & André O. Sawakuchi®

Understanding the role of open vegetation, particularly in white-sand ecosystems (WSE) and
savannas, is crucial for elucidating their role in Amazonian biotic diversification. These ecosystems
predominantly develop on sandy terrains, suggesting that the geological substrate significantly
influences the vegetation upon it. Therefore, the interaction between landscape changes and biotic
diversification is closely tied to the dynamics and resilience of these sandy substrates. Current WSE
and savannas in lowland Amazonia colonized fluvial sediments deposited during the past 120 ka, with
marked synchronicity over the last 23 ka, as shown by optically stimulated luminescence (OSL) and
radiocarbon ages of such sandy substrates. In contrast, sandy substrates supporting open vegetation
in highland areas, unsuitable for Quaternary sand accumulation, would have persisted beyond the
Quaternary, as ancient sedimentary rocks in these areas are prone to developing sandy soils. The
current distribution of open vegetation ecosystems in lowland Amazonia is coupled with the deposition
and erosion of sandy sediments by Quaternary fluvial systems, while weathering sandy substrates

in highland areas serve as long-term and resilient refugia beyond the Quaternary. The contrasting
spatiotemporal dynamics of landscape changes in lowland and highland areas has implications for
biodiversification or extinction events leading to current biogeography patterns in Amazonia.

Beyond its closed canopy megadiverse rainforest, Amazonia holds widespread patches of open vegetation,
mainly represented by white-sand ecosystems (WSE) and savannas'? (Fig. 1). The occurrence and extent of
savannas during Pleistocene glacial-interglacial cycles (~ 100 ka) have occupied the core of the debate about
drivers of biotic diversification in Amazonia through the refugia hypothesis, which states that savannas
expanded across Amazonia during presumably drier glacial periods, promoting the fragmentation of rainforests
and creating conditions for vicariant speciation of forest adapted organisms>. However, paleovegetation records
show that most of lowland Amazonia remained covered by forests even during drier and/or cooler periods
of the Pleistocene?™8, despite potential changes in the forest structure®!? and a contraction in its southern!""!2
and southeastern!>~!¢ boundaries. Moreover, the pre-Pleistocene origin of most extant plant species points to
the importance of processes beyond those related to glacial-interglacial cycles in creating forest diversity!”.
Nevertheless, the debate about how the distribution of rainforest and open vegetation ecosystems varied during
Pleistocene glacial-interglacial cycles continues!®-2°, with the spatiotemporal dynamics of open vegetation
ecosystems representing a key issue on this debate.

Ecosystems of lowland Amazonia, here considered as the areas up to 200 m elevation, include upland and
seasonally flooded forests, WSE and savannas developed upon ancient fluvial?®-*® and/or alluvial®'** deposits
and even over eolian deposits®®. The sedimentary dynamics of fluvial systems changes the distribution and
connectivity of upland and seasonally flooded habitats in Amazonia®*, influencing biotic patterns in several
ways. In a million-year timescale, large rivers represent major biogeographic boundaries for upland species®. In
a thousand-year timescale, phases of channel incision promoted the fragmentation of floodplains and restricted
gene flow of birds adapted to seasonally flooded vegetation®®. WSE are mainly distributed over abandoned fluvial
deposits along sectors of the Negro, Branco and Madeira rivers (Fig. 1). Thus, fluvial systems could also influence
WSE biodiversity. WSE plant and bird communities are highly endemic and distinct from other Amazonian
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Fig. 1. Distribution of open vegetation ecosystems within the Amazonia biome and sites with OSL and
radiocarbon (*C) ages for the substrates supporting these ecosystems. The inset on the top right shows the
Amazonia biome within the South America continent. Sites sampled in this study can be observed in more
detail in Figs. 3, 4 and 5. Geographical coordinates of samples and ages data are shown in Supplementary
Tables S1 and S2. This map was created with ArcMap 10.8 software (https://www.esri.com/en-us/arcgis/
products/arcgis-desktop/resources). Data sources: South America boundaries - U.S. Department of State,
Office of the Geographer. (2013); digital elevation data - USGS EROS Archive Shuttle Radar Topography
Mission (SRTM) Void Filled resampled to 1 km resolution; rivers - ESRI and CPRM (https://geosgb.sgb.
gov.br/); Amazon boundary, Beni savanna and Pantepui - Olson et al.?'; Guianan savannas and Campos

or cerrado - courtesy of Alberto Vicentini and INPA GIS Lab, M. Alencar and A. Carneiro; White-sand
ecosystems - IBGE hydromorphic spodosols (https://www.ibge.gov.br/geociencias/informacoes-ambientais/
pedologia/10871-pedologia.html?=&t=downloads), files courtesy of Alberto Vicentini and INPA GIS Lab, M.
Alencar and A. Carneiro, including files based on Radambrasil??, ter Steege and Zondervan?3, Vriesendorp et
al.>* and Josse et al.?%, and files courtesy of H. ter Steege for Colombia and Suriname WSE.

environment’s biota, including the savanna biota>%’. This suggests a persistent availability of fragmented
WSE areas suitable to support the evolution of specialized biota. The Amazonian savanna ecosystems mostly
occur in southwestern Amazonia in Bolivia and in eastern and northern Amazonia in Brazil*}, and share many
plant and animal species with the Brazilian cerrado®, fueling the discussion of past connections between these
biomes and the expansion of the ‘dry corridor’ in Amazonia?. Savannas in eastern and northern Amazonia
occur mostly on fluvially deposited sandy substrates, which can also host the adjacent rainforest*’. The biota
associated with Amazonian savannas have lower endemism compared to the rainforest and WSE*”4., pointing
to greater biological connectivity with surrounding non-Amazonian savannas through time and/or higher rates
of extinction due to conversion into closed forest.

Amazonian WSE and savannas occur mostly over sandy substrates formed by either fluvial sediment
deposition (or locally by eolian deposition supplied by rivers) during the Neogene and Quaternary***>% or
due to in situ weathering of parent rocks with varied formation ages**~*¢. Thus, figuring out the spatiotemporal
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dynamics and the resilience of sandy substrates is essential to shed light on the interaction between physical
landscape changes and biotic diversification’.

This study aims to understand the factors controlling the development of sandy substrates sustaining WSE and
savannas in Amazonia. We focus on two main research questions: (1) What are the formation ages of the sandy
substrates supporting WSE and savannas? (2) How do these ages and the sand origins aid in our understanding
of Amazonian biogeography? To answer these questions, we used optically stimulated luminescence (OSL) and
radiocarbon dating to determine the ages of sandy substrates in central and eastern Amazonia, combined with
extensive OSL and radiocarbon ages compiled from the literature. Additionally, we analyzed the OSL sensitivity
of quartz sand grains to differentiate between sediments from cratonic and Andean rivers*®. This approach
helps us infer the geological history of these sandy substrates. Our findings provide insights into the interaction
between landscape changes and biotic diversification, shedding light on the processes shaping Amazonian
biodiversity patterns.

Background on types and origins of the Amazonian open vegetation substrates
Amazonian open vegetation ecosystems include: (i) the Pantepui on the summits of table mountains in northern
Amazonia, (ii) savannas on the upland plains of the Guiana Shield and as enclaves on the lowlands in eastern
and southern Amazonia, (iii) white-sand grasslands, shrublands and forests occurring mainly on the Negro
and Madeira rivers basins, respectively in the northwestern and southwestern lowland Amazonia, (iv) the Beni
savannas in the Madeira River basin in southwestern Amazonia, and (v) several patches of campo or cerrado
vegetation from southwestern to northeastern Amazonia and at the borders of the biome (Table 1; Fig. 1).

The Pantepui occurs on the summits of the Guiana Shield, at elevations from 1100 m to 3000 m’,
associated with waterlogged soils developed upon weathered and bare Paleoproterozoic (~1.8 Ga) quartzites
and sandstones of the Roraima Supergroup®~°. The Pantepui vegetation is strongly linked ecologically and
phylogenetically to the lowland WSE®. Rupestrian savannas, called cerrado or campo rupestre, also occur on
shallow soils developed upon similar Paleoproterozoic quartzites and sandstones of the Central Brazil Shield®!-%?
in southeastern Amazonia.

WSE occur as patches of open herbaceous areas, woodlands, scrublands and low-stature forests developed
upon sandy substrates, embedded into the upland terra-firme rainforest and/or mixed with savanna
ecosystems!4%63, WSE are usually associated with leached quartz-rich sandy substrates and host endemic biota,
whose evolutionary origin and temporal variations are still poorly constrained®%!. White-sand substrates in
northeastern Peru are linked to fluvial deposits and are composed almost solely of quartz sand grains and
were likely deposited by an eastward fluvial system draining the craton®. The WSE from the Negro and
Branco rivers basins in northern Amazonia occur upon deposits of large distributary fluvial systems, known
as megafans (e.g., Virud megafan). These substrates are composed of fine to medium quartzose sands sourced
in the Precambrian rocks of the Guiana Shield and were deposited from 38 ka up to mid-Holocene®. In this
same region, eolian sands deposited by NE winds between 32 and 8 ka also sustain WSE®. WSE occur typically
associated with hydromorphic spodosols, especially in the Negro River basin!. In Amazonia, spodosols are
described as formed upon Quaternary fluvial sediments deposited on the edge of incised fluvial valleys®, on
fluvial terraces’, on weathered sandstones of the Late Cretaceous Alter do Chdo Formation*, on the sands
and sandy clays of the Plio-Pleistocene White Sands (or Berbice) Formation’!”> and on previously formed
oxisols*>7374, These current spodosols have been under development in central Amazonia at least during the
Holocene, as indicated by radiocarbon ages of 3 to 2 ka obtained in organic sediments of black wavy bands in
the E horizon*!. Some WSE and savanna substrates are also derived from weathering and leaching of sandy
substrates, without the formation of spodosols, as the weathering of quartzites of the Guiana Shield (Roraima
Supergroup) and Paleozoic sandstones of the Amazonas sedimentary basin®7>76,

The Amazonian savanna ecosystems encompass grasslands and open woodlands in isolated patches, mostly
occurring in southwestern Amazonia in Bolivia (Beni savannas) and in eastern and northern Amazonia in
Brazil (Guianan savannas) (De Carvalho and Mustin, 2017) (Fig. 1). Guianan savannas occur mainly upon
Quaternary eolian and fluvial deposits laid upon incipient or evolved lateritic soils’”. Eolian deposits with well-
preserved dune features were formed by NE blowing winds during drier phases of the Late Pleistocene and
Holocene (OSL ages ranging from 23 to 1 ka)**7®, whilst fluvial and alluvial sand and silt deposits occur both
laterally and overlain by the eolian deposits, with ages ranging from 52 to 28 ka*. In the middle Madeira River
in Southwestern Amazonia, savanna patches develop upon fluvial channel sandy sediments, deposited between
119 and 36 ka®3. These sandy deposits are locally overlain by muddy successions from abandoned channels and

Ecosystem

Description

Pantepui

Broadleaved meadows, scrubs, woodland and low forests occurring on the tepui (tabletop mountains) of the Guiana Shield.

White-sand ecosystems
(WSE)

Grasslands, shrublands and forests associated with quartz-rich sandy soils occurring mainly in lowland areas. These ecosystems sustain vegetation types
known as campinas and/or campinaranas.

Guianan savannas

Tropical mixed tree-grass systems, with a continuous grass layer and a discontinuous tree canopy forming mosaics with varying densities of tree canopy.

Beni savannas

Herbaceous wetlands, grasslands, and woodlands shaped by cycles of drought and flooding.

Campo or cerrado

Grasslands with shrubs and small trees on acidic well-drained soils, including savanna vegetation upon lateritic crusts, locally known as canga
vegetation.

Table 1. Description of the Amazonia open vegetation ecosystems discussed in this study*°-%. Distribution
of the ecosystems summarized below is shown on Fig. 1.
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floodplain complexes younger than 26 ka*>. The Beni savannas occur in the wetlands of southwestern Amazonia,
developed upon fluvial and alluvial clayey deposits accumulated by rivers with Andean headwaters”>®, spanning
from 19.1 to 1.3 ka®3%8!, according to OSL and radiocarbon ages. These wetlands are formed as a result of
rearrangement of the drainage system, due to autogenic processes, tectonic and climate changes, inducing
changes in flooding patterns®*2, therefore influencing the forest-savanna boundaries®2.

Campo or cerrado encompasses more savanna-like environments, including the savannas of the Marajo
Island in northeastern Amazonia developed upon Pleistocene and Holocene fluvial deposits spanning from
55 to 6 ka, as recorded by radiocarbon dating of peat, wood, plant remains and bulk organic sediments®. This
fluvial environment was very dynamic during the Holocene, changing from continental influenced to tidally
influenced settings, followed by a lacustrine phase before returning to the current more continental conditions®.
Moreover, campo also encompasses a particular montane savanna ecosystem, called canga vegetation, which
develops upon ironstone formation®%4,

The role of climate on shaping Amazonian ecosystems

Climate changes related to Quaternary glacial-interglacial cycles, such as atmospheric CO, concentration,
temperature, and sea-level fluctuations, mostly followed a 41 or 100 kyr cycle®>8¢. However, it has been shown
that precipitation changes across Amazonia are controlled by shifts of the South American Monsoon System
(SAMS) (Fig. 2), which mainly follows precession insolation cycles of ~23 ka¥” punctuated by abrupt millennial
events, such as Heinrich Stadials®®®. Despite the recurrence of these combined environmental changes,
a predominant forest cover long remained in the Amazon basin but marked by important floristic changes
(e.g., Refs.*®7). Nevertheless, a significant savanna expansion mostly featured over the surrounding ecotone
regions' 215, Lower atmospheric CO, concentration® and regionally drier conditions®® negatively affected
forest development, while cooler glacial temperatures may have attenuated these effects®.

Lake sediment records from montane savanna ecosystems (also referred as canga vegetation) in Serra Sul
de Carajés, in southeastern Amazonia, show shifts from wet to dry periods over the last 70 ka, with rainforest
expansion during wetter phases!>!+1¢, In the region of the Beni savannas, the boundaries between savannas
and rainforest shifted during the Holocene, with rainforest expansion in the last 3 ka due to a southward shift
of the ITCZ!%°2%%, However, the persistence of open vegetation in areas with varied precipitation patterns and
surrounded by rainforest under the same precipitation patterns (Fig. 2) suggests controls beyond regional
climate in Amazonia.

Methods

Field descriptions and sediment sampling

Satellite images available on Google Earth combined with the dataset of distribution of open vegetation
ecosystems within the Amazonia biome (available in Adeney et al.') were used to identify preserved depositional
morphologies and determine the locations for sediment description and sampling for OSL dating, as well as
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Fig. 2. Monthly averaged terrestrial precipitation (2010-2018) (CRU-TS 4.03%° downscaled with WorldClim
2.1%%) for (a) austral summer (December-January-February (DJF)) and (b) austral winter (June-July-August
(JJA)). The schematic positions of the Intertropical Convergence Zone (ITCZ) over the Atlantic during DJF (a)
and JJA (b) as well as the South Atlantic Convergence Zone (SACZ) (a) (thick dashed lines) are also shown®'.
SAMS: South American monsoon system. This map was created with ArcMap 10.8 software (https://www.esri.
com/en-us/arcgis/products/arcgis-desktop/resources).
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@ Sampling site

to estimate the areas (km?) of the open vegetation patches (Fig. 3). The sedimentary deposits were described
in outcrops or excavated trenches (up to 2 m depth), according to a sedimentary facies analysis approach. The
deposits were described considering their texture (grain size and sorting) and sedimentary structures. Post-
depositional weathering features were also considered due to the massive and altered nature of most deposits.
Field descriptions and sampling for OSL dating and sensitivity were performed during two fieldworks surveys
carried out in July 2018 and August 2019. Graphic sedimentological logs are presented in Figs. 7, 8 and 9.

OSL dating

OSL dating was carried out on single aliquots of quartz in the 180-250 um fraction. The preparation of quartz
concentrates was performed under subdued amber light and consisted of the following steps: (i) separation of
180-250 pum grains through wet sieving; (ii) treatment with H,0, 35% and HCI 10% to eliminate organic matter
and carbonate minerals, respectively; (iii) density separation with lithium metatungstate (LMT) solutions at
densities of 2.62 g/cm® and 2.75 g/cm? to isolate quartz grains from feldspar and heavy minerals; (iv) treatment
with HF 40% to eliminate the outer rind of quartz grains affected by alpha radiation; (v) another sieving of
180-250 pum grains to separate them from quartz with reduced grain sizes after the previous treatment. All
luminescence measurements were carried out in Rise TL/OSL readers model DA-20 system, equipped with
90Sr/°%Y beta source (dose rates of 0.12-0.07 Gy/s for stainless steel discs), blue and infrared LEDs for stimulation
and 7.7 mm Hoya U-340 filter for light detection in the ultraviolet band.

OSL dating followed the quartz single-aliquot regenerative-dose (SAR) protocol (Table 2, *4). The suitability
of the OSL-SAR protocol for estimation of equivalent doses (D,) under laboratory conditions was evaluated by
dose recovery tests (Supplementary Table S3). For each sample, 12 to 24 aliquots of 5 mm were measured, and the
D, was calculated using the Central Age Model (CAM) as proposed by Galbraith et al.”® and the Minimum Age
Model (MAM) (LDAC, Liang and Forman®®). For samples with overdispersion < 30%, we considered the CAM
D, and for samples with overdispersion > 30%, we considered the MAM D,. D, distributions are represented by
kernel density plots in Figs. 7, 8 and 9.
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Fig. 3. (a) Sampling sites for OSL dating of sandy substrates of WSE and savannas in central and eastern
Amazonia; (b) WSE patches in central Amazonia and sampling sites, (c) savanna patches on eastern Amazonia
and sampling sites. This map was created with ArcMap 10.8 software (https://www.esri.com/en-us/arcgis/
products/arcgis-desktop/resources). Data sources: digital elevation data - USGS EROS Archive Shuttle Radar
Topography Mission (SRTM) Void Filled resampled to 250 m resolution; rivers - CPRM (https://geosgb.
sgb.gov.br/); savannas and WSE - courtesy of Alberto Vicentini and INPA GIS Lab, M. Alencar and A.
Carneiro, and IBGE hydromorphic spodosols (https://www.ibge.gov.br/geociencias/informacoes-ambientais/
pedologia/10871-pedologia.htm]?=&t=downloads).
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Step | OSL - SAR protocol®* Sensitivity protocol*®

1 Give dose D, Illumination with Blue LED at 25 °C for 100 s

2 Preheat at 200, 220 or 260 °C for 10 s? Give dose, 10 Gy

3 Blue LED stimulation for 40 s at 125 °C | Pre-heat at 190 °C for 10 s

4 Give test dose, D IRSL LED stimulation at 60 °C for 300 s

5 Cutheat at 160 or 220 °C? Blue LED stimulation for 100 s at 125 °C (BOSL)
6 Blue LED stimulation for 40 s at 125 °C

7 Blue LED stimulation for 40 s at 280 °C*

8 Return to step 1

Table 2. Quartz single-aliquot regenerative-dose (SAR) protocol® used for dating and sensitivity analysis
protocol*® used in this study. D, <D, <D,< D,, D,=0 Gy, D;=D1, D, =D, (with infrared stimulation before
blue stimulation)(natural signal, i=0 and D =natural dose). *Sample dependent, for more information,

see Supplementary Material Table S1. Recuperation was calculated through D, signal, recycling ratio was
calculated through D and D, signals and feldspar contamination was appraised through D and D, signals.

Radionuclides concentrations for determination of radiation dose rates from sediments were estimated
using high resolution gamma spectrometry with a high-purity germanium gamma-ray detector (Canberra
Instruments, relative efficiency of 55% and energy resolution of 2.1 keV) encased in an ultralow background
shield. Sediment samples were dried for packing in plastic sealed containers and stored for at least 28 days for
Rn re-equilibrium before gamma spectrometry. The concentrations of 28U (ppm), 2**Th (ppm) and “°K (%)
were converted into dose rate (Gy/ka) using the conversion factors proposed by Guérin et al.””. Cosmic rays’
contribution to the dose rate was calculated according to Prescott and Hutton?, considering latitude, longitude,
altitude, depth below surface and density of each sample.

Further information on sampling and basic sample information (field code, laboratory code, location, etc.)
can be found in Supplementary Information (SI) 1 and Supplementary Table S1, respectively.

Quartz OSL sensitivity

Pure quartz aliquots, in the 180-250 um grain size fraction, were used to measure OSL sensitivity. Three to five
aliquots per sample with a diameter of 4 mm were prepared by mounting grains in a steel disc. Each aliquot was
weighted in a precision scale for mass-normalization. The luminescence sensitivity protocol (Table 2) following
Sawakuchi et al.*. The IRSL stimulation (step 4) was used to bleach any remaining feldspar grains before the
measurement of quartz OSL sensitivity (step 5).

OSL sensitivity was calculated using the integral of the first 1 s of light emission minus the last 10 s as
background (BOSL, ) with normalization by given dose and aliquot mass (photon cts Gy~' mg™!) and as a
percentage of the initial 1 s of light emission in relation to the total OSL emission (%BOSL, ), with subtraction
of the last 10 s as background for both total and 1 s signal.

Average %BOSL,  was compared among the sandy substrate samples and with riverbed samples from
Sawakuchi et al.*3, as all measurements were performed on the same luminescence reader.

Compilation of luminescence and *“C ages from the literature

We conducted a comprehensive compilation of published TL, OSL and *C ages on substrates of the main open
vegetation ecosystems across the lowland Amazon region. The published ages combined with the ages produced
in this study allowed determining the timing and accumulation rates of these different substrates. Ages were
compiled according to the location, ecosystem, dating method, material and depth in the sedimentary profile
(Supplementary Table S2). Conventional “C ages were compiled and calibrated using the software OxCal 4.4
(reported as cal ka BP) according to SHCal20%°. The median of the calibrated “C ages was used for graphing
purposes. Coarse grained (very fine to fine sand grain size) quartz OSL ages were used to estimate accumulation
rates along each profile.

Results

Sedimentology and geomorphology

The sandy substrates of WSE in the lower Negro River in central Amazonia (Fig. 4) and of savannas around
the confluence of Tapajés and Amazon rivers in eastern Amazonia (Fig. 5) occur over Paleozoic and Mesozoic
sedimentary rocks and lateritic paleosols, which can be partially covered by Neogene-Quaternary sedimentary
deposits'®. The sediment profiles of WSE substrates in the interfluves of both margins of the lower Negro River
occur as isolated patches within a rainforest matrix (Fig. 4). The white-sand patch usually has less than 1 km?
in area and occurs at elevations from 50 to 100 m. These sediment profiles are composed of massive, loose,
poorly selected, white to grayish coarse sands (Figs. 6a and b and 7). In the profile AVA-23 (Fig. 6b), a thin and
poorly developed organic-rich horizon (<5 cm thick) occurs at the top of the grayish coarse sands. The sandy
substrates of the savannas of eastern Amazonia occur as patches with unit areas from 2 to 40 km? (Fig. 5), at
elevations ranging from 30 to 120 m. The sandy substrates of savannas on the left margin of the Amazon River
(Fig. 5a) are bordered by Paleozoic sedimentary rocks, mainly sandstones, siltites and shales'®, outcropping
at northwest, as the substrates of savannas on the right margin of the Amazon River (Fig. 5b and c¢) occur over
lateritic paleosols!®. The studied savanna and upland forest substrates in eastern Amazonia are composed of
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Fig. 4. Aerial (CNES/Airbus - Google Earth) and field views of WSE sampling sites AVA-21 (a,d), AVA-15
(b,e) and AVA-23 (c,f) in central Amazonia. Maps were created with ArcMap 10.8 software (https://www.esri.
com/en-us/arcgis/products/arcgis-desktop/resources).

massive, loose, poorly to moderately selected light reddish, yellowish, and brownish medium sands, with the
upper 10-20 cm of the deposits richer in organic matter and darker brown in color (Fig. 6¢, d and e, and Figs. 7
and 8).

OSL ages
The majority of the studied sediment samples have quartz grains with rapidly decaying OSL signal, dominated by
the fast component in the first 1 s of light emission and dose-response curves well described by linear (<2 Gy)
or single saturating exponential functions (5-50 Gy). Representative OSL decay curves with components
deconvolution and dose-response curves are presented in SI1. The CAM D, ranges from 0.7+0.05 Gy to
52.3+3.5 Gy, with approximately 60% of the samples having overdispersion > 30% (Table 3). MAM D, ranges
from 0.6+0.04 Gy to 42.7+0.01 Gy (Table 3). Samples have a wide range of thorium concentration (0.04-
10.42 ppm), low uranium (0.23-1.10 ppm) and low (<0.02%) to undetectable potassium concentrations
(Supplementary Table S1). Dose rate values vary from 0.24 to 1.08 Gy/ka, and with the WSE samples having lower
dose rates (0.24-0.44 Gy/ka) then the savanna samples (0.40-1.08 Gy/ka) (Table 3, Supplementary Table S1).
The cosmic dose rate contributes from 17 to 71% for the total dose rate, with an average of 35% (Supplementary
Information SI1 and Table S1).

OSL ages in the substrate profiles of WSE in central Amazonia range from 4.2+1.4 ka to 69.1 +5.9 ka for
sediment samples retrieved until 2.1 m depth (Table 3; Fig. 7). The ages from savannas substrate profiles in
eastern Amazonia range from 0.9+0.1 ka to 65.1+5.5 ka for sediment samples retrieved until 2.3 m depth
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AVA-06
Fig. 5¢

(d) AVA-03

Fig. 5. Aerial (CNES/Airbus - Google Earth) views of savanna sampling sites AVA-02 to AVA-05 (a), AVA-06
to AVA-08, AVA-14 and ALC-55 (b) and AVA-12 and AVA-13 (c) in eastern Amazonia. Field views of savanna
patches in sampling sites AVA-03 (d), AVA-14 (e) and AVA-12 (f). Maps were created with ArcMap 10.8
software (https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources).

(Table 3; Figs. 8 and 9). Both CAM and MAM ages point to a Holocene to Late Pleistocene age range (<70 ka)
for the studied sandy profiles (Figs. 7, 8 and 9).

OSL sensitivity

Average BOSL, _sensitivity of pure quartz aliquots range in three orders of magnitude from 18 to 4234 cts Gy~
mg~! (Fig. 10a). The first second of light emission corresponds to 4 —79% of the total 100 s light emission
(Fig. 10b). Savanna substrate samples present higher average BOSL, _ (in both percentage and cts Gy~ ' mg™")
than WSE samples, meaning that savanna substrate samples have brighter quartz grains. Samples of savanna
substrates from eastern Amazonia have higher BOSL,  sensitivity (~59-66% in average), similar to values
reported for riverbed sediments of the Tapajos and Xingu rivers (43-57% in average) draining the Brazilian
Shield in eastern Amazonia. WSE substrates have quartz with medium BOSL_ sensitivity (~ 17-33% in average),
which are more similar to values found in riverbed sediments of the Negro River (~ 14%) and higher than values
of riverbed samples of the Amazon, Solimdes and Madeira rivers (4-6%) (Fig. 10b).

Discussion

Origin of the sandy substrates supporting WSE and savannas in Amazonia

Combining OSL ages produced in this study with other luminescence ages previously published, the upper
portion (<3 m depth) of sandy substrates supporting WSE and savannas in northern, eastern and southern

Scientific Reports |

(2024) 14:22833 | https://doi.org/10.1038/s41598-024-72725-0 nature portfolio


https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

#(T)AVA-03

Fig. 6. WSE substrates in sampling sites AVA-15 (a) and AVA-23 (b) in central Amazonia. Savanna substrates
in sampling sites AVA-03 (c), AVA-06 (d) and AVA-12 (e) in eastern Amazonia. Upland forest substrate in
sampling site AVA-08 (f) in eastern Amazonia.

Amazonia has ages between 120.6 and 0.7 ka, while the muddy substrates of the Beni savannas in southern
Amazonia range from 37.4 to 2.9 ka (Fig. 11 and Supplementary Table S2). Published radiocarbon ages of
substrates supporting different open vegetation ecosystems in Amazonia are mainly based on dating of bulk
organic matter within the sediment, and the median ranges from 45.9 to 0.6 cal ka BP (Fig. 11 and Supplementary
Table S2). Hence, substrates of current WSE and savannas across lowland Amazonia have ages restricted to the
Late Pleistocene and Holocene, suggesting a marked synchronicity of substrate development in a ten-thousand-
year timescale. However, accumulation rates of sandy substrates in WSE and savanna comprise three orders of
magnitude, from 0.026 mm year~! to 1.3 mm year~! (Fig. 12), pointing to significant differences in substrate
aggradation in a local scale.

Quartz OSL ages can represent the last sediment deposition episode. In this case, OSL ages give an age estimate
for sandy substrate formation and establishment of a specific patch of savanna or WSE. However, bioturbators in
soil profiles can effectively transport grains to the surface, promoting OSL signal resetting through solar exposure
followed by burial and OSL signal build up'®!, and increasing the overdispersion of D, distributions toward a
bias of underestimation of sediment deposition age. The AVA-02 profile comprises an upper sand layer deposited
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Fig. 7. Sedimentary profiles of WSE substrates in central Amazonia and their respective OSL ages and
equivalent dose distribution.

from 2.7 to 2.1 ka, with an average aggradation rate of 1.29 mm year~!, with low overdispersion (9-21%), which
indicates a well bleached deposit almost undisturbed by soil mixing processes. Below 1.7 m, samples from profile
AVA-02 (Fig. 8) have a D, distribution with high dispersion (66-97%), suggesting a thorough mixing of grains
after deposition, with MAM OSL ages of 17.8 to 4.4 ka. This suggests sediment deposition superimposed by
autochthonous soil development. However, it is important to note that the D_ distribution is also a product
of incomplete bleaching during sediment transport!?, beta-dose heterogeneity!'%?, grain-to-grain luminescence
behavior variability'®, and measurement and instrument uncertainties'®. The OSL ages presented in this study
have D, distribution with overdispersion within the range found in Amazonian fluvial or eolian deposits®®*.
They are also in the same range of radiocarbon ages obtained in correlative deposits. Thus, the OSL ages obtained
in sandy substrates of WSE and savanna are interpreted as sediment deposition ages, despite some profiles can
exhibit age underestimation.

Luminescence and radiocarbon ages provide a valuable temporal framework for the dynamics of WSE and
savanna patches since approximately 120 ka, with a notable synchroneity and increase in substrate development
within the last 23 ka across lowland Amazonia (Fig. 11). This pattern points to a regional control on the
development of substrates supporting WSE and savannas. These ages are relatively younger than sediment
deposition ages in fluvial terraces covered by upland rainforests in lowland Amazonia, which have sediment
deposition ages older than around 45 ka?®. The younger ages of sandy substrates covered by WSE and savannas
suggest increased sandy deposition on top of upland terraces since 23 ka, further increasing after the Last
Glacial Maximum (LGM, 23 — 19 ka) (Fig. 11). This is synchronous with sediment accumulation within valleys
of major Amazonian rivers, which fueled the regional expansion of floodplains after the LGM*. The formation
of massive sandy facies on top of upland terraces could be related with periods of increased surface water runoff
leading to fast sand deposition by temporary streams flowing over upland terraces in areas with open canopy.
The build and expansion of sandy substrates in upland terraces could favor the long-lasting establishment of
open vegetation. However, massive sands can also be formed by soil processes and additional investigations are
needed to elucidate the specific landscape and climate conditions responsible for accumulation of sands on top
of upland fluvial terraces.

In Amazonia, quartz OSL sensitivity allows the discrimination of sediments transported by watersheds
draining the Andes or cratonic areas*®. Thus, quartz OSL sensitivity can be used to interpret the provenance of
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Fig. 10. BOSL,_sensitivity as cts Gy~! mg™! of quartz aliquots of the studied WSE and savanna substrates (a).
%BOSL, _ sensitivity of pure quartz aliquots of the studied sandy substrates (on the right) and riverbed sands
(b). Data from riverbed sands retrieved from Sawakuchi et al.*%.

sands forming substrates of the studied WSE and savanna. Quartz OSL sensitivity of savanna’s substrate from
eastern Amazonia is higher than quartz OSL sensitivity of WSE’s substrate from central Amazonia (Fig. 10). This
pattern matches with the OSL sensitivity of sediments transported by major rivers draining cratonic terrains
of central and eastern Amazonia®®. The source of the eastern Amazonia savanna sandy substrate is similar to
the present-day cratonic riverbed sediments of the Tapajos and Xingu Rivers, with headwaters in the cerrado
(Brazilian savanna). Meanwhile, the source of the central Amazonia WSE substrate holds a higher similarity to
the present-day riverbed sediments of the Negro River, a mixture of cratonic and Andean grains*®. This pattern
indicates a link between sandy substrates of lowland open vegetation ecosystems and major rivers draining
eastern and central Amazonia. This is in agreement with the hypothesis that the sandy substrates are formed
by reworking (local erosion and deposition) of underlying fluvial deposits associated with the adjacent rivers.

Our results indicate that lowland open vegetation ecosystems can develop over substrates formed and
degraded in a thousand-year timespan, such as sand accumulation on top of fluvial terraces during the Late
Pleistocene and Holocene. Besides sand deposition by streams draining older fluvial deposits, channel avulsion
in distributary fluvial systems can also favor the formation of wider sandy plains prone to establishment of
open vegetation, such as in the Virud megafan in northern Amazonia®. The greater occurrence of WSE and
savannas in the lowland portions of the Negro and Branco rivers basins (Fig. 1) can be explained by the sand-
rich distributary fluvial systems occurring in these areas, forming extensive sandy alluvial plains, compared
to contributary fluvial systems with muddy-dominated flooding plains prevailing along the Solimdes- Amazon
River in central and eastern Amazonia.

Fluvial systems in areas of northern Amazonia under the action of NE winds can also sustain the development
of eolian dunes®***%78, Sand accumulation in eolian dunefields provides favorable edaphic conditions for the
establishment of savanna vegetation. The higher elevation of dunefields hinders seasonal flooding and the high
permeability of sands leads to deeper water table. Hence, in the Amazonian lowlands, higher availability of
sandy substrates can be favored by the action of Quaternary fluvial, alluvial or eolian systems. Sandy substrates
can also develop through in situ weathering of quartz-rich rocks in upland terrains. This is the main process
responsible for sandy substrate development in highland areas, whose surface stability can reach million years
timespans due to low denudation rates and lacking sediment accumulation'®. The uplift and weathering of
ancient sandstones, such as the Late Cretaceous Alter do Chiao Formation** in central and eastern Amazonia,
promote the development of sandy substrates in highland areas over a million year timescale. The distribution
of WSE in Amazonia (Fig. 1) is mostly contained within the region of shallow water table depth!'”’, and water-
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Fig. 11. Age compilation of substrate formation for different open vegetation ecosystems in Amazonia

(full data for this compilation is in Supplementary Table S2) and density plot of the compiled ages. Y-axis is
arbitrary for better visualization. C = radiocarbon dating, OSL = optically stimulated luminescence dating,
TL = thermoluminescence dating.
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formation for WSE and savannas in Amazonia. For these graphs, only profiles with 3 or more samples dated

were considered.

table depth is an important control of WSE structure®*1%, This combination of local controls would explain the
heterogeneous organization of WSE in relatively small patches, but frequent over the landscape.

Differently from the open-vegetation formations supported by sandy deposits, the Beni savannas in the
Madeira River basin are established over more clayey and poorly drained substrates, formed by distributary
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fluvial systems®>7°. These clayey substrates of the Beni savannas create an almost impermeable barrier that
hinders water infiltration, leading to increased surface runoff. Unlike other Amazonian savannas, the Beni
savannas experience both periods of seasonal flooding and extreme dryness®>!%. The seasonal flooding differs
the Beni savanna from the upland savannas, whose main ecological constraint is an edaphic induced seasonal
dryness due to marked water table fall favored by its sandy substrate.

The sandy terrains with different origins and development timespan ranging from thousand to million
years can sustain a dynamic and long-term availability of substrates for colonization by open vegetation across
Amazonia, with important implications for Amazonian biodiversity. The conditions needed to support the
development of WSE and savannas in Amazonia depends on the occurrence of depositional or weathering sandy
substrates combined with local hydrological variables, such as the amplitude of water table variation and drainage
pattern (contributary or distributary), which in turn rely on climate and long-term drivers of topography. The
local drivers lead to a partial decoupling between regional climate patterns and spatial distribution of open
vegetation ecosystems.

Biotic implications of the landscape dynamics of open vegetation substrates

Plant and bird lineages exhibit high levels of species endemism in lowland WSE and have ages beyond the
Quaternary?*10111 which does not fit the young sandy substrate ages reported here (Fig. 11). This indicates
that these lineages have persisted in Amazonia for a long time, but their history has been dynamic during the
Pleistocene, with spatiotemporal dynamism that follows the thousand-year dynamics of the substrate. Common
population expansion for WSE specialist birds was detected in the Pleistocene at around 100 ka and 50 ka'!’,
which may be related both to increasing availability of sandy substrates and consequently WSE patches, as shown
here, and to changes in connectivity related to the strength of the closed canopy forest as a barrier for dispersion
of these birds specialized in open vegetation. The period from 100 ka to 50 ka encompasses a major incision phase
of lowland Amazonian rivers forced by falling sea level and increased precipitation phases®®, which increased the
availability of upland terraces, including fluvial sandy facies, compared to seasonally flooded substrates. Forest
permeability may also change in response to shifts in atmospheric CO, and precipitation patterns’, indicating
that both regional climate and fluvial dynamics may have contributed to define the current distribution of
biodiversity in WSE. WSE plants also occur on sandy soils formed through weathering of ancient Paleozoic
to Mesozoic sandstones of the Solimdes and Amazonas sedimentary basins and Proterozoic quartzites of the
Guiana shield. These areas likely have more stable sandy substrates to host WSE plant populations over longer
time periods beyond the Quaternary. Mesozoic and Paleozoic sandstones can also occur in lower elevation
areas of central Amazonia (100-200 m), but their elevation is enough to hinder seasonal flooding and sediment
accumulation by the Quaternary river system. This would predict that such higher elevation areas with soils over
sand prone rocks harbor greater genetic variation and greater diversity than the more recent and dynamic WSE
patches of lowland Amazonia under the influence of the Quaternary fluvial system.

In contrast to the Amazonian endemism of WSE taxa, taxa that occur in lowland Amazonian savannas are
shared or have very recent connections with the biota of the large savannas surrounding Amazonia, including the
savannas of Central Brazil and Guiana, the Chaco and the Llanos**7”!!2, which are not limited to sedimentary
deposits and cover a variety of red soils. The occurrence of widespread areas of savanna surrounding Amazonia
is largely explained by the high precipitation seasonality. These regions host animal and plant species able to
colonize patches of savanna within closed Amazonian forests such as the studied area near the Tapajés River
mouth*112 In this case, the biota of the Amazonian savannas relies on diversification processes occurring in
non-Amazonian savannas, such as the cerrado and the Llanos, whose spatiotemporal dynamics depend on
regional and long term changes in climate and topography.

In the Guiana shield highlands, low denudation rate (0.01 to 0.04 mm yr’l)m6 allows stable surfaces,
where quartz-rich Precambrian rocks give rise to very shallow soils and exposed bedrock supporting the
development of the Pantepui and rupestrian savannas, which have plant diversity similar to WSE. Phylogenetic
and phylogeographic studies are still scarce for the Pantepui. Endemic frogs have very old origins, dating to
40 Ma'!3, studied plant clades originated from 12 to 2.5 Ma®®!14115 and bird and plant diversity most likely
originated during the Pliocene, with subsequent population divergence taking place in the Pleistocene!'.
Connectivity among Pantepui populations is suggested to be related to climate change that could cause variation
in the vegetation along the valleys!'!”!!8. Floristic relations between Pantepui savannas and lowland WSE are
high®3118-120 because of shared ecological conditions of acidity, oligotrophy and water-logging, that represent
a strong ecological filter for lineages. The stability of substrates over ancient sandy rocks (sandstones and
quartzites) out of sedimentation by lowland rivers points that highland open vegetation ecosystems such as the
Pantepui may also have served as long-term sources of diversity for the more dynamic lowland open vegetation
patches covering Quaternary fluvial terraces.

Superimposed to sediment deposition and weathering processes, precipitation changes may exert a
particularly strong influence on edaphically controlled areas. For instance, during drier LGM/Heinrich stadial
1 condition (from 23 to 14.8 ka) in northern Amazonian savanna®, fluvial channel sands became available
for eolian transport forming new dunefield areas colonized by open vegetation®. The shrinking of rainforest
areas in eastern Amazonia is also attributed to low atmospheric CO, and precipitation reduction during the
LGM!'121588 Thus, precipitation changes can influence upland vegetation directly through moisture availability
or indirectly, promoting sedimentation and shifts in substrates and edaphic conditions. Direct or indirect effects
of the South American Monsoon altering vegetation cover also leads to changes in surface runoft in sandy
depositional systems. This could explain the concentration of upland sandy substrates ages after 23 ka and also
suggest a common and regional mechanism controlling the development of the sandy substrates during this
period. However, the precise mechanisms driving this synchronous pattern are not yet clear and need further
investigation.
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Conclusions

Increased and synchronous sand accumulation within the last 23 ka across lowland Amazonia over upland
terraces created highly permeable substrates with deeper water table, creating new areas colonized by WSE
and savannas. Besides the formation of sandy substrates in a thousand-year timescale, weathering of ancient
sandstones also favors the formation of sandy substrates in highland areas in a million-year timescale. The
development of WSE and savannas in Amazonia relies on the deposition and weathering of sandy terrains,
which leads to the occurrence of open vegetation patches within the upland rainforest even under the same
regional climatic conditions. WSE and savanna biota predating the Quaternary period suggests a dynamic biotic
history influenced by expansion and retraction of sandy substrates in lowland Amazonia. The formation of
sandy substrates in time spans from thousands to millions of years, due to sand accumulation or weathering of
older geological terrains, can maintain a dynamic and long-term supply of viable substrates for the colonization
of upland open vegetation across lowland Amazonia. Thus, although open vegetation ecosystems have played
an important role in the biogeographical history of Amazonia, glacial-interglacial cycles were probably not the
main drivers of their distribution across Amazonia, as postulated in the refugia theory of biodiversification.

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary
information files). The datasets used and/or analyzed during the current study can also be made available from
the corresponding author on reasonable request.
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