

26th RAU ANNUAL USERS MEETING LNLS/CNPSEM

August 24th and 25th, 2016

cnpem.br/rau

MINISTÉRIO DA
CIÊNCIA, TECNOLOGIA,
INOVAÇÕES E COMUNICAÇÕES

Synthesis and optical characterization of Y₂O₃:Eu and Y₂O₃:EuTi nanoparticles for use in bioimaging

Ísis F. Manali¹, Lucas C. V. Rodrigues², Douglas Galante¹ and Verônica C. Teixeira¹

¹*Centro Nacional de Pesquisa em Energia e Materiais, Laboratório Nacional de Luz Síncrotron, 13083-970, Campinas, Brazil,* ²*Universidade de São Paulo, Instituto de Química, 05508-000, São Paulo, Brazil.*
veronica.teixeira@lnls.br

The use of bioimages has allowed for great progress in diagnosis and treatment of diseases. With the development of new materials and imaging techniques, causes of diseases have been elucidated and specific treatments have been developed. Due to these new developments, materials and methods that can help to understand the physiological behavior of living organisms have been largely studied. Luminescent nanoparticles, which can be functionalized and directed to target organs, are among them because they can be used as markers during *in situ* biological processes, for example [1- 3]. In this work the main goal is to synthesize and study the optical behavior of nanosized Y₂O₃ based phosphors for use as markers in bioimaging.

Eu and EuTi-doped Y₂O₃ oxides were synthesized via sol-gel and a modified sol-gel based on coconut water [4] and their structural, morphological and optical properties were evaluated. Analysis carried out in powder X-rays diffraction indicated the presence of a Y₂O₃ single crystalline phase. Scherrer's equation was used for estimating the crystallite size. Scanning Electron Microscopy analysis revealed the synthesis method strongly influences the degree of agglomeration and the particle size. The photoluminescence studies showed that the observed emission is attributed to the dopants, mainly the Eu³⁺, and in all cases the Eu³⁺ 5D0 → 7F2 transition was the strongest, suggesting the ion is located in a site without inversion center symmetry [5]. The vacuum ultraviolet excitation and emission studies were done to explore the samples' optical behavior around their band gap. The produced samples presented emission in the optical transparency window of the biological tissue.

K.M. Davies, S. Bohic, A. Carmona, et al., *Neurobiol Aging*, 35, 858-66 (2014)
T. Maldiney, B. Viana, A. Bessiere, et al., *Opt Mater*, 35, 1852-1858 (2013)
M. Sun, Z.J. Li, C. Liu, et al., *J Lumin*, 145, 835-842 (2014)
V.C. Teixeira, P.J.R. Montes, M.E.G. Valerio, *Opt Mater*, 36, 1580-1590 (2014)
K. Binnemans, *Coord. Chem. Rev.* 295, 1-45 (2015)

Acknowledgements: The authors would like to thank to the CNPq, CNPEM PIBIC Program, the TGM/LNLS/CNPEM, LEC/LNBio/CNPEM, DRXP/LNNano/CNPEM and LME/LNNano/CNPEM and their staffs for the facilities.