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Abstract: We show that classical, non-supersymmetric Yang-Mills theories coupled to spin-
1/2 and spin-0 elementary matter fields, in (3 + 1)-dimensional Minkowski space-time, possess
exact structures that resemble integrability, with an infinite number of conserved charges in
involution. Such structures live in the space of non-abelian electric and magnetic charges, and
are based on flat connections in generalized loop spaces, presenting an R-matrix, and Sklyanin
relation. We present two novel symmetries of Yang-Mills theories. The first one corresponds
to global transformations generated by the infinity of those conserved charges under the
Poisson brackets. The gauge and matter fields, as well as Wilson lines and fluxes, have
interesting transformation laws under such a global symmetry. The second one corresponds to
symmetries of the integral Yang-Mills equations, which lead to the conserved charges. They
generate an infinite-dimensional group, where the elements are holonomies of connections
on the loop space of functions from the circle S1 to the space-time. Our approach certainly
applies to the Standard Model of the Fundamental Interactions. The conserved charges are
gauge invariant, and so, in the case of QCD, they are color singlets and perhaps are not
confined. Therefore, the hadrons may carry such charges. Our results open up the way for
the construction of non-perturbative methods for Yang-Mills theories.
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1 Introduction

The development of exact and non-perturbative methods to solve field theories is of crucial
importance for the study of non-linear and strongly coupled physical phenomena in all areas
of Physics. Symmetries play a central role in most of those methods. However, it has become
clear that the symmetries relevant for the development of those exact and non-perturbative
methods are not always of the Noether type, but hidden, and sometimes non-local, symmetries
that act on some special structures, like one-form flat connections. In this paper, we discuss
two novel symmetries of (3 + 1)-dimensional Yang-Mills theories, coupled to matter fields,
based on their classical integral equations [1, 2]. Our approach is based on methods on
generalized loop spaces, and it applies, in particular, to the Standard Model of the fundamental
interactions. The physically relevant non-abelian gauge theories have particle production and
certainly are not integrable in the usual sense of having a factorized S-matrix. However, we
show that those same Yang-Mills theories present exact structures, resembling integrability,
with an infinite number of conserved charges in involution. Such structures live in the space
of non-abelian electric and magnetic charges, possessing a flat connection, R-matrix, and
satisfying the so-called Fundamental Poisson bracket Relation (FPR), and the Sklyanin
relation [3–6]. The infinity of conserved charges constitutes higher modes of the electric and
magnetic charges and are obtained as the eigenvalues of a charge operator that presents
an iso-spectral time evolution. Even though all those charges are in involution with the
Hamiltonian, the energy and momenta are not among those eigenvalues. The infinity of
conserved charges that we construct is, in fact, associated to internal global symmetries of the
Yang-Mills theories. It is not clear if those charges may take the role of the canonical variables
parameterizing the phase space, as is usual in exact integrable theories, in the Liouville sense.

The flat connection leading to the charges presents a gauge symmetry on a generalized
loop space, and the corresponding infinite-dimensional gauge group plays a similar role
in (3 + 1)-dimensions to that played by the Kac-Moody group in integrable theories in
(1 + 1)-dimensions. Such a group, however, may not be a Lie group and may circumvent
the Coleman-Mandula theorem [7] in a novel way. The conserved charges are truly gauge
invariant, and so in the case of Quantum Chromodynamics (QCD), they are color singlets.
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Therefore, such charges in principle are not confined and could be carried by the hadrons.
In order to contextualize our results, we start with an exposition of well-known facts about
integrable field theories that motivated our methods.

Integrability in higher dimensions. Integrable field theories in (1 + 1)-dimensions consti-
tute perhaps the best example where exact and non-perturbative methods were developed at
the classical and quantum level with great success. An important mathematical structure
responsible for such developments, in two-dimensional integrable field theories, is the so-called
Lax-Zakharov-Shabat equation [8, 9], where the equations of motion are expressed as the
zero curvature condition for a connection

∂0A1 − ∂1A0 + [ A0 , A1 ] = 0 (1.1)

where Aµ, µ = 0, 1, is a functional of the fundamental fields of the theory and their derivatives,
and takes values on a Kac-Moody algebra [10]. The relevant symmetries are the gauge
transformations Aµ → g Aµ g−1 − ∂µg g−1, where g are special elements of the so-called Kac-
Moody group (a carefully defined exponentiation of the generators of the Kac-Moody algebra
in a so-called integrable representation). Such gauge transformations are not symmetries of
the Lagrangian or Hamiltonian, and so are denoted hidden symmetries. They act on the
connection Aµ, which is not a physical field of the theory, preserving the zero curvature
representation (1.1) of the equations of motion. Such symmetries underlie all the exact results
in integrable field theories, like the inverse scattering method, dressing transformations, etc.
In addition, the equation (1.1) is a conservation law as it implies that the holonomy (Wilson
line) of the connection Aµ is independent of the path, as long as its end points are kept
fixed. By imposing suitable boundary conditions, one can show that the Wilson line operator
integrated on the space (x-axis) has an isospectral time evolution

W (γt) = U (t) W (γ0) U−1 (t) (1.2)

where γt and γ0 denote the x-axis at the time t = t and t = 0 respectively, and W is the path
ordered integral W (γ) = P e

−


γ
dσ Aµ

d xµ

d σ . Therefore, the eigenvalues of W , or equivalently
Tr W N , are conserved in time. Since Aµ lives on an infinite-dimensional Kac-Moody algebra,
one gets an infinity of conservation laws. It then follows all the impressive achievements of
two-dimensional integrability, at the classical and quantum levels, like the construction of
exact solutions, factorisation of the S-matrix, exact correlation functions, etc, [4, 5].

It is hard to believe that physical local field theories in four dimensions can present
properties like those of two-dimensional integrable theories. The reasons are manifold.
The hidden (gauge) symmetries of integrable theories described above mix in a non-trivial
way internal and external transformations. Good physical theories (local, unitary, Lorentz
invariant, etc) in four-dimensional Minkowski space-time are subjected to the no-go Coleman-
Mandula theorem [7] that forbids internal and external Lie group symmetries to mix non
trivially. Supersymmetry circumvents such a theorem [11, 12], and indeed supersymmetric
field theories are, in general, more solvable than non-supersymmetric ones. In this paper, we
shall present novel symmetries of classical ordinary Yang-Mills theory (non-supersymmetric)
that may lead to new methods suitable to solve some non-perturbative aspects of non-abelian
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gauge theories. However, the relevant infinite-dimensional symmetry group may not be of
Lie type, and perhaps may circumvent the Coleman-Mandula theorem in a novel way. Such
symmetries were discovered in our attempts to generalize to higher dimensions the zero
curvature (1.1), as we now explain.

The basic mathematical structure we need is a generalized loop space, i.e., an infinite-
dimensional space of functions f mapping the (d − 1)-dimensional sphere Sd−1 into the
space-time M , with a base point xR, i.e.

L(d−1) ≡ {f : Sd−1 → M | north pole → xR} (1.3)

where xR is a fixed reference point in M , which is the image, in all mappings, of the north
pole of Sd−1. Consider now a d-dimensional volume Ω in M , and take xR to lie on its border
∂Ω. One can scan Ω with (d − 1)-dimensional closed surfaces based on xR, starting with an
infinitesimal surface around xR, and blowing it up until it reaches the border ∂Ω. Every point
of Ω belongs to one and only one surface used in the scanning. Such closed surfaces are, in
fact, images of the mappings f of the loop space L(d−1). Therefore, Ω can be seem as a path
in L(d−1). We now introduce a one-form connection A on the generalized loop space L(d−1),
taking values on some Lie algebra G, and we impose it to be flat, i.e., its curvature vanishes

δA + A ∧ A = 0 (1.4)

It then follows that the holonomy of A on loop space will be path independent, as long as the
ending points of the paths are kept fixed. That is the approach proposed in [13] to generalize
to higher dimensions some of the structures of (1 + 1)-dimensional integrable field theories.
The idea is to define the connection A in such a way that its zero curvature condition (1.4) is
equivalent to the classical equations of motion of the higher-dimensional field theory of interest.
Therefore, the path independency of the holonomy of A is a consequence of the dynamics
of such a theory. A given path on the loop space L(d−1) corresponds to a d-dimensional
sub-manifold Ω on the space-time M , and the holonomy of A on that path corresponds to a
volume ordered integral on Ω. Deformations of the path that keep its ending points fixed
are equivalent to deformations of the volume Ω that keep its border ∂Ω unchanged. By
imposing appropriate boundary conditions, it is possible to obtain an isospectral evolution
of the volume ordered integral on Ω (i.e. the holonomy of A), along the directions in M

perpendicular to Ω. That corresponds to conservation laws, since the eigenvalues of such
volume-ordered integrated operator will be constant along those directions.

If we take M to be a (d + 1)-dimensional Minkowski space-time, and Ω to be the spatial
sub-manifold Rd, we get charges that are conserved in time, in a way similar to the case
of (1 + 1)-dimensional integrable field theories discussed above. In fact, for d = 1, the
relevant loop space is L(0), i.e., the space of functions mapping S0 into the two-dimensional
space-time. But S0 has only two points, and since one of them (the north pole) is always
mapped into the reference point xR, we get that L(0) is isomorphic to the two-dimensional
space-time M . So, the construction described above does reduce to the usual structures
of (1 + 1)-dimensional integrable field theories.

Such an approach, however, faces some difficult obstacles. First, the zero curvature
condition (1.4) is local on the loop space L(d−1), but not necessarily on the space-time M .
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Therefore, if one wants to work with local field theories in M , their local equations of motion
will have to be equivalent to non-local conditions in M . Second, a given volume Ω in M

corresponds in fact to an infinity of paths on the loop space L(d−1), since the change of
scanning of Ω with closed surfaces leads to different paths on L(d−1). So, at the end of
the day we have to show that the physics of our theory does not depend upon the loop
parameterization of the volumes in M . For a more detailed discussion of such issues, see the
review [14].

Yang-Mills theories come to the rescue. However, such an approach does overcome all
those difficulties thanks to the physical properties of one of the most important theories we
have, namely, gauge theories. As it is well known, the laws of electricity and magnetism were
first formulated in terms of integral equations, like the Gauss and Faraday laws. The final
and unified formulation of those laws was provided by Maxwell in terms of partial differential
equations. As we know it, electrodynamics is a local field theory that admits an equivalent
formulation in terms of integral equations of the form

flux through ∂Ω ≡ charge inside Ω (1.5)

where Ω is any three-dimensional volume in four-dimensional Minkowski space-time. The
volume Ω can be purely spatial, like in the Gauss law, or it may extend in the time direction,
like in the Faraday law of induction.

Non-abelian gauge theories were formulated a la Maxwell by C.N. Yang and R. Mills [15]
in terms of partial differential equations. However, as shown in [1, 2], they also admit an
equivalent formulation in terms of integral equations of the form (1.5). Using a generalised
version of the non-abelian Stokes theorem for two-form connections [13, 14], it was shown
in [1, 2] that for any three-dimensional volume Ω in the four-dimensional Minkowski space-time,
the partial differential Yang-Mills equations are equivalent to the integral equations

P2 e


∂Ω B = P3 e


Ω A (1.6)

where P2 denotes surface ordered integration on the border ∂Ω, and P3 means volume ordered
integration on the volume Ω. B stands for a linear combination of the Yang-Mills field
tensor Fµν , and its Hodge dual Fµν = 1

2 εµνρσ F ρσ, conjugated with the Wilson line W , i.e.
W −1


α Fµν + β Fµν


W , with α and β being arbitrary parameters. So, the integration on

the left-hand side of (1.6) gives a measure of the non-abelian electric and magnetic fluxes
through ∂Ω. A stands for the non-abelian electric and magnetic charges carried by the matter
and gauge (gluon) fields, and so it measures the charge inside Ω. Both B and A live on the
Lie algebra of the gauge group G, and they depend upon the parameters α and β. In the
case of the abelian gauge group U(1), (1.6) reduces to the usual integral equations of classical
electrodynamics. The details of the integral equation (1.6) are given in section 2.

In order to construct (1.6) one needs to choose a scanning of the volume Ω with closed
surfaces based on a fixed reference point xR on ∂Ω, and so (1.6) refers to a given path on
the loop space L(2) (see (1.3)), and ∂Ω corresponds to the end point of that path. In their
turn, each closed surface is scanned with loops based at xR. If one changes the choice of the
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scanning of Ω, both sides of (1.6) change, but in a way that the equality still holds true. So,
we can say that (1.6) is covariant under the reparameterization of the volume Ω.

Since the parameters α and β are arbitrary, one can expand both sides of (1.6) in power
series on those parameters, and so one gets an infinite number of integral Yang-Mills equations.
Each one of those integral equations must be satisfied by any solution of the local partial
differential Yang-Mills equations. A direct test of such equations was performed in [16] for
the case of ’t Hooft-Polyakov monopoles, and they are indeed satisfied. For the case of the
abelian gauge group U(1), such an expansion in powers of the parameters α and β becomes
trivial, and one gets the usual four integral equations of electrodynamics.

The dynamics of the Yang-Mills theory is such that it implies that (1.6) holds true on
any volume Ω. Therefore, if one changes the volume Ω → Ω′, such that the border is not
changed, i.e., ∂Ω = ∂Ω′, one gets that

P2 e


∂Ω B = P3 e


Ω′ A and so P3 e


Ω A = P3 e


Ω′ A (1.7)

Consequently, the holonomy of the connection A on loop space is independent of the path, as
long as its end points (xR and ∂Ω) are kept fixed. The flatness condition (1.4) was proposed
in [13] in order to get that the holonomy of A was path independent. With the integral
equation (1.6) we get that condition directly. However, the path independency certainly leads
to (1.4). Indeed, the non-abelian Stokes theorem, that leads to (1.6), implies that A is the
curvature of B, i.e. A ∼ δB + B ∧ B, and so, it should hold on loop space what is known
on ordinary manifolds, i.e. the curvature of a curvature must vanish.

It is then very clear that the integral equations for the Yang-Mills theories, constructed
in [1, 2], overcome the obstacles facing the proposal put forward in [13, 14], to construct
integrable theories in any dimension. The partial differential Yang-Mills equations, which are
local in the space-time M , are equivalent to the zero curvature of the connection A, which
is local on the loop space L(2). In addition, since the connection A is path independent,
it is invariant under the change of parameterization of the volumes Ω. Indeed, a change
of path on the loop space L(2) may correspond to a change of the physical volume Ω on
space-time M , or then to a change of parameterization of that same volume Ω. Remember
that a given volume Ω corresponds to an infinity of paths on L(2). So, the non-locality and
parameterization obstacles have been solved.

The path independency of the holonomy of A can be used to construct conservation
laws. Indeed, by imposing appropriate boundary conditions, it was shown in [1, 2] that such
holonomy has an iso-spectral time evolution, i.e.

P3 e


R3

t
A

= U (t) P3 e


R3

0
A

U−1 (t) (1.8)

where R3
t and R3

0 stand for the three dimensional spatial submanifold of M , at time t = t

and t = 0, respectively. It then follows that the eigenvalues of the operator

Q ≡ P3 e


R3

t
A

= P2 e


S2∞

B (1.9)

are conserved in time, and where, in the last equality, we have used the integral equation (1.6),
and where S2

∞ is the two-sphere at spatial infinity, i.e., the border of R3.
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We show in section 2 that, under a general gauge transformation, the charge operator (1.9)
transforms as Q → gR Q g−1

R , where gR is the element of the gauge group G, performing the
gauge transformation, evaluated at the reference point xR. So, the charge operator transforms
globally under local gauge transformations. Therefore, the conserved charges, which are
its eigenvalues, are truly gauge invariant. That has solved a long-standing problem in the
formulation of non-abelian gauge theories. The usual electric and magnetic non-abelian
charges of Yang-Mills theories, discussed in the textbooks, are not really gauge invariant.

It turns out that the eigenvalues of Q, namely qa, a = 1, 2, . . . rank G, are functions of
the arbitrary parameters α and β, and therefore we have in principle an infinite number
of conserved charges

qa (α , β) =
∞

m,n=0
αm βn q(m , n)

a (1.10)

As we will see in this paper, the role played by the parameters α and β is similar to that
played by the so-called spectral parameter in integrable theories in (1 + 1)-dimensions.

It is worth pointing out that even though the local and integral Yang-Mills equations are
equivalent, the integral equations play a crucial role in understanding the global aspects of
solutions. Indeed, the long-standing problem of the nature of the Wu-Yang monopole solution
was solved with the help of the integral equations. The local partial differential Yang-Mills
equations are not enough to settle the issue of the necessity of a source for the solution to
exist. The integral Yang-Mills equations, on the other hand, lead, with an analysis based
on distribution theory, to a unique form of the magnetic source needed for the Wu-Yang
monopole solution to be consistent [17, 18].

Summarizing, the Yang-Mills theory is a local field theory on the four-dimensional
Minkowski space-time M , whose equations of motion (the local partial differential Yang-Mills
equations), imply local equations on the generalised loop space L(2), namely (1.6) and (1.4).
So, Yang-Mills theories solve the problems of reparameterization and locality discussed above.
In other words, the dynamics of Yang-Mills theories are equivalent to the zero curvature con-
dition for a connection A on the loop space L(2). Therefore, the results of [1, 2] show that the
Yang-Mills theories realize, in a quite elegant and simple way, the ideas put forward in [13, 14].

The hidden symmetries of Yang- Mills theories. In the present paper, we construct
two types of symmetries of Yang-Mills theories based on the construction on loop space
described above. The first one is the transformations of the matter and gauge fields, Wilson
lines and fluxes, generated under the Poisson brackets, by the conserved charges, i.e., the
eigenvalues of the operator Q defined in (1.9), or equivalently, the traces of powers of it. The
second type are the symmetries of the integral equations (1.6).

We calculate the infinitesimal transformations generated by the conserved charges through
the Poisson brackets of the standard canonical quantization of Yang-Mills theories as described,
for instance, in [19]. We work with the conserved charges expressed in terms of the traces
of powers of the charge operator (1.9), i.e.

QN ≡ 1
N

Tr QN (1.11)
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The infinitesimal transformation of a given quantity X is given by the equal time Pois-
son bracket

δX ≡ ε {X , QN }P B (1.12)

with ε being a constant infinitesimal parameter.
Such global transformations are symmetries of the total Hamiltonian HT = HE + HB +

HM + HC , of Yang-Mills theory, containing the usual gauge, matter, and constraints parts. In
fact, the conserved charges weakly commute separately, i.e., when the Gauss law constraints
hold true, with each term of the total Hamiltonian, i.e.

{HE/B/M/C , QN }P B
∼= 0 (1.13)

with

HE = 1
2


d3x Tr (Ei)2 ; HB = 1

2


d3x Tr (Bi)2 ; HC =


d3x Tr (A0 (e J0 − DiEi))

(1.14)
and HM being the matter part of the Hamiltonian, with Ei and Bi, i = 1, 2, 3, being the
non-abelian electric and magnetic fields, J0 being the time component of the matter current,
and e is the gauge coupling constant. A0 is the time component of the gauge field, and in the
canonical formalism we use, it is a Lagrange multiplier [19]. The symbol ∼= means equality
when the constraints hold true. See section 6 for the details.

The striking property of the flat loop space connection A (see (1.6) and (1.7)) is that it
satisfies an anomalous Fundamental Poisson bracket Relation (FPR) of the form

{A(α1 , β1 , ζ1)⊗, A(α2 , β2 , ζ2)}P B = δ (ζ1 − ζ2)


R , A(α1 , β1 , ζ1) ⊗ 1l + 1l ⊗ A(α2 , β2 , ζ2)


+ (α1 − α2) [Ξconstr. + Ξanom.]} (1.15)

with
R = −e2 ϑ

β1 β2
β1 − β2

Ta ⊗ Ta (1.16)

where αi and βi, i = 1, 2, are the parameters appearing in the integral Yang-Mills equa-
tions (1.6), ζi are the parameters labelling the closed surfaces, based at the reference point
xR, on the scanning of the volume Ω, ϑ is a sign depending upon the orientation of the
scanning, and Ta is a basis of the Lie algebra of the compact gauge group G, satisfying

[ Ta , Tb ] = i fabc Tc ; Tr (Ta Tb) = δab ; a, b, c = 1, 2, . . . dim G (1.17)

The quantity Ξconstr. vanishes when the constraints hold true, and Ξanom. is an anomalous
term that will not influence the involution of the charges when the invariance under the
choice of scanning (reparameterization) is guaranteed. See section 10 for the details.

The FPR (1.15) leads to a Sklyanin relation for the charge operators of the form

{Q (α1 , β1) ⊗, Q (α2 , β2)}P B = [ R , Q (α1 , β1) ⊗ Q (α2 , β2) ]
+ (α1 − α2)


Ξconstr. + Ξanom.


(1.18)
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where again Ξconstr. vanishes when the constraints hold true, and Ξanom. does not influence
the involution of the charges when invariance under reparemeterization is guaranteed. See
section 11 for the details.

Note that the operator R (1.16), vanishes for either for β1 = 0 or β2 = 0, and the same
happens for the quantities Ξconstr. and Ξanom.. Therefore, the charge operators Q (α , β = 0),
commute with all charge operators, and so they are central elements. The same is true for
the loop space connections A(α , β=0 , ζ).

In its turn, (1.18) leads to the involution of all the conserved charges (1.11), for any
power Ni, and any values of the spectral parameters αi and βi, i = 1, 2, and when the
constraints hold true, i.e.

{QN1 (α1 , β1) , QN2 (α2 , β2)}P B
∼= 0 (1.19)

Therefore, we do have structures, resembling integrability, in Yang-Mills theories in the sector
of the non-abelian electric and magnetic charges. Even though the Yang-Mills Hamiltonian
commutes with such an infinity of charges (see (1.13)), it is not one of them, i.e., the
Hamiltonian is not a functional of the charges QN .

Even though the conserved charges weakly commute, the transformations generated
by them do not. It has to do with the fact that one can not impose the constraints and
reparameterization conditions inside the Poisson brackets. Using the Jacobi identity for the
Poisson bracket, one gets that the commutator of two transformations (1.12) is

[ δN1,α1,β1 , δN2,α2,β2 ] X = ε1 ε2 (α1 − α2) { X , TrRL


QN1 (α1, β1) ⊗ QN2 (α2, β2) Υ


}P B

(1.20)
with ε1 and ε2 being the constant parameters of the two global transformations, TrRL

meaning the trace on both sides of the tensor product, and Υ is an element of the Lie
algebra of G, integrated over the whole R3, depending on both sets of parameters αi and βi,
i = 1, 2, and on the Wilson line, surface and volume holonomies (see (11.5)). The quantities
TrRL


QN1 (α1, β1) ⊗ QN2 (α2, β2) Υ


, Poisson commutes with the Hamiltonian, and so they

are additional conserved charges, that generates new global symmetries. However, Υ vanishes
when the constraints hold true, and so such charges vanish on the constrained phase space.
Due to the Jacobi identity for the Poisson bracket, the transformations δNi,αi,βi

satisfy the
Jacobi identity, and so generate a Lie algebra. The subspaces corresponding to the same
value of α, are abelian subalgebras, and elements of sectors for different values of α do not
commute. See section 11.1 for the details.

The global transformations of the local fields, Wilson lines and fluxes. Some
objects present simpler transformations under the symmetry (1.12). We shall refer to them
as primary fields, and they are the matter fields, the non-abelian electric and magnetic fluxes,
and some special Wilson line operators.

Consider a matter field multiplet transforming under a given representation R of the
gauge group G

ψr → R (g)r s ψs ; g ∈ G ; r , s = 1, 2, . . . dim R (1.21)
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The fields ψ stand for spinors (quarks) or scalars (Higgs), and the form of the transformation
generated by the conserved charges is the same for both of them, and is given by

δ ψr (x) = ε {ψr (x) , QN (α , β)}P B

= −εβe2ϑ
dim G

a=1
[R (Ta) ψ (x)]r Tr


QN (ζf ) S (x) TaS−1 (x)

 (1.22)

where Q (ζf ) is the charge operator integrated over the whole R3
t , S (x) is an operator built

by volume ordered integration of the same quantities leading to the charge operator Q, and
it lies in a matrix representation of the gauge group G, not necessarily the same as R, and
it is unity at the reference point xR

S (xR) = 1l (1.23)

See section 7 for details of the construction of (1.22).
Note that the matrix S and the charge operator Q, appearing in (1.22), depend upon

all fields (gauge and matter), but the factor Tr

QN S (x) Ta S−1 (x)


is the same for all

components ψr of the matter fields. Therefore, it turns out that any gauge invariant monomial
of the matter fields is also invariant under the transformations (1.22). In particular, it preserves
the squared modulus of the multiplets (spinors or scalars), i.e.

δ

ψ†

r ψr


= ε {


ψ†

r ψr


, QN }P B = 0 (1.24)

and so the integrated (exponentiated) version of (1.22) should be a unitary transformation.
In order to describe the transformations of the gauge fields and Wilson lines, we need to

decompose them into special directions dictated by the scanning of volumes and surfaces. As
we have said, we scan a volume Ω with closed surfaces, based at the reference point xR on
its border ∂Ω. The surfaces scanning Ω are labelled by a parameter ζ. In their turn, each
of those surfaces is scanned by loops, labelled by a parameter τ , starting and ending at xR.
Each loop is parameterized by σ. Each point of Ω belongs to only one surface, to only one
loop, and to only one point of that loop. Therefore, if we take Ω to the spatial sub-manifold
R3

t , of the Minkowski space-time, at a given fixed time t, we have a one-to-one correspondence
among the points of R3

t and those parameters, i.e. xi = xi (σ , τ , ζ), i = 1, 2, 3, and xi being
the Cartesian coordinates of R3

t .
In the canonical formalism we use [19], the time component A0, of the gauge field is a

Lagrange multiplier, and only the space components, Ai, i = 1, 2, 3, correspond to physical
degrees of freedom. We express the one-form gauge connection as A = Ai dxi = Aσ dσ +
Aτ dτ + Aζ dζ. It turns out that the σ-component of the gauge field is invariant under the
global transformations (1.12), i.e,

δAσ ≡ ε {Aσ , QN }P B = 0 (1.25)

The other two components Aτ and Aζ have very precise transformation laws under (1.12),
but they do not transform as primary fields. δAτ/ζ is not linear in Aτ/ζ , and it involves
surface and volume ordered integrals of quantities appearing in the charge operator. See
section 7.2 for the details.
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The transformations of the gauge degrees of freedom are better described by the Wilson
lines defined on paths in the σ, τ , and ζ-directions. Consider the Wilson lines ωξ, defined by

d ωξ

d ξ
+ Ai

d xi (ξ)
d ξ

ωξ = 0; ξ ≡ σ , τ , ζ (1.26)

where xi (ξ) is a path, parameterized by ξ, where the other two parameters are kept fixed, i.e.,
x (σ) is a path along the loop scanning the surfaces, with τ (loop) and ζ (surface), kept fixed.
Similarly, xi (τ) is a path, on a fixed surface (ζ constant), crossing the loops at fixed value of
σ, and xi (ζ) is a path crossing the surfaces (labelled by ζ) at constant values of τ and ζ.

Due to (1.25) it turns out that the Wilson line ωσ is invariant under the global trans-
formations (1.12), i.e,

δωσ ≡ ε {ωσ , QN }P B = 0 (1.27)

The Wilson lines ωτ and ωζ transform as

δωτ/ζ = ε {ωτ/ζ , QN }P B (1.28)

= ε e2 β ϑ

ωτ/ζ Ta Tr


QN (ζf ) S−1

R Ta SR


− Ta ωτ/ζTr


QN (ζf ) S−1

L TaSL



where Q (ζf ) is the charge operator integrated over the whole R3
t , and SR/L are operators

built by volume ordered integration of the same quantities leading to the charge operator
Q, and they are different for the cases of ωτ and ωζ . For the case of ωζ , the second equality
in (1.28) holds true when the constraints are imposed.

Other quantities that transform in a simple way under the global transformations (1.12)
are the electric and magnetic fluxes defined as

eτ/ζ =
 σf

σi

dσ ω−1
σ Ei ωσ εijk

d xj

d σ

d xk

d τ/ζ
bτ/ζ =

 σf

σi

dσ ω−1
σ Bi ωσ εijk

d xj

d σ

d xk

d τ/ζ
(1.29)

where Ei and Bi are the non-abelian electric and magnetic fields, and ωσ is the Wilson line
defined in (1.26). The integral is over an entire loop parameterized by σ, and the Wilson
line is defined on that loop, integrated from the reference point xR up to the point where
the fields Ei and Bi are located.

Under (1.12) we have that

δ bτ/ζ = ε { bτ/ζ , QN }P B = 0 (1.30)

δ eτ/ζ = ε { eτ/ζ , QN }P B = −ε e2 β ϑ


Ta , eτ/ζ


Tr


Q (ζf )N S−1

e Ta Se



where again Se is an operator built by volume ordered integration of the same quantities
leading to the charge operator Q. See sections 7, 8, and 9 for the details on the global
transformations.

The fluxes eτ/ζ and bτ/ζ play a very important role in the properties of the Yang-Mills
theory, and they are the basic constituents of the electric and magnetic charge densities of the
gauge fields (gluons) on the loop space formulation of the integral equations. As we discuss in
section 4, they are perhaps the closest thing to what Polyakov used to call the rings of glue [20].
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Note that the conserved charges for the β = 0, i.e. QN (α , β = 0), do not generate
any transformation, as can be seen by setting β to zero in (1.22), (1.28) and (1.30). As we
commented above (see paragraph below (1.18)), the corresponding charge operator leading to
such charges, Poisson commutes with all other charge operators. So, they constitute central
elements of the algebra of the charge operators.

It is worth pointing out that despite the fact that the conserved charges (1.11) are truly
gauge invariant, and independent of the parameterizations of volumes and surfaces, the global
transformations (1.12) have to be defined on a given scanning. Indeed, suppose we consider
two different parameterizations of volumes and surfaces, leading to two global transformations,
and consider their difference δX − δ′X = ε { X , QN − Q′

N }P B . The invariance of the charge
under reparameterization, i.e. QN = Q′

N , follows from the static integral Yang-Mills equations,
which are equivalent to the Gauss constraints and Bianchi identity, DiBi = 0. Since we
cannot impose the constraints inside the Poisson brackets, it follows that, in principle,
δX ≠ δ′X. All that means that our global transformations (1.12) are, in fact, defined on
loop space. The transformation depends upon the path on L(2) where the charge QN is
evaluated. But that is similar to Weyl’s gauge principle [21, 22]: the gauge interaction
introduces non-integrable phases on the wave functions, but the physics does not depends
upon the path chosen to calculate that phase. It is amazing that our loop space formulation
of the global transformations lead to such a property that the physics does not depend
upon the choice of path. That is what allows us to define the transformations of local fields,
like the matter and gauge fields.

Note that our conserved charges are integrated over the whole spatial sub-manifold R3 of
the Minkowski space-time M . Therefore, in the language of the so-called generalized global
symmetries [23–26], our global transformations (1.12) should be called 0-form symmetries
and should act on point objects, like the local fields. However, our conserved charges also
generate transformation of extended objects like the Wilson lines and electric and magnetic
fluxes. That is a point that deserves further analysis to connect our work with those results.

Another interesting point is that our results depend crucially on the contributions of
boundary terms. Indeed, as we show in section 5, the global transformation of any quantity
X, which is a function of the canonical variables, contains a volume and a boundary term
(see (5.32)). The symmetries that we have constructed are certainly not what is called in
the literature asymptotic symmetries [27–29], but it would be interesting to investigate if
there is any connection with those symmetries.

In addition, the structures underlying our holonomies may relate to what is called in
the literature higher gauge theories, gerbes, Lie two-algebras, and other categorical frame-
works [30–32]. Our direct approach, however, dispenses with such mathematical structures,
but it would be interesting to investigate further any possible connections.

The symmetries of the integral Yang-Mills equations. The second type of transfor-
mations that we construct are symmetries of the Yang-Mills integral equations (1.6). We
construct an infinite group of transformations on each point (function) of the loop space
L(2) (see (1.3)). As we have said, the construction of the integral equations (1.6) requires a
scanning of the volume Ω with closed surfaces based at the reference point xR. So, it requires
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a choice of path on the loop space L(2). The right-hand side of (1.6) is integrated over that
chosen path, and its left-hand side is defined on a point in L(2), which is the end point of that
path. On its turn, such a point on L(2) can be seen as a closed path in L(1), and so the operator
on the left hand side of (1.6) can be considered the holonomy of the connection B on L(1).

We shall fix a closed path on L(1), and so a point in L(2), which we shall denote ∂Ω. In
addition, we parameterize the closed path in L(1) with a parameter τ , such that τi and τf

correspond respectively to its initial and final points. We then consider all possible connections
a on L(1), and calculate their holonomies ĝ, on the fixed path ∂Ω, through the equation

d ĝ (τ)
d τ

− ĝ (τ) a (τ) = 0 such that ĝ (xR) = 1l (1.31)

Given two connections a1 and a2 we defined the composition law of their holonomies, ĝ1
and ĝ2 respectively, as

ĝ3 (τ) = ĝ1 (τ) ĝ2 (τ) (1.32)

where the (matrix) product is performed on each point τ of the path ∂Ω. It turns out that
ĝ3 (τ) also to satisfy (1.31), and the connections must compose as

a3 (τ) = ĝ−1
2 (τ) a1 (τ) ĝ2 (τ) + a2 (τ) (1.33)

The set of elements of our group Ĝ, however, is defined as the holonomies integrated over
the whole fixed path ∂Ω, and the group product law is defined as

ĝ3 (τf ) = ĝ1 (τf ) ĝ2 (τf ) or equivalently ĝ3 (∂Ω) = ĝ1 (∂Ω) ĝ2 (∂Ω) (1.34)

One can easily verify that such an infinite set G of elements ĝ (∂Ω), with the product
law (1.34), satisfies all the postulates of a group. The product is associative, the product of
any two elements is again an element of the set (closure), there is a unique (left and right)
identity, and each element has a unique (left and right) inverse. Therefore, we can define on
any point ∂Ω of L(2) such an infinite dimensional group Ĝ. Note, however, that even though
the elements are holonomies, such a group is not the usual holonomy group known in the
literature. The usual holonomy group has a fixed connection, and its associated holonomy
is evaluated on every closed path based on a fixed point. The composition law gives an
element, which is the holonomy of that fixed connection, calculated on the composition of
two closed loops. Our group Ĝ is defined on a fixed path and an infinity of connections. The
composition law for the connections is given by (1.33) on that fixed path.

Using the non-abelian Stokes theorem, one can express each group element of Ĝ as an
ordered integral on the volume Ω whose border is ∂Ω, i.e., Ω is a path on L(2)

ĝ (∂Ω) = ĝ (Ω) (1.35)

Therefore, one can view each side of the integral Yang-Mills equations (1.6) as taking values
on such an infinite-dimensional group Ĝ. The symmetries of the integral equations (1.6)
are given by the left and right transformations

P2 e


∂Ω B → ĝL (∂Ω) P2 e


∂Ω B and P3 e


Ω A → ĝL (Ω) P3 e


Ω A (1.36)
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and

P2 e


∂Ω B → P2 e


∂Ω B ĝR (∂Ω) and P3 e


Ω A → P3 e


Ω A ĝR (Ω) (1.37)

It is clear from (1.35) that such transformations are symmetries of the integral Yang-Mills
equations (1.6). In fact, the connection B will compose with the connections producing the
holonomies ĝL (∂Ω) and ĝR (∂Ω), in the same way as in (1.33).

As we have seen, the connection A is flat due to the integral equations, i.e.

δA + A ∧ A = 0 (1.38)

and so it must be of the pure gauge form

A = δĝ (∂Ω) ĝ−1 (∂Ω) (1.39)

Under the transformations (1.36) and (1.37) it transform, respectively, as

A → ĝL (∂Ω) A ĝ−1
L (∂Ω) + δĝL (∂Ω) ĝ−1

L (∂Ω) (1.40)

and
A → A + ĝ (∂Ω) δĝR (∂Ω) ĝ−1

R (∂Ω) ĝ−1 (∂Ω) (1.41)

Consequently, one can see the infinite-dimensional group Ĝ as a group of gauge transformations
for the flat connections A on the loop space L(2).

Note that the transformations (1.36) and (1.37) are not symmetries of the Yang-Mills
Hamiltonian and Lagrangian. Indeed, if one takes a vacuum configuration where both B and
A vanish, one gets that P2 e


∂Ω B = P3 e


Ω A = 1l. The transformations (1.36) and (1.37) will

map such vacuum configuration in non-trivial B′ and A′, such that

P2 e


∂Ω B′
= ĝL/R (∂Ω) and P3 e


Ω A′

= ĝL/R (Ω) (1.42)

So, one starts with a configuration where the energy vanishes and gets a non-trivial configu-
ration with non-vanishing energy. The transformations (1.36) and (1.37) must therefore act
on the full space of solutions. However, we are very far from having a concrete method for
constructing solutions, like we have the inverse scattering and dressing methods in (1 + 1)-
dimensional integrable field theory. The mathematical structure that makes those methods
possible is the so-called Riemann-Hilbert problem. The question of whether there exists an
equivalent method for four-dimensional gauge theories is far beyond the scope of the present
paper, and that is certainly an issue to be investigated further.

One would note that such a symmetry resembles the gauge transformations of the Lax-
Zakharov-Shabat equation (1.1), discussed above. However, the infinite-dimensional group
Ĝ does not seem to be a Lie group. The structure of such a group has still to be clarified,
but the (infinite) dimension of the space of elements of Ĝ at the identity element seems to
be different from the dimension at other elements. So, such a space does not seem to be a
manifold. Therefore, we might not have an infinite-dimensional Lie algebra associated to
such a symmetry, like we have the Kac-Moody algebra in two-dimensional integrable theories.
But that is an interesting point, since the fact that our symmetry is not associated to a Lie
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group, it might circumvent the Coleman-Mandula theorem for four-dimensional Yang-Mills
theories in a novel way. See section 12 for the details.

The paper is organized as follows. In section 2 we revise the non-abelian Stokes theorem
for two-form connections, construct the integral equations for Yang-Mills theories, and from
them the infinity of conserved charges. In section 3, we present the symplectic structure
we shall use to calculate the transformations generated by the charges. The properties of
the charge operator, including its iso-spectral time evolution, are discussed in section 4.
The transformations generated by the conserved charges are constructed in section 5. The
invariance of the Hamiltonian of the Yang-Mills theories under the global transformations is
proved in section 6. In section 7 we show how the local matter and gauge fields transform under
those global transformations, and in section 8 how the electric and magnetic fluxes transform.
The transformations of the Wilson lines are presented in section 9. The integrability structures
of Yang-Mills theories are presented in sections 10 and 11, where we construct respectively
the Fundamental Poisson Bracket Relation for the flat connection, and the Sklyanin relation
for the charge operator, and following from it the involution of the conserved charges. The
infinite-dimensional group Ĝ, which is a symmetry of the integral Yang-Mills equations,
is constructed in section 12. Our discussions and conclusions are presented in section 13.
Finally, we have 10 appendices where we give the details of many calculations needed in
the main parts of the paper.

2 The Yang-Mills integral equations

The symmetries of the Yang-Mills theories that we discuss in this paper rely on the integral
Yang-Mills equations constructed in [1, 2]. In this section, we summarize the construction
of those integral equations, which uses the Stokes theorem for a two-form connection. The
proof of that theorem is quite straightforward [13, 14].

2.1 The non-abelian Stokes theorem for two-forms

First of all, we have to define how integrals over volumes, surfaces, and loops are ordered.1
Given a three-dimensional volume Ω in the Minkowski space-time M , we choose a reference
point xR on its border ∂Ω, and scan Ω with closed two dimensional surfaces based on xR, and
labelled by a parameter ζ, varying from ζi to ζf , such that ζi corresponds to the infinitesimal
closed surface around xR, and ζf corresponds to the border ∂Ω. On their turn, the closed
two-dimensional surfaces scanning Ω are scanned with loops, starting and ending at the
reference point xR, and labelled by a parameter τ , varying from τi to τf . We start with an
infinitesimal loop around xR, labelled by τi, then vary the loops to cover the whole surface,
and end with another infinitesimal loop around xR, labelled by τf . Each closed loop is
parameterised by a parameter σ, varying from σi to σf , and both corresponding to the (initial
and final) reference point xR. Every point of Ω belongs to only one two-dimensional surface

1The version of the non-abelian Stokes theorem for a two-form connection that we derive here applies to
volumes and surfaces with trivial topology. If one wants to consider spaces with holes and handles, one has
to partition the volumes and surfaces into patches with trivial topology, and the proof becomes a lot more
involved. For the case of the ordinary non-abelian Stokes theorem for one-form connections, the proof for
spaces with non-trivial topology has been given in [33].
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and to only one loop. So, loops and surfaces do not intersect each other. Therefore, the
coordinates of the space-time points of the volume Ω are functions of those three parameters,
i.e. xµ (ζ , τ , σ). The choice of the scanning of Ω defines in fact a map from a 3-sphere S3,
parameterised by (ζ , τ , σ), to the space-time M , such that the image is the volume Ω. The
reference point xR is the image of the north-pole of S3, and so we have that xµ (ζ , τ , σ)
corresponds to a point in the loop space L(3) (see (1.3)). Equivalently, we can consider those
functions xµ (ζ , τ , σ) as defining a path in L(2), such that the parameter ζ parameterises
such a path. In fact, the latter is more appropriate for our applications.

We now consider an antisymmetric rank two tensor Bµν , and a one-form connection Cµ,
on the Minkowski space-time M , and taking values on a Lie algebra, which in our applications
will be the Lie algebra G of the compact gauge group G. We introduce a 1-form connection
on L(1), through a 2-form Bµν and a 1-form Cµ on M , as

T ≡
 σf

σi

dσ W −1 Bµν W
d xµ

d σ

d xν

d τ
(2.1)

where W is the Wilson line operator associated to the 1-form connection Cµ, defined by
the equation

d W

d σ
+ Cµ

d xµ

d σ
W = 0 (2.2)

The 1-form connection T is defined by an integral on every loop scanning the two-dimensional
surfaces, that in their turn scan Ω. So, T is defined on points of L(1). The Wilson line W

in (2.1) is obtained by integrating (2.2) from the reference point xR (σ = σi), up to the point
of the loop where Bµν is evaluated. So, the general solution of (2.2) is given by the series

W (σ) =

1l−

 σ

σi

dσ′ C

σ′+

 σ

σi

dσ′
 σ′

σi

dσ′′ C

σ′ C


σ′′ (2.3)

−
 σ

σi

dσ′
 σ′

σi

dσ′′
 σ′′

σi

dσ′′′ C

σ′ C


σ′′ C


σ′′′+ . . .


WR ≡ P1 e

−
 σ

σi
dσ′ C(σ′)

WR

with C (σ) ≡ Cµ
d xµ

d σ , WR is a matrix integration constant, and P1 denotes path ordering.
Note that WR is the value of W at the reference point xR, i.e. W (σi) = WR. The calculations
have to be performed in a given representation of the Lie algebra G, as it involves products
of the generators, and not only Lie algebra brackets of them.

We define the holonomy of T on a given path in L(1) through the equation

d V

d τ
− V T = 0 (2.4)

Similarly, the general solution of (2.4) is given by the series

V (τ) = VR


1l +

 τ

τi

dτ ′ T 
τ ′ +

 τ

τi

dτ ′
 τ ′

τi

dτ ′′ T 
τ ′′ T 

τ ′ (2.5)

+
 τ

τi

dτ ′
 τ ′

τi

dτ ′′
 τ ′′

τi

dτ ′′′ T 
τ ′′′ T 

τ ′′ T 
τ ′ + . . .


≡ VR P2 e

 τ

τi
dτ ′ T (τ ′)
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with P2 denoting surface ordering, and VR being a matrix integration constant. Note that VR

is the value of V at the infinitesimal loop around the reference point xR, i.e., V (τi) = VR.
The question we ask now is how V , defined on a given surface, varies when we change

that surface infinitesimally. In other words, what is the variation δV , when we change the
function xµ (ζ , τ , σ) to xµ (ζ , τ , σ) + δxµ (ζ , τ , σ), keeping the reference point xR fixed?
Instead of performing that variation directly on the solution (2.5), it is much easier to
vary the defining equation (2.4) for V , to get a differential equation for the variation δV .
Integrating such an equation, up to the loop labelled by τ , one gets that (see the details
in [1, 2, 13, 14], especially appendix A.2 of [2])

δV (τ) V −1 (τ) = V (τ ) T (τ , δ) V −1 (τ) + K (τ , δ) (2.6)

with
T (τ , δ) ≡

 σf

σi

dσ W −1 Bµν W
d xµ

d σ
δxν (2.7)

and

K (τ , δ) ≡
 τ

τi

dτ ′
 σf

σi

dσ V

τ ′


W −1 [DλBµν + DµBνλ + DνBλµ] W

d xµ

d σ

d xν

d τ ′ δxλ

−
 σ

σi

dσ′


BW
κρ


σ′ − HW

κρ


σ′ , BW

µν (σ)
 dxκ

dσ′
dxµ

dσ

×


d xρ (σ′)
d τ ′ δxν (σ) − δxρ σ′ d xν (σ)

d τ ′


V −1 τ ′ (2.8)

where we have introduced the covariant derivative Dµ∗ ≡ ∂µ ∗ + [ Cµ , ∗ ], and the curvature
of the connection Cµ, Hµν ≡ ∂µCν − ∂νCµ + [ Cµ , Cν ], and where the superscript W means
conjugation by the Wilson line, i.e. XW ≡ W −1 X W . Note that τi corresponds to the
infinitesimal loop around the reference point xR. Since we do not vary xR, we have that
δxµ (τi) = 0, and so when performing the integration to get (2.6), we have used the fact
that T (τi , δ) = 0.

We now consider the case where the variation of the surface corresponds to the variation
of a given closed surface in the scanning of Ω, into one infinitesimally close to it, i.e. we
take δxµ = d xµ

d ζ dζ. First, we consider the variation of V , integrated up to a loop labelled
by τ , due to the variation of a surface labelled by ζ, to one labelled by ζ + dζ. Replacing
the variation δxµ = d xµ

d ζ dζ, into (2.6) and dividing both sides by dζ, and taking the limit
dζ → 0, we get a differential equation for V

d V (τ)
d ζ

V −1 (τ) = V (τ ) T (τ) V −1 (τ) + K (τ) (2.9)

where K (τ) stands for K (τ , δ), given in (2.8), and T (τ) stands for T (τ , δ), given in (2.7),
when we replace δxµ by δxµ = d xµ

d ζ dζ, and divide by dζ.
Consider now the case where V is integrated over the whole surface labelled by ζ, i.e.,

integrated up to the final loop labelled by τf , which is also an infinitesimal loop around the
reference point xR, at the end of the scanning of the surface with loops. Since we do not vary
the reference point, we have that δxµ (τf ) = 0, and so, from (2.7), we have T (τf , δ) = 0.
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Therefore, in such a case (2.9) becomes
d V

d ζ
− K V = 0 (2.10)

where V stands for V (τf ), and K stands for K (τf ).
The general solution of (2.10) is given by the series

V (ζ) =

1l +

 ζ

ζi

dζ ′ K 
ζ ′ +

 ζ

ζi

dζ ′
 ζ′

ζi

dζ ′′ K 
ζ ′ K 

ζ ′′ (2.11)

+
 ζ

ζi

dζ ′
 ζ′

ζi

dζ ′′
 ζ′′

ζi

dζ ′′′ K 
ζ ′ K 

ζ ′′ K 
ζ ′′′ + . . .


VR ≡ P3 e

 ζ

ζi
dζ′ A(ζ′) VR

where P3 denotes volume ordering, and again VR is a matrix integration constant. Note
that VR is the value of V at the infinitesimal closed surface around the reference point
xR, i.e. V (ζi) = VR.

Given a volume Ω with boundary ∂Ω, and scanned with given functions xµ (ζ , τ , σ),
we can determine the quantity V on the surface ∂Ω in two equivalent ways. First, by
integrating (2.4) on the whole surface ∂Ω. Second, by integrating (2.10) on the volume Ω,
starting at the infinitesimally closed surface around xR (ζ = ζi) up to the surface corresponding
to the border of Ω (ζ = ζf ). Since those two integrals are bound to be the same, we get
the non-abelian Stokes theorem [1, 2, 13, 14]

VR P2 e

 τf
τi

dτ T (τ) = P3 e

 ζf
ζi

dζ K(ζ)
VR (2.12)

Note that ζ = ζi corresponds to an infinitesimal closed surface around the reference point
xR. Therefore, the loops scanning that infinitesimal surface shrink to just one infinitesimal
loop around xR, corresponding to τ = τi. In such a case we have that P2 e

 τf
τi

dτ T (τ) → 1l

and P3 e

 ζf
ζi

dζ K(ζ) → 1l, and so we have that the integration constants have to be the same,
i.e. VR = VR.

2.2 The integral Yang-Mills equations

We shall consider a Yang-Mills theory for a compact gauge group G, coupled to families of
spinor ψ and scalar φ fields. The Lagrangian is given by

L = −1
4 Tr (Fµν F µν) + ψ̄ (i γµ Dµ − m) ψ + (Dµφ)† Dµφ − V (| φ |) (2.13)

where, in order to simplify the notation, we have dropped the summation over the families
of spinors and scalars. In addition, we have that

Fµν = ∂µAν − ∂νAµ + i e [ Aµ , Aν ] (2.14)

with Aµ being the physical gauge field, and e the gauge coupling constant. The La-
grangian (2.13) is invariant under the gauge transformations

Aµ → g Aµ g−1 + i

e
∂µg g−1; Fµν → g Fµν g−1

ψ → Rψ (g) ψ; φ → Rφ (g) φ (2.15)
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with g ∈ G, and where Rψ and Rφ are the representations of G under which the spinors
and scalar, respectively, transform. Therefore, we have that Dµψ = ∂µψ + i e Rψ (Aµ) ψ,
and Dµφ = ∂µφ + i e Rφ (Aµ) φ. Consequently, under the gauge transformation (2.15) we
have that Dµψ → Rψ (g) Dµψ, and Dµφ → Rφ (g) Dµφ.

The Euler-Lagrange equations associated to the gauge fields, following from (2.13), are
the local Yang-Mills partial differential equations, together with the Bianchi identities

Dµ F µν = e Jν ; Dµ
F µν = 0 (2.16)

where Fµν is the Hodge dual of the field tensor, i.e.

Fµν = 1
2 εµνρλ F ρλ (2.17)

and Jµ is the matter current

Jµ =

ψ̄ γµ Rψ (Ta) ψ + i

2

φ† Rφ (Ta) Dµφ − (Dµφ)† Rφ (Ta) φ


Ta (2.18)

Note that Jµ is an element of the Lie algebra of the gauge group G. Jµ transforms under
the adjoint representation of G, irrespective of the representations under which the matter
fields transform, i.e., under (2.15) we have that

Jµ → g Jµ g−1 (2.19)

The Euler-Lagrange equations associated to the matter fields, following from (2.13), are

(i γµ Dµ − m) ψ = 0 ; DµDµφ + δ V

δ | φ |2 φ = 0 (2.20)

The integral Yang-Mills equations are obtained by combining the non-abelian Stokes the-
orem for a two-form connection (2.12), with the local differential Yang-Mills equations (2.16).
We take the one-form Cµ and two-form Bµν to be given by

Cµ = i e Aµ ; Bµν = i e

α Fµν + β Fµν


(2.21)

with α and β being arbitrary (even complex) parameters. Using the Yang-Mills equa-
tions (2.16) we get that

DλBµν + DµBνλ + DνBλµ = i e2 β Jλµν (2.22)

where Jµνρ = εµνρλ Jλ, is the Hodge dual of the matter current.
Therefore, the 1-form connection on L(1) defined in (2.1) becomes

T ≡ i e

 σf

σi

dσ W −1

α Fµν + β Fµν


W

d xµ

d σ

d xν

d τ
(2.23)

From (2.21) and (2.22), and the substitution δxµ = d xµ

d ζ dζ, we get that the one-form
connection K (τf , δ) in L(2), introduced in (2.8), which we now denote by A, becomes

A = i e2
 τf

τi

dτ V (τ) J V −1 (τ) (2.24)
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with

J ≡
 σf

σi

dσ


β JW

µνλ

d xµ

d σ

d xν

d τ

d xλ

d ζ

−i

 σ

σi

dσ′


(α − 1) F W
κρ


σ′ + β F W

κρ


σ′ , α F W

µν (σ) + β F W
µν (σ)

 dxκ

dσ′
dxµ

dσ

×


d xρ (σ′)
d τ

d xν (σ)
d ζ

− d xρ (σ′)
d ζ

d xν (σ)
d τ


(2.25)

where again the superscript W means XW ≡ W −1 X W . The equation (2.10) then becomes

d V

d ζ
− A V = 0 (2.26)

As we show in appendix B, J defined in (2.25), can be written as

J = β JM + β JG + i α [ Fτ , Fζ ] − i


α Fτ + β Fτ , α Fζ + β Fζ


(2.27)

where we have defined the quantities

JM ≡
 σf

σi

dσ W −1 Jµνλ W
d xµ

d σ

d xν

d τ

d xλ

d ζ
(2.28)

and

JG ≡ i

 σf

σi

dσ

 σ

σi

dσ′


F W
κρ


σ′ dxκ

dσ′
d xρ (σ′)

d τ
, F W

µν (σ) dxµ

dσ

d xν (σ)
d ζ



−


F W
κρ


σ′ dxκ

dσ′
d xρ (σ′)

d ζ
, F W

µν (σ) dxµ

dσ

d xν (σ)
d τ


(2.29)

and
Fτ/ζ ≡

 σf

σi

dσ W −1 Fµν W
dxµ

dσ

d xν

d τ/ζ
(2.30)

and
Fτ/ζ ≡

 σf

σi

dσ W −1 Fµν W
dxµ

dσ

d xν

d τ/ζ
= − i

e
W −1

c

d Wc

d τ/ζ
(2.31)

where Wc is the Wilson operator obtained by integrating (see (2.2) and (2.21))

d W

d σ
+ i e Aµ

d xµ

d σ
W = 0 (2.32)

on a closed loop belonging to the scanning of Ω, starting and ending at the reference point
xR, labelled by τ , and lying on a closed surface labelled by ζ. See (C.3) for a proof of the
last equality in (2.31), or alternatively see section 2 of [13].

With such a notation we have that T , defined in (2.23), can be written as

T = i e

α Fτ + β Fτ


= α W −1

c

d Wc

d τ
+ i e β Fτ (2.33)

Under the gauge transformations (2.15) we have that the Wilson line, defined in (2.32),
transforms as

W → g (x) W W −1
R g−1 (xR) WR = g (x) W g−1 (xR) ; g (xR) ≡ W −1

R g (xR) WR

(2.34)
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where xR and x are respectively the initial and final points of the curve where W is evaluated,
and WR is the integration constant associated to the first order differential equation (2.32), and
it corresponds to the value of W at the reference point xR (see (2.3)). The integration constant
WR will not play any physical role in our calculations, and in what follows, we shall denote
g (xR) by g (xR), as if that constant were chosen to lie in the center of the gauge group G.

Therefore, for any quantity X transforming under the adjoint representation of the
gauge group, we have that

X (x) → g (x) X (x) g (x)−1 ; W −1 X (x) W → g (xR) W −1 X (x) W g (xR)−1

(2.35)
Note that Fµν , Fµν , and Jµνλ, which transform under the adjoint representation, appear in
all our formulas conjugated by the Wilson line. Consequently, the one-form connection T in
L(1), given in (2.23), and the quantity J , defined in (2.25), transform as

T → g (xR) T g−1 (xR) ; J → g (xR) J g−1 (xR) (2.36)

Therefore, the quantity V (τ) given in (2.5), transforms as

V (τ) →

VR g (xR) V −1

R


V (τ) g−1 (xR) (2.37)

Consequently, the one-form connection in L(2) given in (2.24), transform as

A →

VR g (xR) V −1

R


A


VR g (xR) V −1

R

−1
(2.38)

The left and right hand sides of (2.12), transform as

VR P2 e

 τf
τi

dτ T (τ) →

VR g (xR) V −1

R


VR P2 e

 τf
τi

dτ T (τ)


g−1 (xR)

P3 e

 ζf
ζi

dζ A(ζ)
VR →


VR g (xR) V −1

R


P3 e

 ζf
ζi

dζ A(ζ)
VR


g−1 (xR) (2.39)

Therefore, the equation (2.12) transforms covariantly under gauge transformations.
Note that all the quantities in our formulas appear conjugated by the Wilson line operator

W , and so, the local gauge symmetry has been wrapped up by such a conjugation. Therefore,
our formulas present just a global gauge symmetry performed by the group element evaluated
at the reference point, i.e. g (xR). That fact simplifies things a lot, and play a crucial role
in all of our results.

The integral Yang-Mills equations are obtained from the non-abelian Stokes theo-
rem (2.12), with the replacements (2.21), and the imposition, in (2.22), of the local Yang-Mills
partial differential equations (2.16). So, for any three-dimensional volume Ω, on the four-
dimensional Minkowski space-time, we get that the classical dynamics of the Yang-Mils
theory is described by the equations

VR P2 ei e


∂Ω dτ dσ W −1


α Fµν+β Fµν


W d xµ

d σ
d xν

d τ = P3 ei e2


Ω dζ dτ V J V −1
VR (2.40)

That is the integral equation for the Yang-Mills theory in (3+1)-dimensional Minkowski space-
time obtained in [1, 2]. Such an equation is equivalent to the local Yang-Mills partial differential
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equations (2.16). Indeed, if one considers the length parameter l ≡ (volume of Ω)1/3, and
expands both sides of (2.40) in a power series in l, one gets the Yang-Mills equations (2.16)
in lowest order of that expansion.

As we have shown above, the integral equations (2.40) transform covariantly under
general local gauge transformations. Note however that the tensors Fµν , Fµν and Jµνλ, which
transform under the adjoint representation of the gauge group G, appear in (2.40) conjugated
by the Wilson line W . Therefore, as shown in (2.35), the Yang-Mills integral equations only
involve quantities that transform globally under gauge transformations.

In order to obtain the integral equations (2.40) we have to choose a scanning of the
volume Ω with closed surfaces based at the reference point xR. However, by the construction
of the non-abelian Stokes theorem (2.12), it is clear that if we change the choice of scanning,
both sides of (2.40) will change, but in a way that the equality between them holds true in
the new scanning. So, (2.40) transforms covariantly under the change of scanning.

The integral equation (2.40) is also independent upon the choice of the reference point
xR. Indeed, if one changes xR to x′

R, the Wilson line will change as W → W WxR→x′
R

,
where WxR→x′

R
is obtained by integrating (2.32) from xR to x′

R along a fixed chosen curve
on ∂Ω, joining the two reference points. But since everything in (2.40) is conjugated by the
Wilson line, it turns out that everything gets conjugated by the constant matrix WxR→x′

R
.

So, both sides of the integral Yang-Mills equations (2.40) get conjugated by WxR→x′
R

, and
such equations transform covariantly under the change of the reference point xR.

By expanding both sides of (2.40) in power series in the parameters α and β we get,
in fact, an infinite number of integral equations. For instance, the terms linear in α lead
to the integral equation

VR e



∂Ω
dτ dσ W −1 Fµν W

d xµ

d σ

d xν

d τ
= i e2



Ω
dζ dτ [ Fτ , Fζ ] VR (2.41)

and the terms linear in β lead to the integral equation

VR e



∂Ω
dτ dσ W −1 Fµν W

d xµ

d σ

d xν

d τ
= e2



Ω
dζ dτ (JM + JG) VR (2.42)

Note that when the volume Ω is purely spatial, the right-hand sides of (2.41) and (2.42)
can be interpreted, respectively, as the non-abelian magnetic and electric flux through the
border ∂Ω. The left-hand sides of (2.41) and (2.42) can be interpreted, respectively, as the
non-abelian magnetic and electric charges inside the volume Ω. In addition, JM and JG

account for the charges of the matter fields and gauge fields (gluons), respectively. Continuing
the expansion, we get higher integral equations. For a check of such equations, for the case
of SU(2) magnetic monopoles, see [16].

2.3 The gauge invariant conserved charges

One of the most striking consequences of the integral Yang-Mills equation (2.40) is that the
operator on its right-hand side is independent of the volume Ω, as long as its border ∂Ω is
kept fixed. Indeed, consider two volumes Ω and Ω′ such that their borders are the same, i.e.
∂Ω = ∂Ω′. Therefore, the integral equations (2.40) considered on those two volumes are such
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that their left-hand sides are equal. Consequently, we get that

V (Ω) ≡ P3 ei e2


Ω dζ dτ V J V −1
VR = P3 ei e2


Ω′ dζ dτ V J V −1

VR ≡ V

Ω′ ; if ∂Ω = ∂Ω′

(2.43)
where we have assumed that the integration constant VR is the same for both volumes. Since
the volumes Ω and Ω′ are scanned with closed surfaces based on a given reference point
xR, they can be seen as paths on the loop space L(2) (see (1.3)). So, the relation (2.43)
implies that the operator P3 ei e2


Ω dζ dτ V J V −1

is independent of the path on L(2), as long
as the initial and final points of the path are kept fixed. The initial point of the path is
the infinitesimal closed surface around xR, and the final point is the border ∂Ω. Note that
if we keep the volume Ω fixed and change its scanning with closed surfaces, we get that
the path on L(2) changes. In other words, there exists an infinite number of paths on L(2)

corresponding to the same physical volume Ω. Therefore, the relation (2.43) also implies
that the operator P3 ei e2


Ω dζ dτ V J V −1

is independent of the choice of scanning, i.e. it is
reparameterisation invariant.

The conserved charges were constructed in [1, 2] using such a path independency of
the volume operator appearing on the right-hand side of (2.40). Let us consider two paths
starting and ending at the same points. The first path is made of two parts. We take
the spatial sub-manifold R3

0, at time t = 0, and take the reference point x0
R, at the border

of it, i.e. S2
∞ , t=0. The first part of the path is made by the scanning of R3

0 with closed
two-dimensional surfaces based at x0

R, starting with the infinitesimal surface around x0
R, and

ending at the border S2
∞ , t=0. The second part of the path is obtained by scanning a hyper

cylinder I × S2
∞, with the bottom part being S2

∞ , t=0, and the top part being S2
∞ , t=t. The

side of the hyper cylinder is in the time direction, rising from t = 0 to t = t. We scan it
with two-dimensional surfaces (of infinite radius) based at x0

R. The integration of (2.10)
with A given in (2.24) leads to the operator

Vx0
R


I × S2

∞


Vx0
R


R3

0


(2.44)

with
Vx0

R
(X) ≡ P3 ei e2


X

dζ dτ V J V −1
(2.45)

and the subscript x0
R means that the two dimensional surfaces scanning the volumes are

based at the reference point x0
R.

The second path is also made of two parts. The first part is an infinitesimally thin hyper
cylinder I × S2

0 , with the bottom part being a two sphere of vanishing radius at the reference
point x0

R at t = 0, and the top part being a two sphere of vanishing radius at the reference
point xt

R at t = t. The second part corresponds to the spatial sub-manifold R3
t , at time t = t.

All the two-dimensional surfaces scanning such a volume are based at x0
R, as our loop space

formulation requires. The integration of (2.10) with A given in (2.24) leads to the operator

Vx0
R


R3

t


Vx0

R


I × S2

0


(2.46)

From the arguments leading to (2.43), the operators (2.44) and (2.46) should be equal.

– 23 –



J
H
E
P
1
1
(
2
0
2
5
)
1
0
2

We now impose the following boundary condition on the Yang-Mills fields. The field
tensor and the matter current should fall at spatial infinity as

Fµν → 1
r

3
2 +δ

Jµ → 1
r2+δ′ r → ∞ (2.47)

with δ , δ′ > 0. Such boundary conditions are sufficient for the quantity J to vanish at
spatial infinity. Remember that the reference points x0

R and xt
R are at spatial infinity.

Therefore, one gets that

Vx0
R


I × S2

∞


→ 1l Vx0
R


I × S2

0


→ 1l (2.48)

When evaluating the charge operator on the spatial sub-manifold R3, at a given time, we
want the reference point to be on the border of R3 at that same time. The shifting of the
reference point amounts to the change of the initial point where the Wilson line is evaluated.
Therefore, we have that

Vx0
R


R3

t


= W −1


xt

R , x0
R


Vxt

R


R3

t


W


xt

R , x0
R


(2.49)

where W

xt

R , x0
R


is the Wilson line obtained by integrating (2.32) along the time interval

I, from x0
R to xt

R. Therefore, we get that

Vxt
R


R3

t


= W


xt

R , x0
R


Vx0

R


R3

0


W −1

xt

R , x0
R


(2.50)

Consequently, the operator obtained by integrating (2.10), with A given in (2.24), on the
spatial sub-manifold R3, at a given time, has an iso-spectral time evolution. Therefore,
its eigenvalues, or equivalently, the traces of powers of it, are constant in time. Those are
the conserved charges of the Yang-Mills theories. We denote the charge operator and the
charges, respectively, as

Q (α , β) ≡ Vxt
R


R3

t


QN (α , β) ≡ 1

N
Tr [Q (α , β)]N (2.51)

Note that using the Yang-Mills integral equations (2.40), we can write the charge operator
either as an ordered volume integral or as an ordered surface integral, i.e., we have

Q (α , β) = VR P2 e
i e


S2∞
dτ dσ W −1


α Fµν+β Fµν


W d xµ

d σ
d xν

d τ = P3 e
i e2


R3

t
dζ dτ V J V −1

VR (2.52)

where S2
∞ is the two-dimensional sphere at spatial infinity, i.e., the border of R3

t .
Note from (2.39) that, under a gauge transformation (2.15), the charge operator Q (α , β) =

P3 ei e2

R3 dζ dτ V J V −1

VR, transforms as

Q (α , β) →

VR g (xR) V −1

R


Q (α , β) g−1 (xR) (2.53)

Therefore, in order for the conserved charges QN (α , β) = Tr (Q (α , β))N , to be gauge
invariant, we have to impose that the integration constant VR must satisfy

VR ∈ center of the gauge group G (2.54)
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That condition will play an important role in our discussion of the algebra of such conserved
charges.

By expanding the charge operator in power series of the parameters α and β

Q (α , β) =
∞

n,m=0
αm βn Q (m , n) (2.55)

and using the fact that W −1 xt
R , x0

R


does not depend upon α and β, we get that each

component of the charge operator has an iso-spectral time evolution

Q (m , n , t) = W

xt

R , x0
R


Q (m , n , 0) W −1


xt

R , x0
R


(2.56)

Consequently, we get an infinity of conserved charges given by

QN (m , n) = 1
N

Tr [Q (m , n)]N (2.57)

Let us expand both sides of the integral Yang-Mills equation (2.40) in power series of
the parameters α and β

V (∂Ω) = VR P2 ei e


∂Ω dτ dσ W −1


α Fµν+β Fµν


W d xµ

d σ
d xν

d τ =
∞

n,m=0
αm βn V (∂Ω , m , n)

V (Ω) = P3 ei e2


Ω dζ dτ V J V −1
VR =

∞

n,m=0
αm βn V (Ω , m , n) (2.58)

and so

V (∂Ω , m , n) = V (Ω , m , n) (2.59)

Using arguments similar to those leading to (2.43), we get that V (Ω , m , n) is independent
of Ω, as long as we keep its border ∂Ω fixed. That argument applies when we physically
change Ω, or when we just change its parameterization in the loop space L(2) (remember that
Ω is a path in L(2)). So, V (Ω , m , n) is independent of the scanning of Ω. Consequently,
the modes Q (m , n) of the charge operator are independent of the scanning of the three-
dimensional space R3

t . Such an argument corroborates the iso-spectral time evolution of
Q (m , n), shown in (2.56).

Note that Q (α , β), and so Q (m , n), are matrices in a given representation of the
gauge group G. Therefore, the number of values of the integer N that leads to functionally
independent operators is equal to the rank of the gauge group G. For more details of such
a construction, see [1, 2].

2.4 The invariance of the charges under reparameterization

As we have argued below (2.43), the integral Yang-Mills equations imply that the volume
ordered integral, on the right-hand side of (2.52), is independent of the volume as long as
its border is kept fixed. That is the basic property used to show the conservation of the
charges (2.51). The scanning of the volume with closed surfaces, based at the reference point
xR, makes that volume correspond to a path on the loop space L(2). That path can be changed
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either by changing the physical volume itself or by changing the scanning of that fixed volume.
So, we have an infinite number of paths in L(2), corresponding to the same physical volume.

The physical properties of the Yang-Mills theories should not depend upon such a
reparameterization of the volume. The discussion below (2.43) has shown that the integral
Yang-Mills equations guarantee that the right-hand side of (2.52) is invariant under repa-
rameterization of R3, as long as its border is kept fixed. However, we have to keep fixed
not only the physical border S2

∞, but also its parameterization. In other words, we have to
keep fixed the point of L(2) corresponding to S2

∞. Since what really matters is the physical
surface S2

∞, and not its particular scanning, we have to require the invariance of conserved
charges when we change the scanning of the end point S2

∞.
In order to obtain how the left hand side of (2.52) varies when we change the parameter-

ization of S2
∞, we consider a path in L(2) from the reference point xR up to a point γ of L(2)

which corresponds to a given scanning of S2
∞. Such a path corresponds to a given scanning of

R3 at a given fixed time. We then integrate (2.26) along that path to obtain V (γ) ≡ Q (γ).
Then we consider paths in L(2) which correspond to changes of the scanning of S2

∞. Along
those paths the ζ-derivative in (2.26) means variations parallel to the surface S2

∞. Therefore,
on such paths we need d Q(γ)

δ ζ = 0, and that implies that A = 0, along those paths.
Note that the first term of (2.25) involves the contraction of a 3-form with three derivatives

with respect to σ, τ , and ζ. But since those three derivatives are now parallel to the S2
∞, which

is two-dimensional, it follows that the first term of (2.25) vanishes identically. Therefore,
the condition for the conserved charges (2.51) to be invariant under the parameterization
of S2

∞ is [1]

δQN (α , β) = Tr

QN (α , β)

 τf

τi

dτV (τ) N V −1 (τ)


= 0 (2.60)

where

N = e2
 σf

σi

dσ

 σ

σi

dσ′


(α − 1) F W
ij


σ′ + β F W

ij


σ′ , α F W

kl (σ) + β F W
kl (σ)


×

×dxi

dσ′
dxk

dσ


d xj (σ′)

d τ
δxl (σ) − δxj σ′ d xl (σ)

d τ


on S2

∞ (2.61)

with i, j, k, l = 1, 2, 3, since S2
∞ is a spatial surface, and where we have replaced the ζ-

derivatives of xi by the variations δxi, to reinforce that such variations are parallel to S2
∞.

As discussed in [1], there are basically two sufficient conditions (but perhaps not necessary)
leading to (2.60). Note that the parameters (σ , τ ) are angles on S2

∞, and the variations δxi

are parallel to S2
∞, and so the second line in (2.61) goes as r4, as the radial distance r goes to

infinite. Therefore, if the components of the tensors Fij and Fij (magnetic and electric fields
respectively) fall faster than 1/r2, as r → ∞, N vanishes and the condition (2.60) is satisfied.

The second sufficient condition satisfying (2.60) is a bit more subtle. Assume that the
magnetic and electric fields fall as

Fij ∼ εijk
r̂k

r2 G (r̂) ; Fij ∼ εijk
r̂k

r2
G (r̂) (2.62)
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with r̂ being the unit radial vector, and G (r̂) and G (r̂) being elements of the Lie algebra
of the gauge group, that are covariantly constant

DkG (r̂) = 0; Dk
G (r̂) = 0 (2.63)

Using (2.32) we have that (2.63) implies

d

d σ


W −1 G (r̂) W


= 0; d

d σ


W −1 G (r̂) W


= 0 (2.64)

Therefore, the magnetic and electric field conjugated by the Wilson line, which appear
in (2.61), F W

ij and F W
ij respectively, have, on the surface of S2

∞, a constant direction in the
Lie algebra of the gauge group, i.e.

W −1 Fij W ∼ εijk
r̂k

r2 c; W −1 Fij W ∼ εijk
r̂k

r2 c (2.65)

with c and c being the constant values of W −1 G W and W −1 G W respectively, at the
reference point xR.

If we now assume that those constant Lie algebra elements lie on the same Cartan
subalgebra, then the commutator in (2.61) vanishes, and so such fields configurations lead
to conserved charges that are truly invariant under reparameterization.

Note that the conditions (2.62) and (2.63) are exactly those satisfied by monopole and
dyons solutions of Yang-Mills theory [1, 34–36].

The question if there are other ways of satisfying (2.60) has still to be investigated.

3 The symplectic structure of Yang-Mills theories

In order to find the symmetries generated by the conserved charges, constructed in the last
part of section 2, we need a symplectic structure for our gauge theory. We follow the standard
canonical quantization of gauge theories as described, for instance, in the book by Faddeev
and Slavnov [19]. We use the first-order formalism where the Lagrangian (2.13) is written as

L = −1
2 Tr


∂µAν − ∂νAµ + i e [ Aµ , Aν ] − 1

2 Fµν


F µν


+ ψ̄ (i γµ Dµ − m) ψ

+1
2

φ†

µ Dµφ + (Dµφ)† φµ − V (| φ |)


− 1
2 φ†

µ φµ (3.1)

where φµ and φ†
µ are auxiliary fields. In such first order Lagrangian formalism we consider as

independent variables the fields Aµ, Fµν , ψ, ψ̄, φ, φ†, φµ and φ†
µ.

We use the basis Ta, a = 1, 2, 3, . . . dim G, for the Lie algebra of the compact gauge
group G, as described in (1.17), and use the components of the gauge fields in that basis,
i.e. Aµ = Aa

µ Ta, and Fµν = F a
µν Ta. In the Hamiltonian formalism, we have to split the time

and space components of the fields, and so we shall denote by Latin letters the space indices,
i.e., i, j, k = 1, 2, 3. We define the non-abelian electric and magnetic fields as

Ei = F0i; Bi = −1
2 εijk Fjk (3.2)
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with ε123 = 1. The canonical momenta conjugate to the space components of the gauge
fields are

πa
i = δL

δ ∂0 Aa
i

= Ea
i (3.3)

and for the spinor fields, we have

πψ
α = δL

δ ∂0 ψα
= iψ†

α; α = 1, 2, 3, 4 (3.4)

with α being the index for Dirac spinor components. We have dropped the group index of the
representation Rψ under which the spinor multiplet transforms. For the boson fields, we have

πφ = δL
δ ∂0 φ

= 1
2 φ†

0; πφ† = δL
δ ∂0 φ† = 1

2 φ0 (3.5)

where again we have dropped the group index of the representation Rφ under which the
boson multiplet transforms.

In terms of the canonical variables, the Lagrangian density (3.1) becomes

L = πa
i ∂0Aa

i + πψ
α ∂0ψα + πφ ∂0φ + πφ† ∂0φ† − H + Aa

0 Ca (3.6)

where the density of the Hamiltonian is

H = 1
2

(Ea

i )2 + (Ba
i )2


+ iψ̄γi Diψ + mψ̄ ψ + 1

2

φ†

i Diφ + (Diφ)† φi



+V (| φ |) + 2 πφ πφ† − 1
2 φ†

i φi (3.7)

The constraints Ca, a = 1, 2, 3, . . . dim G, are given by

Ca = (DiEi)a − e ψ† Rψ (Ta) ψ + i e

πφ Rφ (Ta) φ − φ† Rφ (Ta) πφ†


(3.8)

The time components of the gauge fields Aa
0 play the role of Lagrange multipliers.

Note that the Euler-Lagrangian equations associated to φµ, φ†
µ and Fij , following

from (3.1), are

φµ = Dµφ; φ†
µ = (Dµφ)† ; Fij = ∂iAj − ∂jAi + i e [ Ai , Aj ] (3.9)

Therefore, we can use such equations to eliminate the variables φi, φ†
i and Fij , and the

independent pairs of canonical variables become (Ai , Ei),

ψ , πψ


, (φ , πφ), and


φ† , πφ†


.

The complete Hamiltonian is then given by

HT =


d3x (H − Aa
0 Ca) (3.10)

The equal time canonical Poisson brackets are given by

{ Aa
i (x) , Ab

j (y) }P B = 0
{ πa

i (x) , πb
j (y) }P B = 0

{ Aa
i (x) , πb

j (y) }P B = δab δij δ(3) (x − y) (3.11)
{ ψα (x) , πψ

β (y) }P B = δαβ δ(3) (x − y)

{ φ (x) , πφ (y) }P B = δ(3) (x − y)
{ φ† (x) , πφ† (y) }P B = δ(3) (x − y)
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where we have dropped the indices associated to the representations Rψ and Rφ, under which
the spinor and boson multiplets, respectively, transform. They account for a Kronecker delta
on those indices on the right-hand side of the Poisson brackets for those fields. From (3.11)
we have that

{ Ea
i (x) , Bb

j (y) }P B = −εijk


e fabc Ac

k (x) δ(3) (x − y) − δab ∂ δ(3) (x − y)
∂ yk


(3.12)

The time component of the matter current (2.18), in the first-order formalism, is given by

J0 = Ja
0 Ta =


ρψ

a + ρφ
a


Ta (3.13)

with

ρψ
a = −i πψ Rψ (Ta) ψ ρφ

a = −i

πφ Rφ (Ta) φ − φ† Rφ (Ta) πφ†


(3.14)

Therefore, the constraint (3.8) can be written as

C = Ca Ta = DiEi − e J0 (3.15)

The constraints (3.15) are the generators of gauge transformations under the Poisson
bracket, of the canonical variables. Indeed, we have that

{ Ca (x) , ψ (y) }P B = −i e Rψ (Ta) ψ (x) δ(3) (x − y)
{ Ca (x) , πψ (y) }P B = i e πψ (x) Rψ (Ta) δ(3) (x − y)
{ Ca (x) , φ (y) }P B = −i e Rφ (Ta) φ (x) δ(3) (x − y)

{ Ca (x) , πφ (y) }P B = i e πφ (x) Rφ (Ta) δ(3) (x − y) (3.16)
{ Ca (x) , Eb

i (y) }P B = −e fabc Ec
i (x) δ(3) (x − y)

{ Ca (x) , Ab
i (y) }P B = −e fabc Ac

i (x) δ(3) (x − y) − δab ∂ δ(3) (x − y)
∂ xi

4 The charge operator

The charge operator Q (α , β), defined in (2.51), is the holonomy of the loop space connection
A, defined in (2.24), over a path on the loop space L(2), corresponding to the whole three
dimensional spatial sub-manifold R3

t , at a given fixed time t. As explained at the beginning
of section 2, in order to perform such a volume ordered integral, we scan R3

t with closed two
dimensional surfaces, labelled by ζ, based at a reference point xR on the border S2

∞,t of R3
t .

Each closed surface is scanned with loops, labelled by τ , starting and ending at the reference
point xR. The loops are parameterized by σ. Therefore, the Cartesian coordinates of R3

t , xi,
i = 1, 2, 3, become functions of those three parameters, i.e. xi = xi (ζ , τ , σ). Note that the
scanning of R3

t is such that each of its points belongs to one and only one closed surface, and
to one and only one non-self-intersecting loop, scanning such a surface. Consequently, there
is a one-to-one correspondence between the triples


x1 , x2 , x3 and (ζ , τ , σ). In addition,

as shown in (2.43), the charge operator Q (α , β) is independent of the path on loop space,
as long as its end points are kept fixed, and so it is invariant under the change of scanning
of R3

t , i.e. it is reparameterization invariant.
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According to (2.10), the charge operator is obtained by integrating the holonomy equation

d Q (α , β)
d ζ

− A (α , β) Q (α , β) = 0 (4.1)

with A (α , β) given by (2.24). As we are restricted to the three dimensional space R3
t , it

is convenient to introduce the quantities

eτ/ζ (σ) ≡
 σ

σi

dσ′ W −1 Ei W εijk
d xj

d σ′
d xk

d τ/ζ

bτ/ζ (σ) ≡
 σ

σi

dσ′ W −1 Bi W εijk
d xj

d σ′
d xk

d τ/ζ
(4.2)

where Ei and Bi are respectively the non-abelian electric and magnetic fields defined in (3.2).
Note that such quantities correspond to electric and magnetic fluxes through strips, attached
to the loop up to the point σ, which are parallel to the surface labelled by ζ, in the case of eτ

and bτ , and perpendicular to it in the case of eζ and bζ . Note that eτ/ζ (σf ) and bτ/ζ (σf )
correspond (up to a minus sign) respectively to Fτ/ζ and Fτ/ζ , given in (2.30) and (2.31),
when the loops are purely spatial.

As discussed in (2.35), under local gauge transformations (2.15), such quantities trans-
form globally

eτ/ζ (σ) → g (xR) eτ/ζ (σ) g−1 (xR) ; bτ/ζ (σ) → g (xR) bτ/ζ (σ) g−1 (xR) (4.3)

with g (xR) being the gauge group element, performing the gauge transformation, evaluated
at the reference point xR.

The surface holonomy equation, defined in (2.4) and with T given in (2.33), becomes,
in the case of the spatial sub-manifold R3

t ,

d V

d τ
− V Tτ = 0; Tτ = −i e [α bτ (σf ) + β eτ (σf )] (4.4)

where we have used (2.17) and (3.2) to write (ε0123 = ε123 = 1)

Fij = −εijk Bk; Fij = −εijk Ek (4.5)

We have added a subscript τ to T , i.e. Tτ , for a convenience that will become clear later on.
In the case of purely spatial loops the quantity J , given in (2.27), becomes

Jspatial = β (ρM + ρG) + α ρmag. − i [ α bτ (σf ) + β eτ (σf ) , α bζ (σf ) + β eζ (σf ) ] (4.6)

with ρM and ρG corresponding respectively to JM and JG, defined in (2.28) and (2.29),
restricted to space loops, and given by

ρM (τ , ζ) = −
 σf

σi

dσ W −1 J0 W εijk
d xi

d σ

d xj

d τ

d xk

d ζ
(4.7)

with J0 given in (3.13), and

ρG (τ , ζ) = i

 σf

σi

dσ


bτ (σ) ,

d eζ (σ)
d σ


−

bζ (σ) ,

d eτ (σ)
d σ


(4.8)
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In addition, we have denoted

ρmag. = i [ bτ (σf ) , bζ (σf ) ] (4.9)

Note that the first order (in α and β) integral Yang-Mills equations (2.41) and (2.42), applied
to a volume Ω being the three-dimensional space sub-manifold R3

t , become respectively


S2
∞,t

dτ dσ W −1 Bi W εijk
d xj

d σ

d xk

d τ
= −e



R3
t

dζ dτ ρmag. (4.10)

and 

S2
∞,t

dτ dσ W −1 Ei W εijk
d xj

d σ

d xk

d τ
= −e



R3
t

dζ dτ (ρM + ρG) (4.11)

where we have chosen the integration constant VR equal to unity.
We have seen in (2.55) that we can expand the charge operator in power series in α

and β, and each component has an iso-spectral time evolution, with the charges being given
by (2.57). The right-hand sides of (4.10) and (4.11) correspond in fact to the first two
operators in that expansion, i.e.

Q (1 , 0) = i e2


R3
t

dζ dτ ρmag. (4.12)

with ρmag. given in (4.9), and

Q (0 , 1) = i e2


R3
t

dζ dτ (ρM + ρG) (4.13)

with ρM and ρG given by (4.7) and (4.8) respectively. The conserved magnetic and electric
charges are respectively the eigenvalues of the operators (4.12) and (4.13), or equivalently
traces of powers of them (see (2.57)). Therefore, the number of magnetic and electric charges,
in lowest order in α and β, is equal to the rank of the gauge group G, since the operators (4.12)
and (4.13) are elements of the Lie algebra of G. The higher charge operators live on the
enveloping algebra associated to a given representation of G. Note that in the case of an
abelian gauge group, like in Maxwell theory, the electric (4.8) and magnetic (4.9) charge
densities vanish, and the only source of the gauge field is the matter charge density (4.7).

Clearly, (4.10) and (4.11) are respectively the integral non-abelian magnetic and electric
Gauss laws for Yang-Mills theory. On the left-hand side, we have, respectively, the non-abelian
magnetic and electric fluxes through the two-dimensional sphere S2

∞,t at spatial infinity. On
the right-hand side, we have respectively the volume integral of the densities of magnetic
and electric charges over the whole space R3

t .
Therefore, ρmag. and ρG are respectively the magnetic and electric charge densities

associated to the Yang-Mills gauge fields (gluons). Note, however, that they are not local
in space-time, but instead defined on the loops parameterized by σ. Indeed, ρmag. and ρG

are built out of the fluxes eτ/ζ (σ) and bτ/ζ (σ), defined in (4.2), and those are non-local
quantities on space-time. So, ρmag. and ρG are local densities on the loop space L(1) (1.3), of
maps from the circle S1 to the space-time M , based at the reference point xR. So, we are
inclined to interpret the sources of the non-abelian magnetic and electric fields as arranged
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on loops. That resembles the rings of glue of [20]. However, in our formulation, the rings
are not the Wilson loops, but instead the quantities ρmag. and ρG, which are defined on the
loops. Note in addition that all the quantities are conjugated by the Wilson line, and so
they transform globally under local gauge transformations (see (4.3)).

4.1 The algebra of the charge densities

Using the results of appendix G, we get that the electric, magnetic, and matter charge
densities satisfy the following algebra under the Poisson bracket

{ ρa
G (τ , ζ) , ρb

G


τ ′ , ζ ′ }P B = −ϑ fabc ρc

G (τ , ζ) δ

ζ − ζ ′ δ


τ − τ ′

{ ρa
M (τ , ζ) , ρb

M


τ ′ , ζ ′ }P B = −ϑ fabc ρc

M (τ , ζ) δ

ζ − ζ ′ δ


τ − τ ′ (4.14)

{ ρa
mag. (τ , ζ) , ρb

mag.


τ ′ , ζ ′ }P B = 0

where we have written them in terms of the basis of Lie algebra given in (1.17), i.e. ρG/M/mag. =
ρa

G/M/mag. Ta. In addition, they commute among themselves

{ ρa
G (τ , ζ) , ρb

M


τ ′ , ζ ′ }P B = 0

{ ρa
G (τ , ζ) , ρb

mag.


τ ′ , ζ ′ }P B = 0

{ ρa
M (τ , ζ) , ρb

mag.


τ ′ , ζ ′ }P B = 0 (4.15)

5 The symmetries generated by the conserved charges

The first type of symmetries of Yang-Mills theories, which we discuss in this paper, are the
canonical transformations generated by the conserved charges, defined in (2.51), under the
Poisson brackets, i.e., the transformation of a given quantity X is given by

δX ≡ ε { X , QN (α , β) }P B = ε

N
{ X , Tr [Q (α , β)]N }P B (5.1)

with ε being an infinitesimal constant parameter, and Q (α , β) being the charge operator
obtained by integrating (4.1).

As we have discussed on the first paragraph of section 4, the points of the spatial sub-
manifold R3

t are in one-to-one correspondence with the parameters (ζ , τ , σ) of the scanning
of R3

t . Therefore, derivatives with respect to those parameters are spatial derivatives, and
consequently commute with the Poisson bracket. Therefore, from (4.1) we have that

d { X , Q (α, β) }P B

d ζ
− { X , A (α, β) }P B Q (α, β) − A (α, β) { X , Q (α, β) }P B = 0 (5.2)

where we have assumed that the quantity X is independent of the parameters (ζ , τ , σ) of
the scanning of R3

t , used to obtain the charge operator through (4.1). The quantity X can
itself be obtained by an ordered integral, but it involves scanning parameters independent of
(ζ , τ , σ). Note that in the case where X is a matrix, we are assuming that X in (5.2), and
in the equations that follow below, stands for any given entry of that matrix.

From (4.1) we have that the inverse charge operator satisfies

d Q−1 (α , β)
d ζ

+ Q−1 (α , β) A (α , β) = 0 (5.3)
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Therefore, multiplying (5.2) from the left by Q−1 (α , β), and multiplying (5.3) from the right
by { X , Q (α , β) }P B, and adding them up, we get that

d

Q−1 (α , β) { X , Q (α , β) }P B



d ζ
− Q−1 (α , β) { X , A (α , β) }P B Q (α , β) = 0 (5.4)

Integrating (5.4) we get

{ X , Q (ζ) }P B = Q (ζ)
 ζ

ζi

dζ ′ Q−1 ζ ′ { X , A 
ζ ′ }P B Q


ζ ′ (5.5)

where, to simplify the notation, we have dropped the explicit dependence on α and β, and
have used the fact that Q (ζi) is an integration constant, corresponding to the value of the
charge operator at the infinitesimal closed surface around the reference point xR, labelled by
ζi. Being an integration constant, it does not depend upon the canonical variables (fields),
and so Poisson commutes with any X.

The same reasoning can be applied to the holonomy V defined in (4.4). Indeed, since
the derivative with respect to τ is a spatial derivative, and so it commutes with the Poisson
bracket, we get from (4.4) that

d { X , V }P B

d τ
− { X , V }P B Tτ − V { X , Tτ }P B = 0 (5.6)

In addition, it follows from (4.4) that the inverse operator V −1 satisfy

d V −1

d τ
+ Tτ V −1 = 0 (5.7)

Combining (5.6) with (5.7) we get

d
{ X , V }P B V −1

d τ
= V { X , Tτ }P B V −1 (5.8)

and so

{ X , V (τ) }P B V −1 (τ) =
 τ

τi

dτ ′ V

τ ′ { X , Tτ


τ ′ }P B V −1 τ ′ (5.9)

where we have used the fact that V (τi) is an integration constant, and so independent of the
canonical variables. So, it Poisson commutes with any X. Using the fact that the Poisson
bracket is a derivation, i.e., it satisfies Leibniz rule, we get from (5.9) that

{ X , V (τ) Ta V −1 (τ) }P B =
  τ

τi

dτ ′ V

τ ′ { X , Tτ


τ ′ }P B V −1 τ ′ , V (τ) Ta V −1 (τ)



(5.10)
Using (2.24) and (5.10), we get that the Poisson bracket appearing on the right-hand

side of (5.5) becomes

{ X , A (ζ) }P B = i e2
 τf

τi

dτ

V (τ) { X , Jspatial (τ) }P B V −1 (τ) (5.11)

+
  τ

τi

dτ ′ V

τ ′ { X , Tτ


τ ′ }P B V −1 τ ′ , V (τ) Jspatial (τ) V −1 (τ)


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where Jspatial is defined in (4.6). There are two important manipulations in the evaluation
of (5.11). The first one is to write V (τ) Jspatial (τ) V −1 (τ) = d

d τ

 τ
τi

dτ ′ V (τ ′) Jspatial (τ ′)
V −1 (τ ′), and then integrate by parts the second term on the right hand side of (5.11) to get

i e2
 τf

τi

dτ

  τ

τi

dτ ′ V

τ ′ { X , Tτ


τ ′ }P B V −1 τ ′ , V (τ) Jspatial (τ) V −1 (τ)



=
  τf

τi

dτ V (τ) { X , Tτ (τ) }P B V −1 (τ) ,
d Q (ζ)

d ζ
Q−1 (ζ)



−
 τf

τi

dτ


V (τ) { X , Tτ (τ) }P B V −1 (τ) , A (τ)


(5.12)

where we have used the fact that Tτ (τi) = Jspatial (τi) = 0, since τi corresponds to the
infinitesimal loop around the reference point xR, and so the σ-integrals in those quantities
vanish. In addition, following (2.24), we have denoted

A (τ) = i e2
 τ

τi

dτ ′ V

τ ′ Jspatial


τ ′ V −1 τ ′ (5.13)

and, from (4.1), we have used the fact that A (τf ) = d Q(ζ)
d ζ Q−1 (ζ).

The second important manipulation involves the use of equations (2.9) and (4.4) for the
derivatives of V with respect to ζ and τ , respectively. Using the replacement (2.21) and the
notation introduced in (4.2), we get that equation (2.9), for the case of the volume Ω being
the three dimensional sub-manifold R3

t , can be written as

V (τ) Tζ (τ) V −1 (τ) = d V (τ)
d ζ

V −1 (τ) − K (τ) (5.14)

with

Tζ = −i e [α bζ (σf ) + β eζ (σf )] (5.15)

and

K (τ) =
 τ

τi

dτ ′ V

τ ′


−ie

 σf

σi

dσW −1 [α DiBi + β DiEi] W εjkl
d xj

d σ

d xk

d τ ′
d xl

d ζ
(5.16)

+ i e2 (β ρG + α ρmag. − i [ α bτ (σf ) + β eτ (σf ) , α bζ (σf ) + β eζ (σf ) ])


V −1 τ ′

where we have used manipulations similar to those leading (2.25) to (2.27) and then to (4.6).
Note that in obtaining (5.14) we did not use the Yang-Mills differential equations. Indeed,
as explained in (2.6), (5.14) is an identity obtained by the variation of the equation (4.4),
which defines V in the static case.

Note that if we take τ = τf , we get from the arguments leading to (2.10), that (5.14)
becomes

K (τf ) = d V (τf )
d ζ

V −1 (τf ) (5.17)
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Using (4.4), (5.14), and (5.15), we can write the first term on the right-hand side
of (5.11) as

i e2
 τf

τi

dτ V { X , Jspatial }P B V −1

= i e2
 τf

τi

dτV


{ X , β (ρM + ρG) + α ρmag. }P B + i

e2 { X , [ Tτ , Tζ ] }P B


V −1

=
 τf

τi

dτV


{ X , ie2 [β (ρM + ρG) + α ρmag.] + d Tζ

d τ
− d Tτ

d ζ
}P B


V −1

+
 τf

τi

dτ


d

d ζ


V { X , Tτ }P BV −1


− d

d τ


V { X , Tζ }P BV −1



+
 τf

τi

dτ


V (τ) { X , Tτ }P B V −1 (τ) , K (τ)


(5.18)

where we have used the fact that X does not depend upon the parameters (ζ , τ , σ).
Using (5.12) and (5.18) we get that (5.11) becomes

{X , A(ζ)}P B =
 τf

τi

dτ


V (τ ) {X , M}P B V −1 (τ)− d

dτ


V (τ ){X , Tζ (τ)}P B V −1 (τ)



+

V (τ ){X , Tτ (τ)}P B V −1 (τ) , K (τ)−A(τ)



+ d

dζ

 τf

τi

dτ

V (τ ){X , Tτ (τ)}P BV −1 (τ)



+
 τf

τi

dτ V (τ) {X , Tτ (τ)}P B V −1 (τ) ,
dQ(ζ)

dζ
Q−1 (ζ)


(5.19)

where we have defined

M ≡ ie2 [β (ρM + ρG) + α ρmag.] + d Tζ

d τ
− d Tτ

d ζ
(5.20)

In the scanning of a given volume Ω, the reference point xR lies on the border ∂Ω,
and it is kept fixed. The values τi and τf of the parameter τ correspond to infinitesimal
loops around the reference point xR. Therefore, we must have (see appendix A for an
example of scanning of R3

t )

d xµ

d τ
= d xµ

d ζ
= 0 at τ = τi and τ = τf (5.21)

Therefore, from (4.2) we conclude that

eτ/ζ = bτ/ζ = 0 at τ = τi and τ = τf (5.22)

Consequently, from (5.15) we get that
 τf

τi

dτ
d

d τ


V (τ) { X , Tζ (τ) }P B V −1 (τ)


= 0 (5.23)

From (4.6), (4.7), (5.13) and (5.16) we get that

K (τ) − A (τ) = (5.24)

= −ie

 τ

τi

dτ ′ V

τ ′

 σf

σi

dσW −1 [α DiBi + β (DiEi − e J0)] W εjkl
d xj

d σ

d xk

d τ ′
d xl

d ζ
V −1 τ ′
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As we discussed in section 3, Ai and Ei are independent canonical variables, and Bi is
expressed in terms of Ai. Therefore, DiBi = 0, as it is the static Bianchi identity. On the
other hand, we have from (3.15) that (DiEi − e J0) are the constraints. Therefore, (5.24)
vanishes when the constraints hold true.

In appendix C we show that the quantity M, defined in (5.20), is given by

M = i e

 σf

σi

dσ W −1 [α DiBi + β (DiEi − e J0)] W εjkl
d xj

d σ

d xk

d τ

d xl

d ζ
(5.25)

and so, it is homogeneous on the static Bianchi identity and the constraints. However,
contrary to K (τ) − A (τ), the quantity M appears in (5.19) inside the Poisson bracket, and
therefore we can not set the constraints straight to zero. The static Bianchi identity, however,
can be set to zero inside the Poisson bracket.

Consequently (5.19) becomes

{ X , A (ζ) }P B = ieβϑ

 τf

τi

dτV (τ)
 σf

σi

dσ{ X , Ca }P BW −1TaW V −1 (τ) ∆ (σ, τ, ζ)

+Q (ζ) d

dζ


Q−1 (ζ)

 τf

τi

dτ

V (τ) { X , Tτ (τ) }P BV −1 (τ)


Q (ζ)


Q−1 (ζ)

+ieβϑX (5.26)

where Ca are the constraints defined in (3.15), and where we have defined

X ≡
 τf

τi

dτ


V (τ)

 σf

σi

dσ{ X , W −1 Ta W }P BV −1 (τ) Ca ∆ (σ , τ , ζ) (5.27)

−


V (τ) { X , Tτ (τ) }P BV −1 (τ) ,

 τ

τi

dτ ′V

τ ′

 σf

σi

dσW −1 C W V −1 τ ′∆

σ, τ ′, ζ

 

We have also denoted the Jacobian of the transformation

x1 , x2 , x3 → (σ , τ , ζ) as

∆ (σ , τ , ζ) ≡ ϑ εijk
d xi

d σ

d xj

d τ

d xk

d ζ
; ϑ = ±1 (5.28)

The sign ϑ is due to the orientation of the scanning of R3
t . If we take the vector d xi

d ζ , to
point outward to the closed surfaces scanning R3

t , we get that ϑ = 1, when the cross product
εijk

d xi

d σ
d xj

d τ is also a vector pointing outwards the closed surface. When that cross product
points inwards to the surface, we get ϑ = −1. Note that d xi

d σ and d xi

d τ are tangent vectors
to the closed surfaces. Therefore, ∆ (σ , τ , ζ) is always positive. See appendix A for an
example of a scanning of R3

t .
Therefore, the relation (5.5) becomes

{ X , Q (ζ) }P B =
 τf

τi

dτ

V (τ) { X , Tτ (τ) }P BV −1 (τ)



ζ=ζ

Q (ζ)

+ieβϑQ (ζ)
 ζ

ζi

dζ ′ Q−1 ζ ′
 τf

τi

dτ V (τ)
 σf

σi

dσ{ X , Ca }P BW −1TaW ×

×V −1 (τ) Q

ζ ′∆


σ, τ, ζ ′ (5.29)

+ieβϑQ (ζ)
 ζ

ζi

dζ ′ Q−1 ζ ′X Q

ζ ′
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where we have used the fact that (see appendix A for an example of scanning of R3
t )

d xµ

d τ
= 0 at ζ = ζi (5.30)

since ζi corresponds to the infinitesimal closed surface around the reference point xR, which
is kept fixed in the scanning. Therefore, from (4.2) we have that

eτ = bτ = 0 at ζ = ζi (5.31)

and so, from (4.4), we have that Tτ (τ) |ζ=ζi
= 0.

From (5.1) and (5.29), we get that the transformations generated by the conserved
charges are given by

δX = ε{X , QN (α , β)}P B

= εTr

QN (ζf )

 τf

τi

dτ

V (τ){X , Tτ (τ)}P BV −1 (τ)



ζ=ζf

(5.32)

+ ieβϑ

 ζf

ζi

dζQ−1 (ζ)
 τf

τi

dτV (τ)
 σf

σi

dσ{X , Ca }P BW −1TaW V −1 (τ)Q(ζ)∆(σ,τ,ζ)

+ ieβϑ

 ζf

ζi

dζ Q−1 (ζ) X Q(ζ)


Note that the transformations generated by the purely magnetic charges, corresponding
to β = 0, act only at spatial infinity, and so, they are like asymptotic symmetries. Indeed,
we have that

δ(β=0)X = ε { X , QN (α , 0) }P B (5.33)

= −i e α ε Tr

QN (ζf , α, 0)

 τf

τi

dτ

Vβ=0 (τ) { X , bτ (σf ) }P BV −1

β=0 (τ)


ζ=ζf



By expanding both sides of (5.29) in power series in α and β, we obtain the transformations
generated by the conserved charges associated to each component in the expansion (2.55)
of the charge operator. The transformations generated by the charges, defined in (2.57),
associated to the operators in lowest order in that expansion, given in (4.12) and (4.13), are

δ(N,1,0)X = ε { X , QN (1 , 0) }P B

= −i e ε Tr

QN−1 (1 , 0)

 τf

τi

dτ{ X , bτ (σf ) }P B



ζ=ζf


(5.34)

and

δ(N,0,1)X = ε { X , QN (0 , 1) }P B

= ε Tr


QN−1 (0 , 1)

−i e

 τf

τi

dτ{ X , eτ (σf ) }P B



ζ=ζf

+ ie ϑ

 ζf

ζi

dζ

 τf

τi

dτ

 σf

σi

dσ{ X , Ca }P B W −1TaW ∆ (σ , τ , ζ) (5.35)

+ ie ϑ

 ζf

ζi

dζ

 τf

τi

dτ

 σf

σi

dσ{ X , W −1 Ta W }P B∆ (σ , τ , ζ) Ca


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As we have commented on the paragraph below (4.12) and (4.13), we have rank G magnetic and
rank G electric conserved charges associated to the operators (4.12) and (4.13), respectively.
Consequently, the number of independent transformations in (5.34), and similarly in (5.35),
is rank G. Note that such counting is true irrespective of the fact that in (5.35) we have
the term { X , Ca }P B that generates the usual local gauge transformations, whose number
of independent transformations equals the dimension of G. Note in addition that (5.34)
and (5.35) (and also (5.32)) are global transformations.

5.1 The structure of the transformations generated by the charges

We have shown in section 2.3 that the charge operator Q (α , β), as well as it modes Q (m , n),
are independent of the scanning of R3

t . Therefore, the charges QN (α , β) and QN (m , n),
defined respectively in (2.51) and (2.57), are also independent of the scanning of R3

t . Such
an independency is a consequence of the integral Yang-Mills equations (2.40), and so of the
equations of motion of the Yang-Mills theories. If we denote by QN (α , β) and Q′

N (α , β)
the conserved charges evaluated for two different scannings of R3

t , we get from (5.1) that

δX − δ′X = ε { X , QN (α , β) − Q′
N (α , β) }P B (5.36)

Since we can not use the equations of motion inside the Poisson brackets, we can not equate
QN (α , β) to Q′

N (α , β), in (5.36). Consequently, even though the conserved charges are
independent of the scanning of R3

t , the transformations they generate may depend upon it.
Such a dependency of the transformation is encoded in the choice of paths, on the loops spaces
L(2), L(1) and space-time itself, of the operators Q (ζ), V (τ) and W (σ), respectively. But that
dependency upon the choice of paths is similar to the Weyl’s non-integrable phases of the wave
functions in the presence of electromagnetic or any non-abelian gauge interactions [21, 22].
At the end of the day, the physics does not depend upon the choice of path on which
such non-integrable phases are evaluated and, as we will see, the same happens for the
transformations (5.1) generated by the conserved charges.

We observe that the transformations (5.32), generated by the conserved charges, have
an interesting structure. The third term on the right-hand side of (5.32) vanishes when
the constraints (3.15) hold true, but it is important in the calculation of the algebra of the
transformations, as we will see in the next sections. The second term in (5.32) is closely
related to global gauge transformations. Indeed, let us write it as

O (X) ≡
 ζf

ζi

dζ

 τf

τi

dτ

 σf

σi

dσ{ X , Ca }P B ⊗ Q−1 (ζ) V (τ ) W −1TaW V −1 (τ) Q (ζ) ∆ (σ, τ, ζ)

=


d3x dba (x) { X , Ca }P B ⊗ Tb ≡ Ob (X) ⊗ Tb (5.37)

where we have used the definition of the Jacobian (5.28), and the definition of the adjoint
representation of the gauge group G

g Ta g−1 = Tb dba (g) (5.38)

to denote

Q−1 (ζ) V (τ) W −1 (σ) Ta W (σ) V −1 (τ) Q (ζ) = Tb dba


Q−1 (ζ) V (τ) W −1 (σ)



≡ Tb dba (x) (5.39)
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Note that dba (x) is a non-integrable factor in the sense that it depends upon the choice of
the scanning of R3, for the evaluation of the operators Q, V , and W . In order to simplify the
notation, we have denoted dba


Q−1 (ζ) V (τ) W −1 (σ)


= dba (x), meaning that we integrate

Q up to the surface labeled by ζ, V is integrated along that surface ζ, up to the loop labeled
by τ , and W is integrated along the loop labeled by τ up to the point σ. In other words, x

corresponds, in the scanning of R3, to the point

x1 , x2 , x3 = (σ , τ , ζ).

Note in addition that O (X) is a linear operator, i.e. O (X1 + X2) = O (X1) + O (X2),
O (γ X) = γ O (X), for γ not dependent upon the canonical variables, and it satisfies
Leibniz rule O (X1 X2) = X1 O (X2) + O (X1) X2, and commutes with the space derivatives
O


∂ X
∂ yi


= ∂

∂ yi O (X).
Using (3.16) we get that the action of O on the canonical variables is given by

Ob (ψ (y)) = i e dba (y) Rψ (Ta) ψ (y) ; Ob


πψ (y)


= −i e dba (y) πψ (y) Rψ (Ta)

Ob (φ (y)) = i e dba (y) Rφ (Ta) φ (y) ; Ob (πφ (y)) = −i e dba (y) πφ (y) Rφ (Ta)
Ob (Ei (y)) = i e dba (y) [ Ta , Ei (y) ] (5.40)

In addition, we have that

Ob (Ai (y)) = i e dba (y) [ Ta , Ai (y) ] − ∂ dba (y)
∂ yi

Ta +


d3x
∂

∂ xi


dba (x) δ(3) (x − y)


Ta

= −Di (dba (y) Ta) +


d3x
∂

∂ xi


dba (x) δ(3) (x − y)


Ta (5.41)

Note that the surface term can not be neglected because dba


Q−1 (ζ) V (τ) W −1 (σ)


does

not have to fall off rapidly at spatial infinity.
The first term on the right-hand side of (5.32) is a surface term and will act on the fields

at spatial infinity only. Note that ζf corresponds, in the scanning of R3
t , to the closed surface

on the border of R3
t , i.e., the two-dimensional sphere at spatial infinity S2

∞. Therefore, the
integral Yang-Mills equation (2.40), for Ω ≡ R3

t , implies that Q (ζf ) ≡ Q

R3

t


= V


S2

∞

.

Note that the integral Yang-Mills equation Q

R3

t


= V


S2

∞

, is equivalent to the local static

Yang-Mills equations DiBi = 0 and DiEi = e J0, i.e the static Bianchi identity and the
constraints (3.15). Therefore

Ca = 0 and DiBi = 0 → Q (ζf ) ≡ Q

R3

t


= V


S2

∞


(5.42)

where V

S2

∞


is obtained by integrating (4.4) on the two sphere at spatial infinity, i.e. S2
∞.

Using (5.9) we get that
 τf

τi

dτ

V (τ) { X , Tτ (τ) }P BV −1 (τ)



ζ=ζf

= { X , V

S2

∞


}P B V −1

S2

∞


(5.43)

Therefore, from (5.37), (5.42) and (5.43), we can write (5.32) as

δX = ε { X , QN (α , β) }P B

∼= ε

N
{ X , Tr


V N


S2

∞


}P B + i e ε β ϑ Tr

QN (ζf ) O (X)


(5.44)
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where the symbol ∼= means equality when the constraints hold true. Note that the third term
on the right-hand side of (5.32) has been dropped in (5.44) because we have imposed the
constraint in (5.42). However, we have not used the constraint inside the Poisson bracket.
Indeed, we have that { X , Tr


QN


R3

t

 }P B ̸= { X , Tr

V N


S2

∞
 }P B.

From (5.44) we then see that the transformations generated by the conserved charges (2.51)
are made of two parts. The first one, { X , Tr


V N


S2

∞
 }P B, is the transformation gen-

erated, under the Poisson bracket, by the conserved charges written as surface ordered
integrals, i.e., the non-abelian magnetic and electric fluxes at spatial infinity. The second
part, Tr


QN (ζf ) O (X)


, is integrated over the whole three dimensional volume R3, and it

is related to a kind of global gauge transformation (global because ε is constant), involving
the non-integrable factor dba


Q−1 (ζ) V (τ) W −1 (σ)


. As we will see in the next sections,

depending upon the nature of the quantity X, the second part of the transformation (5.44)
may also generate surface terms, which in some special cases may cancel out the first part.

As we show in the section 6, the Hamiltonian (3.10) is invariant under the transfor-
mations (5.32), and so under (5.44), and consequently they are global symmetries of the
Yang-Mills theories.

6 The invariance of the Hamiltonian under the charge transformations

We now show that the transformations (5.32), generated by the conserved charges QN (α , β),
leave the Hamiltonian invariant and so they are global symmetries of the Yang-Mills theories.
We write the complete Hamiltonian (3.10) as

HT = HE + HB + Hψ + Hφ − HC (6.1)

with

HE = 1
2


d3x (Ea

i )2 HB = 1
2


d3x (Ba

i )2

HC =


d3x Aa
0 Ca Hψ =


d3x


iψ̄γi Diψ + mψ̄ ψ



Hφ =


d3x


2 πφ πφ† + 1

2 (Diφ)† Diφ + V (| φ |)


(6.2)

where we have used (3.9) to eliminate φi and φ†
i from the expression of Hφ. We shall show

the invariance of each term of the Hamiltonian (6.1) under the transformation (5.32).

6.1 The transformations of Hψ and Hφ

Using (3.16) we get that the following parts of the densities of Hψ and Hφ, commute with
the constraints, i.e.

{ ψ̄ψ (x) , Ca (y) }P B = { πφπφ† (x) , Ca (y) }P B = { V (| φ |) , Ca (y) }P B = 0 (6.3)

The terms in the densities of Hψ and Hφ containing covariant derivatives do not Poisson
commute with the constraints because of the appearance of derivatives of the Dirac delta
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function, which lead to boundary terms when the integration in R3 is performed. Indeed,
from (5.40) and (5.41) we have that

Ob


ψ̄ (y) γi Diψ (y)


= i e ψ̄ (y)


d3x

∂

∂ xi


γi dba (x) δ(3) (x − y)


Rψ (Ta) ψ (y) (6.4)

=

ϑ

 τf

τi

dτ

 σf

σi

dσ dba (x) δ(3) (x − y) εijk
d xj

d σ

d xk

d τ



ζ=ζf

i e ψ̄ (y) γi Rψ (Ta) ψ (y)

where we have used the Abelian Gauss theorem (H.4). Therefore

O

iψ̄ (y) γiDiψ (y)


= −eϑQ−1 (ζf ) × (6.5)

×
 τf

τi

dτ

 σf

σi

dσV (τ) W −1 (σ) Jψ
i (y) W (σ) V −1 (τ) δ(3) (x − y) εijk

dxj

dσ

dxk

dτ



ζ=ζf

Q (ζf )

with Jψ
i being the space components of the spinor current, given in (2.18), i.e.

Jψ
i = ψ̄ γi Rψ (Ta) ψ Ta (6.6)

Similarly, one can show that

O
1

2 (Diφ (y))† Diφ (y)


= −eϑQ−1 (ζf ) × (6.7)

×
 τf

τi

dτ

 σf

σi

dσV (τ) W −1 (σ) Jφ
i (y) W (σ) V −1 (τ) δ(3) (x − y) εijk

dxj

dσ

dxk

dτ



ζ=ζf

Q (ζf )

with Jφ
i being the space components of the scalar current, given in (2.18), i.e.

Jφ
i = i

2

φ† Rφ (Ta) Diφ − (Diφ)† Rφ (Ta) φ


Ta (6.8)

Note that all terms in Hψ and Hφ Poisson commute with the quantity Tτ given in (4.4),
except for the gauge field Ai contained in the covariant derivatives of the matter fields.
Using (D.5) and (D.6), one can check that

{ Hψ/φ , Tτ }P B = i e2 β

 σf

σi

dσ W −1 (σ) J
ψ/φ
i (y) W (σ) εijk

d yj

d σ

d yk

d τ
(6.9)

with Jψ
i and Jφ

i given in (6.6) and (6.8), respectively.
Consequently we get, from (6.3), (6.5), (6.7) and (6.9), that the first and second terms

in (5.32) vanish when we take X to be Hψ or Hφ. In addition, the third term in (5.32)
vanishes when the constraints hold true. Therefore

δHψ/φ = ε { Hψ/φ , QN (α , β) }P B
∼= 0 (6.10)

where the symbol ∼= means equality when the constraints hold true.
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6.2 The transformation of HE

Using (3.16) we get that the density of HE commutes with the constraints, i.e.

{

Eb

i (x)
2

, Ca (y) }P B = 0 (6.11)

Using (D.13) and (D.19) we get that

{ HE , Tτ }P B = e2 β

 σf

σi

dσ′


d eτ (σ′)
d σ′ ,

 σ′

σi

dσ′′ W −1 σ′′ Ei (z) W

σ′′ d zi

d σ′′



+e2 α


bτ (σf ) ,

 σf

σi

dσ′ W −1 σ′ Ei (y) W

σ′ d yi

dσ′



+i e α
d

d τ

 σf

σi

dσ′ W −1 σ′ Ei (y) W

σ′ d yi

dσ′ (6.12)

The surface, in the scanning of R3, corresponding to ζ = ζf is the two sphere S2
∞ at spatial

infinity. The parameters σ and τ on such a sphere are angles, and so the tangent vectors
behave as

d yj

d σ/τ
→ r as r → ∞ (6.13)

From the boundary conditions (2.47) and (6.13), we have from (4.2) that

eτ → 1
rδ−1/2 ; bτ → 1

rδ−1/2 as r → ∞ (6.14)

and
Ei

d yi

dσ
→ 1

rδ+1/2 as r → ∞ (6.15)

Therefore, the first term on the right-hand side of (5.32) vanishes as
 τf

τi

dτ

V (τ) { HE , Tτ (τ) }P BV −1 (τ)



ζ=ζf

→ s1
r2 δ

+ s2
rδ+1/2 as r → ∞

(6.16)
where s1 and s2 are finite as r → ∞. From (6.11) we have that the second term in (5.32)
vanishes when we take X to be HE . The third term in (5.32) vanishes when the constraints
hold true. Consequently HE is invariant under the transformations (5.32), i.e.

δHE = ε { HE , QN (α , β) }P B
∼= 0 (6.17)

where again the symbol ∼= means equality when the constraints hold true.

6.3 The transformation of HC

Using (3.15) and (5.40) we get that

Ob (C (y)) = i e dba (y) [ Ta , C (y) ] + i e [ Ta , Ei (y) ]


d3x
∂

∂ xi


dba (x) δ(3) (x − y)



∼= i e ϑ [ Ta , Ei (y) ]
 τf

τi

dτ

 σf

σi

dσ εijk
d xj

d σ

d xk

d τ
dba (x) δ(3) (x − y) |ζ=ζf

(6.18)
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where the last equality is a weak equality (∼=), because we have used the constraints to get rid
of the term [ Ta , C (y) ]. In addition, we have used the abelian Gauss theorem (H.4). Therefore

Ob (HC) ∼= −i e ϑ

 τf

τi

dτ

 σf

σi

dσ εijk
d xj

d σ

d xk

d τ
dba (x) Tr (Ta [ A0 (x) , Ei (x) ]) |ζ=ζf

(6.19)

Note that A0 is a Lagrange multiplier, and so, it drops out of the Poisson bracket.
In order for the electric field to satisfy the boundary condition (2.47), i.e. Ei = F0i → 1

r
3
2 +δ

,
we need (if Ai is time dependent)

A0 → 1
r1/2+δ

; Ai → 1
r3/2+δ

as r → ∞ for i = 1, 2, 3 (6.20)

If Ai is time independent, it may fall to zero more slowly than that. The parameters σ and τ

on the sphere at spatial infinity, i.e. ζ = ζf , are angles, and so the tangent vectors behave
as d xj

d σ/τ → r, as r → ∞. Therefore, we have that

Ob (HC) → 1
r2 δ

as r → ∞ (6.21)

Consequently, the second term on the right-hand side of (5.32) vanishes when we take X

to be HC .
Using (4.4), (E.6) and (E.7) we get that

{ HC , Tτ (τ) }P B = i e


Tτ (τ) , W −1
R A0 (xR) WR


(6.22)

Since the reference point xR lies on the border of R3, and so at spatial infinity, we get
from (6.22), (6.20) and (6.14) that

 τf

τi

dτ

V (τ) { HC , Tτ (τ) }P BV −1 (τ)



ζ=ζf

→ 1
r2 δ

as r → ∞ (6.23)

Therefore, the first term on the right-hand side of (5.32) also vanishes when we take X to
be HC . The third term on the right-hand side of (5.32) vanishes by the imposition of the
constraints. Consequently, we get that HC is invariant under the transformations generated
by the conserved charges (2.51), i.e.

δHC = ε { HC , QN (α , β) }P B
∼= 0 (6.24)

where again the symbol ∼= means equality when the constraints hold true.

6.4 The transformation of HB

From the properties of the operator O, defined in (5.37), we get from (3.2) that

Ob (Bi (y)) = −εijk DjOb (Ak (y)) (6.25)

Therefore, from (6.2) and (5.41) we get that

Ob (HB) =


d3y Tr [Bi (y) Ob (Bi (y))]

= εijk


d3y Tr [Bi (y) Dj Dk (dba (y) Ta)] (6.26)

−


d3y


Tr (Bi (y) Ta)

∂ Sba
ij (y)

∂ yj
− i e Tr ([ Aj (y) , Bi (y) ] Ta) Sba

ij (y)

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where we have defined

Sba
ij (y) ≡ εijk


d3x

∂

∂ xk


dba (x) δ(3) (x − y)



= ϑ

 τf

τi

dτ

 σf

σi

dσ dba (x) δ(3) (x − y)


d xi

d σ

d xj

d τ
− d xj

d σ

d xi

d τ


|ζ=ζf

(6.27)

and where we have used (H.4). Performing integration by parts in (6.26) we get

Ob (HB) = εijk


d3y

∂

∂yj

∂

∂yk
[dba (y) Tr (Bi (y) Ta)] +


d3y Tr [Dj Bi (y) Ta] Sba

ij (y)

−


d3y
∂

∂yj


Tr (Bi (y) Ta) Sba

ij (y)


(6.28)

where we have used the fact that εijk DjDk Bi = i e [ Bi , Bi ] = 0. Note that the first term on
the right-hand side of (6.28) does not vanish because the derivatives do not commute when
acting on the non-integrable factor dba (y) = dba


Q−1 V W −1. However, we show in (E.8)

that such a term decays as 1
r

1
2 +δ

as r → ∞. In addition, we show in (E.13) that the second
term in (6.28) decays as 1

r
1
4 + 3

2 δ
as r → ∞, and in (E.14) we show that the third term in (6.28)

vanishes identically. Therefore, Ob (HB) is a surface term, and we have that it behaves as

Ob (HB) → 1
r

1
4 + 3

2 δ
as r → ∞ (6.29)

From (D.11) we have that

{ HB , bτ (σ) }P B = 0 (6.30)

and from (D.12) that

{ HB , eτ (σf ) }P B =
 σf

σi

dσ′


d yi

d σ′
d yj

d τ
− d yj

d σ′
d yi

d τ


W −1 σ′ DjBi W


σ′

Therefore, using (E.12) and (6.13) we get that
 τf

τi

dτ

V (τ) { HB , Tτ (τ) }P BV −1 (τ)



ζ=ζf

→ 1
r

1
4 + 3

2 δ
as r → ∞ (6.31)

Consequently, due to (6.31) and (6.29), we observe that the first and second terms in (5.32) van-
ish when we take X to be HB . In addition, the third term in (5.32) vanishes when we impose
the constraints. Therefore, we have that HB is invariant under the transformations (5.32), i.e.

δHB = ε { HB , QN (α , β) }P B
∼= 0 (6.32)

Therefore, we have from (6.10), (6.17), (6.24) and (6.32), that the complete Hamiltonian
HT , given in (6.1), is invariant under the transformations (5.32) generated by the conserved
charges, i.e.

δHT = ε { HT , QN (α , β) }P B
∼= 0 (6.33)

where again the symbol ∼= means equality when the constraints hold true.
We have then shown that the complete Hamiltonian (6.1) is invariant under (5.32), and

so the transformations generated by the conserved charges QN (α , β) are global symmetries
of the Yang-Mills theories.
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7 The transformations of the local fields

7.1 The matter sector

From the canonical Poisson bracket relations (3.11) we have that the spinor and scalar
fields, ψ and φ, commute with the gauge fields. Therefore, the matter fields commute with
the Wilson line operators as well as with Tτ , given in (4.4). Consequently, the first and
third terms on the right-hand side of (5.32) vanish when X is a matter field. Indeed, X ,
given in (5.27), vanishes for X being a matter field, and so we do not have to impose the
constraints (3.15) to get rid of the third term in (5.32). Therefore, using (3.16), we get that
the transformations (5.32) for the spinor fields are given by

δ ψ (x , t) = −ε e2 β ϑ Rψ (Ta) ψ (x , t) ×
×Tr


QN (ζf ) Q−1 (ζx) V (τx) W −1 (σx) Ta W (σx) V −1 (τx) Q (ζx)


(7.1)

where we have used the fact that

δ(3) (x − y) ∆ (σ , τ , ζ) = δ

ζ − ζ ′ δ


τ − τ ′ δ


σ − σ′ (7.2)

and where we have that, in the scanning of R3
t ,

x1 , x2 , x3 corresponds to (ζ , τ , σ), and

y1 , y2 , y3 to (ζ ′ , τ ′ , σ′). In addition, we have that ψ (x , t) sits on a fixed point of R3
t ,

corresponding to the parameters (ζx , τx , σx). Then, Q (ζx) is the operator obtained by
integrating (4.1) up to the closed surfaced labelled by ζx, in the scanning of R3

t . Similarly,
V (τx) is the operator obtained by integrating (4.4) up to the loop labelled by τx, on the
surface ζx, and W (σx) is the Wilson line operator obtained by integrating (2.32), along the
loop τx, up to the point labelled by σx.

The transformations (5.32) for the scalar fields are similar to (7.1), i.e.

δ φ (x , t) = −ε e2 β ϑ Rφ (Ta) φ (x , t) ×
×Tr


QN (ζf ) Q−1 (ζx) V (τx) W −1 (σx) Ta W (σx) V −1 (τx) Q (ζx)


(7.3)

Note that the matter fields do not transform under the purely magnetic charges. In-
deed, (5.33) and (5.34) become

δ(β=0)ψ = 0; δ(N,1,0)ψ = 0 (7.4)

and the same for the scalars φ. The transformation (5.35) becomes

δ(N,0,1)ψ (x , t) = −ε e2 ϑ Rψ (Ta) ψ (x , t) Tr

QN−1 (0 , 1) W −1 (σx) Ta W (σx)


(7.5)

= −ε e2 ϑ Rψ (Wx) Rψ (Ta) Rψ

W −1

x


ψ (x , t) Tr


QN−1 (0 , 1) Ta



where in the last equality we have used the fact that the adjoint representation of a simple
compact Lie group is real and unitary, and so orthogonal, i.e. Ta ⊗g Ta g−1 = Ta ⊗Tb dba (g) =
Ta dab


g−1 ⊗ Tb = g−1 Tb g ⊗ Tb. Note that ψ picks the inverse of the Weyl non-integrable

phase, i.e. Rψ

W −1

x


[21, 22]. Therefore, we can interpret it as if ψ is parallel transported

to the reference point xR, ψ → Rψ

W −1

x


ψ, it is then rotated by Rψ (Ta) at xR, and it is
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parallel transported back to x, i.e. ψ → Rψ (Wx) Rψ (Ta) Rψ

W −1

x


ψ. That same picture

applies to the general transformation (7.1).
For a simple Lie group the transformation (7.5) vanishes for N = 1, since Tr (Ta) = 0.

The relevant values of N are the orders of the Casimir operators of the gauge group G, and
from (4.13) we observe that the transformation (7.5) is proportional to e2 N . Every G has
a quadratic Casimir, and for N = 2, (7.5) becomes

δ(2,0,1)ψ (x , t) = −i ε e4 ϑ Rψ


Wx



R3
t

dζ dτ (ρM + ρG)


W −1
x


ψ (x , t) (7.6)

where we have used (4.13). Note that the factor picked by the spinor field ψ in (7.6) involves
the total electric charge operator Q (0 , 1), given in (4.13), since its eigenvalues are conserved.
The electric charge associated to ψ alone is not conserved. Note in addition that (7.6) is a
global transformation, even though the phase factor is field dependent. The same reasoning
applies to the scalar fields φ.

7.2 The gauge sector

We first call the attention to the fact that the transformations (5.33) generated by pure
magnetic conserved charges leave the gauge field Ai and magnetic field Bi invariant. Indeed,
from (D.5) and (D.11) we get they are invariant under the transformations (5.33)

δ(β=0) Ai = 0; δ(β=0) Bi = 0 (7.7)

In order to calculate the transformations of the gauge field, under (5.32), we shall not work
with Cartesian components of the one-form gauge field, i.e. A = Ai dxi, but instead we
shall use the fact that, in the scanning of R3,


x1 , x2 , x3 corresponds to (ζx , τx , σx), and

work with A = Aσxdσx + Aτxdτx + Aζxdζx, where Aσx = Ai (x) d xi

d σx
, Aτx = Ai (x) d xi

d τx
, and

Aζx = Ai (x) d xi

d ζx
.

7.2.1 The transformation of Aa
i (x) d xi

d σx

From (4.4), (D.5) and (D.9) we conclude that the first and third terms on the left hand side
of (5.32) vanish when we take X ≡ Aa

i (x) d xi

d σx
. Using (3.16) we get from (5.32) that

{ Aa
i (x) d xi

d σx
, QN (α , β) }P B = ieβϑ Tr


QN (ζf )


I

(1)
i,a,σx

+ I
(2)
i,a,σx


(7.8)

with

I
(1)
i,a,σx

= i e

 ζf

ζi

dζQ−1 (ζ)
 τf

τi

dτV (τ)
 σf

σi

dσW −1 [ Ai (x) , Ta ] W V −1 (τ) Q (ζ) ×

×δ(3) (x − y) ∆ (σ, τ, ζ) d xi

d σx
(7.9)

and

I
(2)
i,a,σx

=
 ζf

ζi

dζQ−1(ζ)
 τf

τi

dτV (τ)
 σf

σi

dσW −1TaW V −1(τ)Q(ζ) ∂δ(3)(x−y)
∂yi

dxi

dσx
∆(σ,τ,ζ)

(7.10)
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where, in the scanning of R3,

y1 , y2 , y3 corresponds to (ζ , τ , σ). Since ∆ is the Jacobian,

given in (5.28), we integrate I
(2)
i,a,σx

by parts in the coordinate yi, and use Gauss theorem
on the surface term to get

I
(2)
i,a,σx

= dxi

dσx


− ∂

∂xi


Q−1 (ζx) V (τx) W −1 (σx) TaW (σx) V −1 (τx) Q (ζx)


(7.11)

+ Q−1 (ζf )


S2∞
dτdσV (τ) W −1 (σ) TaW (σ) V −1 (τ) ϑεijk

dyj

dσ

dyk

dτ
δ(3) (x − y)



ζ=ζf

Q (ζf )




since the border S2
∞ of R3 corresponds to the surface ζ = ζf . However, the second term

on the right-hand side of (7.11) vanishes since

εijk
d xi

d σx

d yj

d σ

d yk

d τ
δ(3) (x − y) = 0 (7.12)

as the delta function imply that d xi

d σx
and d yj

d σ , are parallel. Consequently, (7.11) becomes

I
(2)
i,a,σx

= −Q−1 (ζx) V (τx) d

d σx


W −1 (σx) TaW (σx)


V −1 (τx) Q (ζx)

= −i e Q−1 (ζx) V (τx) W −1 (σx) [ Ai , Ta ] W (σx) V −1 (τx) Q (ζx) d xi

d σx
(7.13)

where we have used (D.1). But (7.13) cancels (7.9), and so

δ


Aa

i (x) d xi

d σx


= ε { Aa

i (x) d xi

d σx
, QN (α , β) }P B = 0 (7.14)

Therefore, the component of the gauge field Aa
i (x) d xi

d σx
, is invariant under the global trans-

formations (5.32), generated by the conserved charges QN (α , β).

7.2.2 The transformation of Aa
i (x) d xi

d τx

Again, using (4.4), (D.5) and (D.9) we get that the first and third terms on the left hand side
of (5.32) vanish when we take X ≡ Aa

i (x) d xi

d τx
. Then, using (3.16) we get from (5.32) that

{ Aa
i (x) d xi

d τx
, QN (α , β) }P B = ieβϑ Tr


QN (ζf )


I

(1)
i,a,τx

+ I
(2)
i,a,τx


(7.15)

where I
(s)
i,a,τx

have the same expressions as I
(s)
i,a,σx

, s = 1, 2, given in (7.9) and (7.10), replacing
d xi

d σx
by d xi

d τx
. Then integrating I

(2)
i,a,τx

by parts and using Gauss theorem like we did in (7.11),
and using the fact that

εijk
d xi

d τx

d yj

d σ

d yk

d τ
δ(3) (x − y) = 0 (7.16)

we get that

I
(2)
i,a,τx

= −Q−1 (ζx) d

d τx


V (τx) W −1 (σx) TaW (σx) V −1 (τx)


Q (ζx)

= −i e Q−1 (ζx) V (τx) W −1 (σx) [ Ai , Ta ] W (σx) V −1 (τx) Q (ζx) d xi

d τx
(7.17)

−Q−1 (ζx) V (τx)


Tτ (τx) + i e bτ (σx) , W −1 (σx) TaW (σx)


V −1 (τx) Q (ζx)

– 47 –



J
H
E
P
1
1
(
2
0
2
5
)
1
0
2

where we have used (4.4) and (C.5). The first term on the right hand side of (7.17) cancels
with I

(1)
i,a,τx

, and so we get that

δ


Aa

i (x) d xi

d τx


= ε { Aa

i (x) d xi

d τx
, QN (α , β) }P B = −ieβϑ ε Tr


QN (ζf ) × (7.18)

× Q−1 (ζx) V (τx)


Tτ (τx) + i e bτ (σx) , W −1 (σx) TaW (σx)


V −1 (τx) Q (ζx)


7.2.3 The transformation of Aa
i (x) d xi

d ζx

In such a case, all the three terms of (5.32) contribute. Using (4.4), (D.5) and (D.10), we get

{Aa
i (x) dxi

dζx
, QN (α , β)}P B = ieβϑTr


QN (ζf )


I

(1)
i,a,ζx

+I
(2)
i,a,ζx

−

V (τx) W −1 (σx) Ta W (σx) V −1 (τx)


ζ=ζf

(7.19)

+ieβϑQ−1 (ζx)

V (τx)W −1 (σx) Ta W (σx)V −1 (τx) ,

 τx

τi

dτ ′V

τ ′

 σf

σi

dσW −1 C W V −1 τ ′∆

σ,τ ′,ζ


Q(ζx)



where I
(s)
i,a,ζx

have the same expressions as I
(s)
i,a,σx

, s = 1, 2, given in (7.9) and (7.10), replacing
d xi

d σx
by d xi

d ζx
. Integrating I

(2)
i,a,ζx

by parts and using Gauss theorem like we did in (7.11), we get

I
(2)
i,a,ζx

= − d

dζx


Q−1 (ζx)V (τx)W −1 (σx)TaW (σx)V −1 (τx)Q(ζx)


(7.20)

+Q−1 (ζf )


S2∞
dτdσV (τ )W −1 (σ)TaW (σ)V −1 (τ)ϑεijk

dyj

dσ

dyk

dτ

dxi

dζx
δ(3) (x−y)



ζ=ζf

Q(ζf )

Using (5.28), (7.2), (4.1), (5.3), (5.14) and (C.5), we get

I
(2)
i,a,ζx

= Q−1 (ζf )

V (τx)W −1 (σx)TaW (σx)V −1 (τx)


ζ=ζf

Q(ζf )

+Q−1 (ζx)

A(τf ,ζx) , V (τx)W −1 (σx)TaW (σx)V −1 (τx)


Q(ζx)

−Q−1 (ζx)

V (τx) Tζ (τx) V −1 (τx)+K (τx) , V (τx)W −1 (σx)TaW (σx)V −1 (τx)


Q(ζx)

−ieQ−1 (ζx)V (τx)

bζ (σx)+W −1 (σx)Ai

dxi

dζx
W (σx) , W −1 (σx)TaW (σx)


V −1 (τx)Q(ζx)

From (5.28) we then get

I
(1)
i,a,ζx

+I
(2)
i,a,ζx

= Q−1 (ζf )

V (τx)W −1 (σx)TaW (σx)V −1 (τx)


ζ=ζf

Q(ζf )

−Q−1 (ζx)V (τx)

Tζ (τx)+iebζ (σx) , W −1 (σx)TaW (σx)


V −1 (τx)Q(ζx)

+Q−1 (ζx)

A(τf ,ζx)−K (τx,ζx) , V (τx)W −1 (σx)TaW (σx)V −1 (τx)


Q(ζx) (7.21)
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Therefore, using (7.21), (5.24), (3.15), and the static Bianchi identity, i.e. DiBi = 0, we
get that (7.19) becomes

δ


Aa

i (x) d xi

d ζx


= ε { Aa

i (x) d xi

d ζx
, QN (α , β) }P B = −ieβϑ ε Tr


QN (ζf ) Q−1 (ζx) ×

×


V (τx)


Tζ (τx) + i e bζ (σx) , W −1 (σx) TaW (σx)


V −1 (τx) (7.22)

−


A (τf , ζx) − A (τx, ζx) , V (τx) W −1 (σx) TaW (σx) V −1 (τx)


Q (ζx)


8 The transformations of the fluxes bτ/ζ and eτ/ζ

Using (D.3) and (7.14), we get that the Wilson line is invariant under the transformations
generated by the charges

δ W (σ) = ε { W (σ) , QN (α , β) }P B = 0 (8.1)

Therefore, from (C.6), we have that the flux bτ/ζ (σf ), integrated over an entire loop, is
invariant too, i.e.

δ bτ/ζ (σf ) = ε { bτ/ζ (σf ) , QN (α , β) }P B = 0 (8.2)

On the other hand, if we do not integrate over the entire loop, we get from (C.5), (7.18),
and (7.22)

δ bτ/ζ (σ) = ε { bτ/ζ (σ) , QN (α , β) }P B for σ < σf (8.3)

= i e β ϑ ε Ta Tr

QN (ζf ) Q−1 (ζ) V (τ )


Tτ/ζ (τ) + i e bτ/ζ (σ) , Ta


V −1 (τ) Q (ζ)



where the final point of the loop, over which bτ/ζ (σ) is integrated, is

x1 , x2 , x2 = (ζ , τ , σ),

and where we have used (F.10).
From (5.5), (5.11) and (F.12) we get that

{eτ/ζ (σ) ⊗, Q (ζf )}P B = i e2 1l ⊗ Q (ζf )
 ζf

ζi

dζ ′
 τf

τi

dτ ′ 1l ⊗

Q−1 ζ ′ V


τ ′ ×

× {eτ/ζ (σ) ⊗, Jspatial

τ ′}P B 1l ⊗


V −1 τ ′ Q


ζ ′ (8.4)

with Jspatial defined in (4.6), and where the points of the loop where eτ/ζ (σ) sits are
xi (σ , τ , ζ), and the integral are over the points yi (σ′ , τ ′ , ζ ′).

From (8.4), (F.15) and (5.1) we get that

δ eτ/ζ (σ) = ε { eτ/ζ (σ) , QN (α , β) }P B = (8.5)

= −ε e2 β ϑ


Ta , eτ/ζ (σ)


Tr

Q (ζf )N Q−1 (ζ) V (τ) Ta V −1 (τ) Q (ζ)



9 The transformations of the Wilson line operators

We have seen in (8.1) that the Wilson line W (σ), defined in (2.32), is invariant under the
transformations generated by the charges. However, Wilson lines defined on different paths
are not necessarily invariant under those transformations, and we shall now consider them.
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As explained before, we scan R3
t , at a given fixed time t, with closed surfaces labelled

by ζ, based at the reference point xR. Each such surface is scanned by loops, starting and
ending at xR, and labelled by τ . Every loop is parameterized by σ. Therefore, any point
of R3

t belongs to only one surface, to only one loop at that surface, and to only one point
of that loop. Consequently, we have that the points of R3

t are functions of those three
parameters, i.e. xi = xi (σ, τ, ζ). The reference point xR is the initial point of every loop,
corresponding to σ = σi. In addition, τi corresponds to the infinitesimal loop around xR, and
ζi to the infinitesimal closed surface around xR. The Wilson lines W (σ), defined in (2.32),
are associated to paths in the σ-direction, where τ and ζ are kept fixed.

We shall consider Wilson lines, ωτ and ωζ , associated with the same gauge connection
Ai, but defined on paths in the τ -direction and ζ-direction, respectively, in the scanning of
R3

t . In other words, ωτ is the holonomy of Ai, on a path xi (τ), where σ and ζ are kept fixed,
and starting at the reference point xR ≡ xi (τi). In its turn, ωζ is the holonomy of Ai, on a
path xi (ζ), where σ and τ are kept fixed, and starting at the reference point xR ≡ xi (ζi).
Such Wilson line operators are obtained by integrating the holonomy equations

dωτ/ζ

dτ/ζ
+ i e Ai

dxi

dτ/ζ
ωτ/ζ = 0; ωτ (τi) = ωζ(ζi) = WR (9.1)

where we have chosen the integration constant to be WR, which is the same as the value
of the Wilson line W (σ), defined in (2.32), at the reference point xR.

Since the holonomy equation (9.1) is similar to the one satisfied by W (σ), i.e. (2.32), we
can use the same reasonings leading to (D.3), to write the variations of the holonomies ωτ

and ωζ , under the transformations (5.1), generated by the charges, as

δωξ(ξ) = ε{ ωξ(ξ) , QN (α, β) }P B

= −i e ε ωξ(ξ)
 ξ

ξi

dξx ω−1
ξ (ξx) { Ai (x) , QN (α, β) }P B ωξ(ξx) d xi

d ξx
(9.2)

where ξ stands for either τ or ζ, and where the point xi corresponds to xi = xi (σ, τx, ζ)
(with σ and ζ fixed), for the case ξ ≡ τ , and to xi = xi (σ, τ, ζx) (with σ and τ fixed),
for the case ξ ≡ ζ.

We shall need some formulas, which take the same form for both cases, ξ ≡ τ and
ξ ≡ ζ. Using (C.5) and (9.1) we get

i e bξ (σ) = d

W −1 (σ) ωξ (ξx)



d ξx


W −1 (σ) ωξ (ξx)

−1
(9.3)

From (5.38) and (F.10) we have that

ω−1
ξ (ξx) Ta ωξ(ξx) ⊗ W −1 (σ) TaW (σ) = Ta ⊗ W −1 (σ) ωξ(ξx) Ta ω−1

ξ (ξx) W (σ) (9.4)

and so


i e bξ (σ) , W −1 (σ) ωξ(ξx) Ta ω−1
ξ (ξx) W (σ)


= d

d ξx


W −1 (σ) ωξ(ξx) Ta ω−1

ξ (ξx) W (σx)


(9.5)
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From (9.2) and (7.18) we get, for the case ξ ≡ τ ,

δωτ (τ) = −εe2βϑωτ (τ)
 τ

τi

dτxω−1
τ (τx)Taωτ (τx) × (9.6)

×Tr

QN (ζf ) Q−1 (ζ) V (τx)


Tτ (τx) + iebτ (σ) , W −1 (σ) TaW (σ)


V −1 (τx) Q (ζ)



Using (4.4), (9.4) and (9.5) we get from (9.6) that

δωτ (τ) = −εe2βϑωτ (τ)Ta

 τ

τi

dτx × (9.7)

×Tr

QN (ζf ) Q−1 (ζ) d

dτx


V (τx) W −1 (σ) ωτ (τx)Taω−1

τ (τx)W (σ) V −1 (τx)


Q (ζ)


Using the boundary condition given in (9.1), and the fact that V (τi) = VR must lie in the
center of the gauge group (see (2.54)), we get

δωτ (τ) = −ε e2 β ϑ ωτ (τ) Ta × (9.8)
×Tr


QN (ζf ) Q−1 (ζ)


V (τ) W −1 (σ) ωτ (τ) Ta ω−1

τ (τ) W (σ) V −1 (τ) − Ta


Q (ζ)



Note that, using (5.38) and (F.10), the transformation (9.8) can be written as

δωτ (τ) = ε e2 β ϑ


ωτ (τ) Ta Tr

QN (ζf ) Q−1 (ζ) Ta Q (ζ)


(9.9)

− Ta ωτ (τ) Tr

QN (ζf ) Q−1 (ζ) V (τ) W −1 (σ) Ta W (σ) V −1 (τ) Q (ζ)



where, as explained above, σ and ζ are kept fixed along the path defining the holonomy ωτ .
From (9.2) and (7.22) we get, for the case ξ ≡ ζ,

δωζ(ζ) = −ε e2 β ϑ ωζ(ζ)
 ζ

ζi

dζx ω−1
ζ (ζx) Ta ωζ(ζx)Tr


QN (ζf ) Q−1 (ζx) ×

×


V (τ)


Tζ (τ) + i e bζ (σ) , W −1 (σ) TaW (σ)


V −1 (τ) (9.10)

−


A (τf , ζx) − A (τ, ζx) , V (τ) W −1 (σ) TaW (σ) V −1 (τ)


Q (ζx)


Using (5.14), (9.4) and (9.5), we get from (9.10)

δωζ(ζ) = −ε e2 β ϑ ωζ(ζ) Ta

 ζ

ζi

dζx Tr

QN (ζf ) Q−1 (ζx) ×

×


A (τ, ζx) − K (τ, ζx) − A (τf , ζx) , V (τ) W −1 (σ) ωζ(ζx) Ta ω−1
ζ (ζx) W (σ) V −1 (τ)



+ d

d ζx


V (τ) W −1 (σ) ωζ(ζx) Ta ω−1

ζ (ζx) W (σ) V −1 (τ)


Q (ζx)


(9.11)

Using (5.24) we see that, when the constraints (3.15), and the Bianchi identity, DiBi = 0,
hold true, we have that A (τ, ζx) − K (τ, ζx), vanishes. From (4.1) we have that A (τf , ζx) =
d Q(ζx)

d ζx
Q−1 (ζx). Therefore

δωζ(ζ) ∼= −ε e2 β ϑ ωζ(ζ) Ta

 ζ

ζi

dζx Tr

QN (ζf ) × (9.12)

× d

d ζx


Q−1 (ζx) V (τ) W −1 (σ) ωζ(ζx) Ta ω−1

ζ (ζx) W (σ) V −1 (τ) Q (ζx)


where the symbol ∼= means equality when the constraints (3.15) hold true.
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Therefore, using the fact that ζi corresponds to the infinitesimal surface around the
reference point xR, that Q (ζi) = VR, lies in the center of the gauge group, from the boundary
conditions given in (9.1), and the relations (5.38) and (F.10), we get

δωζ(ζ) ∼= ε e2 β ϑ


ωζ(ζ) Ta Tr

QN (ζf ) Ta


(9.13)

− Ta ωζ(ζ) Tr

QN (ζf ) Q−1 (ζ) V (τ) W −1 (σ) Ta W (σ) V −1 (τ) Q (ζ)



where, as explained above, τ and σ are kept fixed along the path defining the holonomy ωζ .
Note, from (9.9) and (9.13), that under the global transformations generated by the

conserved charges, the infinitesimal variations of ωτ/ζ are in linear in the products Ta ωτ/ζ and
ωτ/ζ Ta. Remember that, in the definition of the Wilson lines ωτ/ζ , given in (9.1), the gauge
field Ai lies in any chosen faithful representation of the gauge group. Therefore, the generators
Ta, appearing multiplying ωτ/ζ , in (9.9) and (9.13), lies in that same representation.

Therefore, the Wilson lines ωτ/ζ transform under the global symmetries generated by
the conserved charges like “primary fields”, in the sense that they are rotated by the matrix
Ta, and multiplied by non-integrable phases, containing the operators W , V , and Q.

10 The Fundamental Poisson Bracket Relation
The algebra of the conserved charges under the Poisson bracket can be calculated using the
so-called Fundamental Poisson Bracket Relation (FPR) and the Sklyanin relation. Those are
well-known structures in the theory of two-dimensional integrable field theories [3, 4, 6], but
we now show that Yang-Mills theories in four dimensions possess similar structures on the
loop space L(2). We will show that the one-form connection A on the loop space L(2), defined
in (2.24), satisfies a FPR. We start by evaluating the Poisson bracket among the entries of the
matrix A when it is evaluated on a purely spatial surface, i.e., the connection given in (5.13)
for τ = τf . We shall consider one connection on a purely spatial surface labelled by ζ1, and
with its points parameterized by xi ≡ xi = (σ1 , τ1 , ζ1), and for the arbitrary parameters α1
and β1. Similarly, the second connection is defined on a purely spatial surface labelled by ζ2,
with points parameterized by yi ≡ yi = (σ2 , τ2 , ζ2), and parameters α2 and β2.

Using (5.26), (F.17) and (F.18) we have that

{A (ζ1 , α1 , β1) ⊗, A (ζ2 , α2 , β2)}P B = i e β1 ϑ Tb ⊗ 1l ×
×
 τf

τi

dτ1

 σf

σi

dσ1 ∆ (σ1 , τ1 , ζ1) dba


V(1) (τ1) W −1 (σ1)


{Ca (x) ⊗, A (ζ2 , α2 , β2)}P B

+i e3 β1 β2 ϑ


d

d ζ1
[Y (ζ1 , τf ) δ (ζ1 − ζ2)] − δ (ζ1 − ζ2) [ A (ζ1 , α1 , β1) ⊗ 1l , Y (ζ1 , τf ) ]



+e4 β2
1 β2 δ (ζ1 − ζ2)

 τf

τi

dτ1


d Y (ζ1 , τ1)

d τ1
, Tb ⊗ 1l


×

×
 τ1

τi

dτ ′
1

 σf

σi

dσ1 ∆

σ1 , τ ′

1 , ζ1


dba


V(1)


τ ′

1


W −1 (σ1)


Ca


σ1 , τ ′

1 , ζ1


(10.1)

where we have used (4.1) and (5.38), and have defined

Y (ζ1 , τ) ≡
 τ

τi

dτ1 V(1) (τ1) ⊗ V(2) (τ1) [C , eτ (σf , τ1 , ζ1) ⊗ 1l ] V −1
(1) (τ1) ⊗ V −1

(2) (τ1)

= −
 τ

τi

dτ1 V(1) (τ1) ⊗ V(2) (τ1) [C , 1l ⊗ eτ (σf , τ1 , ζ1) ] V −1
(1) (τ1) ⊗ V −1

(2) (τ1) (10.2)
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where we have used (G.4), and where the subscript (s) in V(s), s = 1, 2, means they depend
upon the parameters αs and βs.

We now apply (5.26) on the first term on the right hand side of (10.1), and use (I.6), (I.9)
and (I.18) to get

Tb ⊗ 1l
 τf

τi

dτ1

 σf

σi

dσ1 ∆ (σ1 , τ1 , ζ1) dba (x) {Ca (x) ⊗, A (ζ2 , α2 , β2)}P B =

= −e2 β2


ϑ δ (ζ1 − ζ2)

 τf

τi

dτ2

 σf

σi

dσ2 ∆ (σ2 , τ2 , ζ2) ×

× V(1) (τ2) ⊗ V(2) (τ2)

C , W −1 (σ2) C W (σ2) ⊗ 1l


V −1

(1) (τ2) ⊗ V −1
(2) (τ2)

−δ (ζ1 − ζ2) d Y (ζ2 , τf )
d ζ2

+ d (Y (ζ1 , τf ) δ (ζ1 − ζ2))
d ζ1

+ δ (ζ1 − ζ2) [ 1l ⊗ A (ζ2 , α2 , β2) , Y (ζ2 , τf ) ]

+ i e β2 ϑ δ (ζ1 − ζ2)
 τf

τi

dτ2


d Y (ζ2 , τ2)

d τ2
, 1l ⊗ Tb


×

×
 τ2

τi

dτ ′
2

 σf

σi

dσ2 ∆

σ2 , τ ′

2 , ζ2


dba


V(2)


τ ′

2


W −1 (σ2)


Ca


σ2 , τ ′

2 , ζ2


where we have used (F.10)
We then get

{A (ζ1 , α1 , β1) ⊗, A (ζ2 , α2 , β2)}P B = −ie3β1β2ϑδ (ζ1 − ζ2)
 τf

τi

dτ2
(−i)

e (β1 − β2)×

×


V(1) (τ2) ⊗ V(2) (τ2) CV −1
(1) (τ2) ⊗ V −1

(2) (τ2) ,
d M(1) (τ2)

d τ2
⊗ 1l + 1l ⊗ d M(2) (τ2)

d τ2



+ [ A (ζ1 , α1 , β1) ⊗ 1l + 1l ⊗ A (ζ1 , α2 , β2) , Y (ζ1 , τf ) ] − d Y (ζ2 , τf )
d ζ2

+
 τf

τi

dτ1


d Y (ζ1 , τ1)

d τ1
, M(1) (τ1) ⊗ 1l + 1l ⊗ M(2) (τ1)


(10.3)

where we have introduced
M(s) (τ1) ≡ i e βs ϑ

 τ1

τi

dτ ′
1

 σf

σi

dσ1 ∆ (z) V(s)

τ ′

1


W −1 (σ1) C (z) W (σ1) V −1
(s)


τ ′

1


(10.4)

where s = 1, 2, and where we have denoted zi = zi (σ1 , τ ′
1 , ζ1).

We now use (4.4), (G.4) and (10.2) to write

−i e (β1 − β2) Y (ζ1 , τ) =
 τ

τi

dτ1 V(1) (τ1) ⊗ V(2) (τ1) ×

×

C , V −1

(1) (τ1, ζ1)
dV(1) (τ1, ζ1)

dτ1
⊗ 1l + 1l ⊗ V −1

(2) (τ1, ζ1)
dV(2) (τ1, ζ1)

dτ1


V −1

(1) (τ1) ⊗ V −1
(2) (τ1)

+ (α1 − α2) Z (τ , ζ1)
= C − V(1) (τ) ⊗ V(2) (τ) CV −1

(1) (τ) ⊗ V −1
(2) (τ) + (α1 − α2) Z (τ , ζ1) (10.5)

where we have used the fact that V(s) at the reference point xR lies in the center of G

(see (2.54)), and where we have defined

Z (τ , ζ1) ≡ ie

 τ

τi

dτ1 V(1) (τ1)⊗V(2) (τ1) [C , bτ (σf , τ1 , ζ1) ⊗1l ] V −1
(1) (τ1)⊗V −1

(2) (τ1) (10.6)
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Note that if we use the Bianchi identity DiBi = 0, we get from (10.4), (5.24), (3.15)
and (5.28), that

M(s) (τ1) = A (ζ1 , τ1 αs , βs) − K (ζ1 , τ1 , αs , βs) (10.7)

Replacing the expression for Y, given in (10.5), in the last term on the right hand side
of (10.3), and integrating by parts the terms not containing Z, and using (10.7), we get

{A (ζ1 , α1 , β1) ⊗, A (ζ2 , α2 , β2)}P B = −ie3β1β2ϑδ (ζ1 − ζ2)


− d Y (ζ1 , τf )
d ζ1

+ i

e (β1 − β2)


−

C + (α1 − α2) Z (τf , ζ1) , A (ζ1 , α1 , β1) ⊗ 1l + 1l ⊗ A (ζ1 , α2 , β2)



+


V(1) (τf ) ⊗ V(2) (τf ) CV −1
(1) (τf ) ⊗ V −1

(2) (τf ) , K (ζ1 , α1 , β1) ⊗ 1l + 1l ⊗ K (ζ1 , α2 , β2)


+ (α1 − α2)
 τf

τi

dτ1


d Z (ζ1 , τ1)

d τ1
, M(1) (τ1) ⊗ 1l + 1l ⊗ M(2) (τ1)


(10.8)

where we have denoted K (ζ1 , τf , αs , βs) ≡ K (ζ1 , αs , βs).
In the ζ1-derivative of Y in (10.8), we use (10.5) and (5.17), and in the commutator of

Z with A, we use (4.1) to express A as the ζ1-derivative of Q. We then get

{A(1) (ζ1) ⊗, A(2) (ζ2)}P B = δ (ζ1 − ζ2)


R (β1 , β2) , A(1) (ζ1) ⊗ 1l + 1l ⊗ A(2) (ζ1)


− (α1 − α2) δ (ζ1 − ζ2)
 τf

τi

dτ1


d Z (ζ1 , τ1)

d τ1
, M(1) (τ1) ⊗ 1l + 1l ⊗ M(2) (τ1)



− Q⊗ (ζ1) d

d ζ1


Q−1

⊗ (ζ1) Z (ζ1 , τf ) Q⊗ (ζ1)


Q−1
⊗ (ζ1)


(10.9)

where we have denoted A(s) (ζ1) ≡ A (ζ1 , αs , βs), and

Q⊗ (ζ1) ≡ Q (ζ1 , α1 , β1) ⊗ Q (ζ1 , α2 , β2) (10.10)

In addition, we have defined

R (β1 , β2) ≡ −e2 ϑ
β1β2

(β1 − β2) C (10.11)

and have rescaled Z, defined in (10.6), as

Z (ζ1 , τ) ≡ −e2 ϑ
β1β2

(β1 − β2)
Z (ζ1 , τ) = ie

 τ

τi

dτ1 V(1) (ζ1 , τ1) ⊗ V(2) (ζ1 , τ1) ×

× [ R (β1, β2) , bτ (σf , τ1, ζ1) ⊗ 1l ] V −1
(1) (ζ1 , τ1) ⊗ V −1

(2) (ζ1 , τ1) (10.12)

Note from (10.4), that M(s) vanishes when the constraints (3.15) hold true. Therefore,
the second term on the right-hand side (10.9) drops when we impose the constraints. However,
our FPR has an anomaly due to the third term in (10.9). As we will see in section 11, such
an anomaly does not prevent the infinity of conserved charges to Poisson commute. Of
course, we get a pure FPR, without anomalies and without imposing the constraints, when
the connections A in (10.9) correspond to the same value of the magnetic parameter α.
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11 The Sklyanin Relation

The Fundamental Poisson Bracket relation (10.9) leads to the so-called Sklyanin relation,
which relates the Poisson brackets of the entries of the charge operator Q (ζ , α , β) to
commutators of an r-matrix with products of those entries. As we will see, the Sklyanin
relation leads to the involution of the infinity of conserved charges.

Using (5.5) and (10.9), and adopting the notation (10.10), we get


Q (ζf , α1 , β1) ⊗, Q (ζf , α2 , β2)


P B = Q⊗ (ζf )

 ζf

ζi

dζ Q−1
⊗ (ζ) ×

×


R (β1 , β2) , A(1) (ζ) ⊗ 1l + 1l ⊗ A(2) (ζ)


− (α1 − α2)
 τf

τi

dτ


d Z (ζ , τ)

d τ
, M(1) (τ) ⊗ 1l + 1l ⊗ M(2) (τ)



− Q⊗ (ζ) d

d ζ


Q−1

⊗ (ζ) Z (ζ , τf ) Q⊗ (ζ)


Q−1
⊗ (ζ)


Q⊗ (ζ)


(11.1)

We now use (4.1) to obtain


Q (ζf , α1 , β1) ⊗, Q (ζf , α2 , β2)


P B = Q⊗ (ζf )

 ζf

ζi

dζ ×

×


d

d ζ


Q−1

⊗ (ζ) [R (β1 , β2) + (α1 − α2) Z (ζ , τf )] Q⊗ (ζ)


(11.2)

− (α1 − α2) Q−1
⊗ (ζ)

 τf

τi

dτ


d Z (ζ , τ)

d τ
, M(1) (τ) ⊗ 1l + 1l ⊗ M(2) (τ)


Q⊗ (ζ)



In order for the conserved charges to be gauge invariant, the charge operator at ζ = ζi, i.e.
Q (ζi) = VR, has to lie in the center of the gauge group (see (2.54)). In addition, we have
from (10.12) that Z (ζi , τ) = 0, since bτ (σf , τ, ζi) = 0, as the magnetic flux goes to zero.

Consequently


Q(ζf , α1 , β1) ⊗, Q(ζf , α2 , β2)


P B = [R(β1 , β2) , Q(ζf , α1 , β1)⊗Q(ζf , α2 , β2) ]

+(α1−α2) Z (ζf , τf ) Q(ζf , α1 , β1)⊗Q(ζf , α2 , β2) (11.3)

−(α1−α2)Q⊗ (ζf )
 ζf

ζi

dζ Q−1
⊗ (ζ)

 τf

τi

dτ


dZ (ζ,τ)

dτ
, M(1) (τ)⊗1l+1l⊗ M(2) (τ)


Q⊗ (ζ)

Similar to the case of the FPR (10.9), the Sklyanin relation (11.3) has a term that vanishes
when the constraints (3.15) are imposed (the third term on the right-hand side of (11.3)),
and an anomalous term (the second one). However, the anomalous term does not prevent
the involution of the conserved charges, as we now explain.

The reason behind the cancellation of the anomaly in the Poisson brackets among the
conserved charges is the requirement of the invariance of those charges under reparameter-
ization of the two-sphere S2

∞, the boundary of R3. In section 2.4, we have discussed two
sufficient conditions for that invariance under reparameterization.

The first one is that the electric and magnetic fields should fall at spatial infinity
faster than 1/r2, where r is the radial distance. But that condition implies that the flux
bτ (σf , τ1, ζf ), appearing in Z (ζf , τf ), on the second line of (11.3) (see definition of Z
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in (10.12)), vanishes, since it is evaluated on a loop at spatial infinity (ζ = ζf ). Therefore,
under such a boundary condition, the Sklyanin relation (11.3) ceases to be anomalous.

The second sufficient condition discussed in section 2.4, namely (2.65), implies the
cancellation of the anomaly, not on the Sklyanin relation (11.3), but on the Poisson bracket
of the conserved charge (2.51) with the charge operator. From (2.51) and (11.3) we get

{QN (α1,β1) , Q(ζf , α2 , β2)}P B = TrL


QN−1 (ζf ,α1,β1)⊗1l [R , 1l⊗Q(ζf ,α2,β2) ]



− ie3ϑβ1β2 (α1−α2)
(β1−β2)

 τf

τi

dτTr

bτ (σf ,τ,ζf ) , V −1

(1) (ζf ,τ)QN (ζf ,α1,β1)V(1) (ζf ,τ)

Ta


×

×V(2) (ζf ,τ) Ta V −1
(2) (ζf ,τ) Q(ζf ,α2,β2) (11.4)

−(α1−α2) TrL


QN (ζf , α1 , β1)⊗Q(ζf , α2 , β2) Υ



where we have denoted

Υ ≡
 ζf

ζi

dζ Q−1
⊗ (ζ)

 τf

τi

dτ


d Z (ζ, τ)

d τ
, M(1) (τ) ⊗ 1l + 1l ⊗ M(2) (τ)


Q⊗ (ζ) (11.5)

Note from (4.2) that bτ (σf , τ, ζf ) is defined on a loop at spatial infinity (ζ = ζf ). From (2.65)
and (4.2), we have that

bτ (σf , τ, ζf ) ∼ c

 σf

σi

dσ εijk
r̂i

r2
d xj

d σ

d xk

d τ
; eτ (σf , τ, ζf ) ∼ c

 σf

σi

dσ εijk
r̂i

r2
d xj

d σ

d xk

d τ
(11.6)

with r̂ being the unit radial vector, and c and c being constant elements of a given Cartan
subalgebra of the Lie algebra of the gauge group G.

But V(i) (ζf , τ), i = 1, 2, is defined on the surface S2
∞, the border of R3, and so from (4.4)

and (11.6) we see that it is an exponentiation of the same Cartan subalgebra generators, c and
c. If we now impose the constraints (3.15) and the static Bianchi identity DiBi = 0, which
are equivalent to the static Yang-Mills differential equations, it follows that we are imposing
the static integral Yang-Mills equation. Consequently, we can express the charge operator
Q (ζf , α1 , β1), as a surface ordered integral on S2

∞ through (2.52). Therefore, from (11.6)
we conclude that such a charge operator is also an exponentiation of those same Cartan
subalgebra generators, c and c. Consequently, we have that

V −1
(i) (τ) QN (ζf , α1 , β1) V(i) ≡ exponentiation of c and c; i = 1, 2 (11.7)

We then observe that the commutator inside the trace, on the second line of (11.4),
vanishes. But since such a result was obtained by imposing the constraints to hold, we get
that M(1), given in (10.4), vanishes, and so does Υ, given in (11.5). Consequently, we get
that the Sklyanin relation is in fact non-anomalous, i.e.

{ QN (α1, β1) , Q (ζf , α2 , β2) }P B
∼= TrL


QN−1 (ζf , α1 , β1) ⊗ 1l [ R , 1l ⊗ Q (ζf , α2 , β2) ]



(11.8)
where the symbol ∼= means equality when the constraints (3.15) hold true.

We now get, from (11.8), that the conserved charges (2.51) are involution

{ QN (α1, β1) , QM (α2 , β2) }P B
∼= 0 (11.9)
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Such a result is true for all values of the parameters αi and βi, i = 1, 2. Therefore, expanding
the charge operators in power series on those parameters, as in (2.55), we get that the
infinity of charges (2.57) are in involution. Consequently, we have an exact integrability
structure in Yang-Mills theories on the sector of the non-abelian magnetic and electric charges
and their higher modes.

11.1 The algebra of the transformations generated by the charges

We now show that, despite the fact that the conserved charges are in involution, the
transformations generated by them do not quite commute. That is a consequence of the
anomalies of the Sklyanin relation (11.3), and the fact that we can not impose the constraints
inside the Poisson bracket.

Consider the commutator of two transformations of the type (5.1). Using the Jacobi
identity for the Poisson bracket, we get

[ δN1,α1,β1 , δN2,α2,β2 ] X = −ε1 ε2 { X , { QN1 (α1 , β1) , QN2 (α2 , β2) }P B }P B (11.10)

Using (11.4) we get

{ QN1 (α1, β1) , QN2 (α2 , β2) }P B = − (α1 − α2)


TrRL


QN1

(1) (ζf ) ⊗ QN2
(2) (ζf ) Υ



+ ie3 ϑ
β1β2

(β1 − β2)

 τf

τi

dτ Tr


bτ (σf , τ, ζf ) , V −1
(1) (ζf , τ) QN1

(1) (ζf ) V(1) (ζf , τ)


Ta


×

× Tr

Ta V −1

(2) (ζf , τ) QN2
(2) (ζf ) V(2) (ζf , τ)


(11.11)

where the subscript (s), means the operator depends upon (αs , βs).
As explained above, the right-hand side of (11.11) vanishes when we impose the con-

straints (3.15), and the static Bianchi identity DiBi = 0. However, those quantities are
inside the Poisson bracket in (11.10), and we can not impose the constraints inside the
Poisson bracket.

The Poisson bracket of X with the second term on the right-hand side of (11.11) leads to
 τf

τi

dτ Tr ({ X , bτ (σf , τ, ζf ) }P B Ta) ×

× Tr


V −1
(1) (ζf , τ) QN1

(1) (ζf ) V(1) (ζf , τ) , V −1
(2) (ζf , τ) QN2

(2) (ζf ) V(2) (ζf , τ)


Ta



−
 τf

τi

dτ Tr

{ X , V −1

(1) (ζf , τ) QN1
(1) (ζf ) V(1) (ζf , τ) }P B Ta


×

× Tr


bτ (σf , τ, ζf ) , V −1
(2) (ζf , τ) QN2

(2) (ζf ) V(2) (ζf , τ)


Ta



+
 τf

τi

dτ Tr


bτ (σf , τ, ζf ) , V −1
(1) (ζf , τ) QN1

(1) (ζf ) V(1) (ζf , τ)


Ta


×

× Tr

Ta { X , V −1

(2) (ζf , τ) QN2
(2) (ζf ) V(2) (ζf , τ) }P B


(11.12)

where we have used the cyclic property of the trace, and on the first two terms in (11.12),
we have used (G.4). Using (11.6) and (11.7), we conclude that all the three terms of (11.12)
vanish, since c and c commute.
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Consequently, we get that

[ δN1,α1,β1 , δN2,α2,β2 ] X ∼= ε1 ε2 (α1 − α2) { X , TrRL


QN1

(1) (ζf ) ⊗ QN2
(2) (ζf ) Υ


}P B (11.13)

Therefore, the commutator of two transformations generated by the conserved charges (2.51)
does not vanish, since the Poisson brackets on the right-hand side of (11.13) do not vanish
for arbitrary X.

Note from (10.4) and (11.5), that Υ is linear in the constraints C = Ca Ta. Therefore, only
the Poisson bracket { X , Ca }P B matters in (11.13), since the other terms have the constraint
Ca outside the Poisson bracket, and so they vanish when the constraints are imposed.

In appendix J we show that TrRL


QN1

(1) (ζf ) ⊗ QN2
(2) (ζf ) Υ


Poisson commutes with all

terms in the total Hamiltonian HT , given in (6.1). Therefore, it also generates symmetries
of the Yang-Mills theories, i.e.

δΥHT ≡ ε { HT , TrRL


QN1

(1) (ζf ) ⊗ QN2
(2) (ζf ) Υ


}P B

∼= 0 (11.14)

However, the conserved charge TrRL


QN1

(1) (ζf ) ⊗ QN2
(2) (ζf ) Υ


, vanishes on the constrained

phase space, defined by the constraints (3.15).

12 The symmetries of Yang-Mills integral equations

The second type of hidden symmetry of the Yang-Mills theories is a symmetry of the integral
equations (2.40). Those equations are defined on any three-dimensional volume Ω, with
border ∂Ω, and their construction requires a scanning of Ω with closed surfaces based at the
reference point xR. So, given a scanning, the border ∂Ω is a point in the loop space

L(2) ≡ {f : S2 → M | north pole → xR} (12.1)

and the volume Ω is a path on that loop space.
We will now construct on every point of L(2) an infinite-dimensional group, which is a

symmetry group of the integral equations (2.40). In fact, as we will see, both sides of (2.40)
are elements of that group.

Consider a one-form connection a on the loop space

L(1) ≡ {f : S1 → M | north pole → xR} (12.2)

which take values on the Lie algebra of the gauge group G. The loops in L(1) are functions
xµ (σ), from the circle S1, parameterized by σ, to the space-time M , with coordinates xµ,
such that the north pole of S1 is always mapped into the reference point xR. We then
consider a path L(1), parameterized by τ , i.e., each loop (point) in the path is labelled
by a given value of τ .

Given a (τ), we define two holonomies ĝ (τ) and g (τ), on a given path in L(1) param-
eterized by τ , by the equations

d ĝ (τ)
d τ

− ĝ (τ) a (τ) = 0 (12.3)
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and
d g (τ)

d τ
+ a (τ) g (τ) = 0 (12.4)

On the infinitesimal loop around the reference point xR, they satisfy the boundary condition

ĝ (xR) = 1l; g (xR) = 1l (12.5)

In fact, (12.5) are the integration constants for the first-order differential equations (12.3)
and (12.4).

Note that (12.3) and (12.5) involve the product of a (τ) with ĝ (τ) and g (τ). Since a (τ)
lies on the Lie algebra of G, and the holonomies must take values on G, the equations (12.3)
and (12.5) have to be defined on a given representation of G. Therefore, 1l appearing in (12.5)
must be the unit matrix on that representation. The choice of representation of G, however,
is arbitrary, as long as it is a faithful representation.

The motivation to introduce two holonomies is that each one is the inverse of the other,
as we now explain. From (12.3), (12.4) and (12.5) we have that

d (ĝ g)
d τ

= ĝ a g − ĝ a g = 0 → ĝ g = constant = ĝ (xR) g (xR) = 1l (12.6)

So, g is a right inverse of ĝ. Now

d (g ĝ)
d τ

= −a g ĝ + g ĝ a = [ g ĝ , a ] (12.7)

Introduce a matrix a′ as a = g a′ ĝ. Then, using the fact that ĝ g = 1l, we have

d (g ĝ)
d τ

=

g ĝ , g a′ ĝ


= g


1l , a′  ĝ = 0 → g ĝ = constant = g (xR) ĝ (xR) = 1l

(12.8)
Therefore, g is also a left inverse of ĝ.

Given two one-forms in L(1), a1 and a2, we construct, through (12.3), the respectives
holonomies ĝ1 (τ) and ĝ2 (τ). Using (12.3) we have that the τ -derivative of their matrix
product satisfy

d (ĝ1 ĝ2)
d τ

= ĝ1 a1 ĝ2 + ĝ1 ĝ2 a2 = ĝ1 ĝ2

a2 + ĝ−1

2 a1 ĝ2


(12.9)

We now define the one-form a3 (τ) by

a3 (τ) ≡ a2 (τ) + ĝ−1
2 (τ) a1 (τ) ĝ2 (τ) (12.10)

and therefore the matrix product

ĝ3 (τ) ≡ ĝ1 (τ) ĝ2 (τ) (12.11)

satisfy the holonomy equation

d ĝ3 (τ)
d τ

− ĝ3 (τ) a3 (τ) = 0 (12.12)

We then have defined compositions of holonomies ĝ and one-form connections a.
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Certainly, the composition of holonomies is associative as it is defined by the matrix
product on a given representation of the gauge group G. Indeed, given three holonomies,
we have that

(ĝ1 ĝ2) ĝ3 = ĝ1 (ĝ2 ĝ3) (12.13)

In addition, the composition of connections is also associative. Indeed, we have

a(1 2) 3 ≡ a3 + ĝ−1
3


a2 + ĝ−1

2 a1 ĝ2


ĝ3 =

a3 + ĝ−1

3 a2ĝ3


+ (ĝ2 ĝ3)−1 a1 ĝ2 ĝ3 ≡ a1 (2 3) (12.14)

The identity element ĝid, of such a composition of holonomies is the holonomy associated to
the vanishing connection, i.e. aĝid = 0. Indeed, from (12.3) and (12.5), we have that for a = 0

d ĝid (τ)
d τ

= 0 → ĝid = 1l (12.15)

Similarly, from (12.4) for a = 0, and (12.5), we get that gid = 1l, and so gid = ĝid.
From the composition of connections (12.10), we have for any ĝ that

aĝĝig (τ) = aĝid (τ) + ĝ−1
id (τ) a (τ) ĝid (τ) = a (τ) = a (τ ) + ĝ−1 (τ) aĝid (τ) ĝ (τ) = aĝidĝ (τ)

(12.16)
Therefore, ĝid is indeed a left and right identity.

Note that any right and left identity is unique independently of the fact of the product
being associative or not. Suppose there exist two identities ĝid and ĝ′

id such that ĝĝid =
ĝidĝ = ĝ′

idĝ = ĝĝ′
id = ĝ, for any ĝ. Then for ĝ = ĝid we have ĝidĝ′

id = ĝid, and for ĝ = ĝ′
id we

have ĝidĝ′
id = ĝ′

id. Therefore ĝid = ĝ′
id, and the identity is unique.

Similarly, suppose that ĝ has two right inverses g1 and g2 such that ĝg1 = ĝg2 = ĝid, and
suppose g3 is a left inverse of ĝ, i.e. g3ĝ = ĝid. Then g3 (ĝg1) = g3 (ĝg2) and using associativity
we get (g3ĝ) g1 = (g3ĝ) g2 and so ĝidg1 = ĝidg2 and then g1 = g2. Therefore, the right inverse
is unique. A similar argument can be used to show the uniqueness of the left inverse. Now if
g3 and g1 are respectively the left and right inverses of ĝ, we have g3ĝ = ĝid = ĝg1 and then
using associativity we get (g3ĝ) g1 = ĝidg1 = g1 = g3 (ĝg1) = g3ĝid = g3. So the left and right
inverses are the same. Consequently, g is the unique right and left inverse of ĝ.

We now consider all possible one-forms a in L(1), and construct all possible holonomies ĝ

and g, through (12.3) and (12.4) respectively. Therefore, by construction, the set of holonomies
close under the compositions (12.10) and (12.11). Consequently, from the discussion above,
the set of all holonomies ĝ (τf ) and g (τf ) forms a group which we shall denote by Ĝ. Note
that, even tough we have defined the composition of holonomies in (12.11), on each point τ

of the path, the elements of our group Ĝ are holonomies integrated along the entire loop,
ĝ (τf ) and g (τf ), i.e. integrated up to the final point τ = τf .

Note that even though the elements of Ĝ are holonomies, Ĝ is not a holonomy group
in the usual sense defined in the literature. The usual holonomy group is constructed for
a fixed connection, and the composition is given through the composition of loops. Our
group Ĝ is defined on a fixed loop in L(2), and we compose the connections as in (12.10).
Therefore, we define a group Ĝ on each point of L(2), and the product law is pointwise
defined. That is similar to the usual gauge group G, which is defined on each point of the
space-time M , and the product is pointwise.
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We can define connections on L(1) through local quantities on the space-time M . Indeed,
consider a one-form aµ and a two-form bµν , on the four dimensional Minkowski space-time
M , with both taking values on the Lie algebra of the gauge group G, i.e. aµ = aa

µ Ta, and
bµν = ba

µν Ta, with Ta being a basis of the gauge Lie algebra, see (1.17). A one-form in
L(1) can be constructed as

a (τ) =
 σf

σi

dσ ω−1 bµν ω
d xµ

d σ

d xν

d τ
(12.17)

where ω is the holonomy on M of the one-form connection aµ, i.e.

d ω

d σ
+ aµ

d xµ

d σ
ω = 0 (12.18)

Note that the composition (12.10) of two one-form connections in L(1), a1 and a2, of the
form (12.17), may not be of the form (12.17), since that composition is not local in M .
Therefore, we may not be able to write the composed one-form a3, as in (12.17), in terms
of local one-form a3

µ, and two-form b3
µν , in M .

We now want to use a Stokes-like theorem to express the elements of the infinite-
dimensional group Ĝ, as holonomies in the loop space L(2), defined in (12.1). In order to
do that we consider variations δxµ (σ), of the loops (points) in L(1), and calculate how the
holonomies ĝ, defined in (12.3), vary. Performing such variation on the equation (12.3), we get

d δĝ (τ)
d τ

− δĝ (τ) a (τ) − ĝ (τ) δa (τ) = 0 (12.19)

Note that the variation of the one-form a (τ) is induced by the variation of the point in L(1)

where it sits, i.e. δa (τ) = a (xµ (σ) + δxµ (σ)) − a (xµ (σ)), where xµ (σ) is the loop (point)
in L(1), labelled by τ . It is not a variation of the parameters of that one-form, which may
take it to another one-form in L(1).

We now multiply (12.19), from the right by g (τ), defined in (12.4), for the same one-form
a (τ) that leads to ĝ (τ), i.e. g (τ ) is the inverse of ĝ (τ). Then we multiply (12.4) from the
left, by δĝ (τ ), and add them up to get

d (δĝ (τ) g (τ))
d τ

− ĝ (τ) δa (τ) g (τ) = 0 (12.20)

Therefore
δĝ (τf ) g (τf ) =

 τf

τi

dτ ĝ (τ) δa (τ) g (τ) (12.21)

where we have assumed that the initial point of the loop is not varied, i.e. δĝ (τi) = 0. Note
that despite the fact that the initial and final points of the loop coincide, the variation δĝ (τf )
does not vanish, because ĝ (τf ) is the result of the integration along the loop, and so depends
upon the variation on each point of the loop.

We can look at (12.21) as a differential equation on L(2). Indeed, let us take a path on
L(2) parameterized by ζ, and define the holonomy in L(2), as

d ĝ (ζ, τf )
d ζ

=
 τf

τi

dτ ĝ (τ) d a (τ)
d ζ

g (τ )


ĝ (ζ, τf ) (12.22)
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as g is the inverse of ĝ. If we use local coordinates in L(1), one can verify that the integral
on the right-hand side of (12.22) will involve the curvature of the one-form a.

We can now calculate the group element ĝ in two ways. First through (12.3), as an
holonomy integrated on a loop ∂Ω, in L(1). Second by integrating (12.22) from an infinitesimal
loop in L(1), around the reference point xR, up to the loop ∂Ω. Since, from our considerations,
those two quantities must be the same, we get that ĝ can be defined on the loop ∂Ω, in L(1),
(a surface in M), or by a path in L(2) (a volume Ω in M), with final point ∂Ω, i.e.

ĝ (∂Ω) = ĝ (Ω) (12.23)

That is a Stokes-like theorem for ĝ, on the same lines as we derived that theorem in section 2.1
for a two-form connection on M .

We then observe that both sides of the integral Yang-Mills equations (2.40) are elements
of our infinite-dimensional group Ĝ. In fact, they correspond to holonomies of a connection
a of the form (12.17), where we take

bµν = i e

α Fµν + β Fµν


; aµ = i e Aµ (12.24)

We are then inclined to try to define left and right symmetries of the integral Yang-Mills
equation (2.40) as follows. In order to simplify the notation, we introduce

V (∂Ω) ≡ P2 ei e


∂Ω dτ dσ W −1


α Fµν+β Fµν


W d xµ

d σ
d xν

d τ

V (Ω) ≡ P3 ei e2


Ω dζ dτ V J V −1
(12.25)

where we have dropped the integration constant VR, as it has to lie in the center of the
gauge group G (see (2.54)). Then, (2.40) becomes

V (∂Ω) = V (Ω) (12.26)

From (12.23) we then observe that the left and right transformations

V (∂Ω) → ĝL (∂Ω) V (∂Ω) ; V (Ω) → ĝL (Ω) V (Ω) (12.27)

and

V (∂Ω) → V (∂Ω) ĝR (∂Ω) ; V (Ω) → V (Ω) ĝR (Ω) (12.28)

with ĝL/R being elements of Ĝ, leave the integral Yang-Mills equation (12.26) invariant.
We have shown in section 2.1 how the surface holonomy V (∂Ω) varies when we vary

∂Ω. In fact, we have shown in section 2.3 that such a variation leads to the definition of
the connection A, given in (2.24), and it relates to V as

A = d V

d ζ
V −1 (12.29)

Since the variation of the parameter ζ accounts for the variation of ∂Ω, we conclude that
A is a one-form in L(2) given by

A (∂Ω) = δ V (∂Ω) V −1 (∂Ω) (12.30)

where δ can be seen as exterior derivative in L(2), and ∂Ω is any point in L(2).

– 62 –



J
H
E
P
1
1
(
2
0
2
5
)
1
0
2

From (12.30) one can calculate how A transforms under (12.27) and (12.28), since we
know how to evaluate δĝ (∂Ω). It is

A → ĝL (∂Ω) A ĝ−1
L (∂Ω) + δĝL (∂Ω) ĝ−1

L (∂Ω) (12.31)

and

A → A + V (∂Ω) δĝR (∂Ω) ĝ−1
R (∂Ω) V −1 (∂Ω) (12.32)

Note that (12.31) is like a gauge transformation of the pure gauge connection (12.30),
associated to the infinite-dimensional group Ĝ.

There is a very important point to emphasize here. Even though the transforma-
tions (12.27) and (12.28) leave the integral Yang-Mills equations (12.26) invariant, we can not
claim yet that they are symmetries of the Yang-Mills theories. The reason is that given a field
configuration of Yang-Mills theory (Aµ, Fµν , etc), we can evaluate both sides of (12.26). How-
ever, when we transform both sides of (12.26), under (12.27) and (12.28), we should be able
to evaluate the new Yang-Mills field configuration that leads to the new both sides of (12.26).

That problem appears already in integrable field theories in (1 + 1)-dimensions, where
the field equations admit a zero curvature condition

∂tAx − ∂xAt + [ At , Ax ] = 0 (12.33)

with At and Ax, the Lax pair, being elements of a Kac-Moody algebra (or loop algebra)
which are functionals of the physical fields. The hidden symmetries of those theories are
the gauge transformations

Aµ → Aµ = g Aµ g−1 − ∂µg g−1 µ = t , x (12.34)

with g being elements of the loop group (or Kac-Moody group when one has a so-called
integrable representation of it). Even though (12.34) leaves (12.33), it can not be considered
yet as a symmetry of the integrable field theory, because one has to express the transformed
Aµ in terms of the physical fields. What makes that possible is the so-called Riemann-Hilbert
problem that has a complex analysis version leading to the inverse scattering method, and an
algebraic version that leads to the so-called dressing method. Those techniques allow the
mapping from one solution (of the physical fields) to another solution.

The great challenge that our approach faces is the construction of a method that allows us
to express the transformations (12.27) and (12.28), which leave the integral equation (12.26)
invariant, into symmetries of Yang-Mills theories, that map solutions into solutions. In
other words, one has to find the equivalent of the Riemann-Hilbert problem (if it exists) for
non-abelian gauge theories. That for sure is far beyond the scope of the present paper, but
we believe that the approach described in this section is on the right direction.

It may happen that the mapping among solutions will not come in terms of the local
Yang-Mills fields. The electric and magnetic fluxes (4.2), and perhaps their extension in the
time direction, may be objects more suitable for that task, as they are defined on points
of the loop space L(1). In fact, the integral Yang-Mills equations (12.26) can be expressed
in terms of them.
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The other challenge of our approach is to get a clear understanding of the structure
of the infinite-dimensional group Ĝ. We suspect that the space formed by the elements of
that group may not be a manifold, and therefore it may not be a Lie group. It seems to
us that the infinite dimension of that manifold is different at different points of it. If that
proves to be the case, we might have a very interesting situation. If it is not a Lie group, it
may circumvent the Coleman-Mandula theorem in a novel way. It might be an explanation
of why a non-supersymmetric theory like the Yang-Mills theory has an exact integrability
structure, as the one we have proved it has.

13 Conclusions

We have shown in this paper that classical, non-supersymmetric Yang-Mills theories in (3+1)-
dimensional Minkowski space-time, coupled to spin-1/2 and spin-0 matter fields, present
exact structures, resembling integrability, involving the non-abelian electric and magnetic
conserved charges, and their higher modes. In addition, we have shown that those theories
possess two types of novel hidden symmetries. Our results apply to the Standard Model
of the Fundamental Interactions, in particular to Quantum Chromodynamics (QCD), and
it opens the way to the development of new methods to study non-perturbative aspects
of non-abelian gauge theories.

Our results were made possible thanks to the developments of references [13, 14], that
proposed an approach to construct integrable theories in higher dimensions using flat connec-
tions on generalized loop spaces, and to references [1, 2], that implemented those ideas in
the context of gauge theories through the use of integral equations, which guaranteed the
path independency of the holonomies of those connections, and so their flatness. In order for
those ideas to work, one had to show that the local partial differential equations of motion of
a field theory had to be equivalent to the flatness condition of a connection on loop space,
which is local on loop space but highly non-local on space-time. It is an extremely amazing
fact that the theories that satisfy those conditions are exactly the most relevant ones to
describe the fundamental interactions, namely non-abelian gauge theories. The particular
property relevant for such an achievement is that the laws of electrodynamics and Yang-Mills
theories can be formulated in terms of integral equations, which state the equality of the
charge inside a given three-volume in space-time, to the flux of the fields associated to them,
at the border of that volume. Those integral Yang-Mills equations, proposed in [1, 2], lead
to the construction of an infinite number of gauge-invariant conserved charges, namely the
non-abelian electric and magnetic charges and their higher modes.

Those charges are constructed as the eigenvalues of a charge operator that depends on two
arbitrary parameters α and β. They are not charges of the Noether type. Their conservation
comes from the path independency of the holonomy of the loop space connection, and not
from symmetries of the Yang-Mills Lagrangian. Contrary to the Yang-Mills charges discussed
in the literature and in textbooks, those charges are truly gauge invariant. If one expands the
charge operator in power series in the parameters α and β, one gets a number of charges equal
to the rank of the gauge group, for each term of the series, and so an infinite number of them.

We have shown that the loop space connection A, when evaluated on a spatial surface
at a given fixed time, satisfies a Fundamental Poisson Bracket Relation (FPR), in a way
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that reminds the FPR encountered in integrable field theories in (1 + 1)-dimensions. In fact,
the associated R-matrix is similar to that one appearing in the rational FPR for current
algebras [3]. The FPR for the loop space connection A, however, is anomalous in the sense
that it has two terms that become irrelevant when the constraints are imposed, and the
conditions for reparameterization invariance are applied.

The FPR for the loop space connection A leads in a straightforward way to the Sklyanin
relation for the charge operator, which is also anomalous. The involution of the infinity of
magnetic and electric charges follows from the Sklyanin relation, once the anomalous terms
disappear by the imposition of the constraints and reparameterization conditions.

Therefore, non-abelian gauge theories possess exact structures, resembling integrability,
with an infinite number of conserved charges in involution. Such a fact, however, does not
mean that Yang-Mills theories are integrable in the usual sense encountered in the literature.
The integrability structures that we have constructed do not lead, for instance, to the
factorization of the S-matrix. Indeed, it is well known that Yang-Mills theories do not possess
such a property, as particle production is a common place in their processes. The infinity of
conserved charges involves the non-abelian electric and magnetic charges and their higher
modes. The usual concept of integrability involves the energy and momentum and their higher
modes instead. Even though our conserved charges Poisson commute with the Hamiltonian,
the latter, as well as the momenta, do not appear as eigenvalues of our charge operator.

The novel hidden symmetries that we have constructed are of two types. The first ones
are the transformations generated by the conserved charges under the Poisson brackets, and
so, they are canonical transformations. Since the Hamiltonian Poisson commutes with the
charges, those transformations are global symmetries of the Yang-Mills theories. We have
evaluated how the matter fields, gauge fields, the Wilson lines, and the magnetic and electric
fluxes transform under those symmetries. Those transformations are very interesting, and
they present non-integrable factors involving the Wilson line, surface, and volume ordered
integrals (holonomies) of the connections in the loop spaces L(1) and L(2). Even though the
charges commute among themselves, the transformations generated by them do not. That
is due to the fact that the involution of the charges holds true when the constraints are
imposed. The commutator of two transformations leads to a transformation generated by
new charges that vanish when the constraints are imposed. Those new charges, however,
Poisson commute with the Hamiltonian and so are symmetries of Yang-Mills theories.

The second type of hidden symmetries that we have discovered corresponds to the
transformations that leave the integral Yang-Mills equations invariant. They are generated by
an infinite-dimensional group, whose elements are holonomies of one-form connections on the
loop space L(1). For every point of L(1) we defined a composition of any two given connections,
which in its turn lead to the composition of the corresponding holonomies, that are the group
elements. Such a group differs from the usual holonomy group defined in the literature, whose
elements are the holonomies of a fixed connection evaluated on every closed path based on a
fixed point. The composition law of such a group is defined through the composition of the
loops. We instead fix the loop in L(1) and compose the connections on that fixed loop.

Even though our infinite group leaves the integral Yang-Mills equations invariant, it
is not a symmetry of the Hamiltonian. So, in principle, it can define maps between two
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quite different configurations. With a suitable choice of connection, one can, for instance,
map a vacuum configuration into a non-trivial solution like a magnetic monopole. Therefore,
such a group may play a role, in non-abelian gauge theories, similar to that played by the
Kac-Moody group in integrable field theories in (1 + 1)-dimensions. However, the powerful
methods applicable for such theories, like the inverse scattering method, dressing method,
etc, rely, among other things, on the so-called Riemann-Hilbert problem. It is not known
yet if the group we have constructed may lead to similar powerful structures applicable to
gauge theories. That is one of the challenges that our approach puts forward, and the answer
to such questions is well beyond the scope of the present paper.

The other interesting aspect of such a group is that it may not be a Lie group. We have
to investigate that further, but it seems that the space formed by the group elements may
not be a manifold. Its (infinite) dimension may vary from point to point. If that turns out
to be true, the symmetries of the integral Yang-Mills equations, defined by such a group,
may not be subjected to the Coleman-Mandula no-go theorem [7].

The (2+ 1)-dimensional Yang-Mills theories also present integral equations and conserved
charges similar to the ones discussed in this paper [2]. We have shown that such theories
also have exact structures, resembling integrability, with an infinite number of charges in
involution, with an FPR for the loop space connection, and a Sklyanin relation for the charge
operator. They also possess two types of hidden symmetries, one generated by the charges
under the Poisson bracket, and another one by an infinite-dimensional group of holonomies,
which are symmetries of the integral equations. Such results are presented in a separate
paper [37], and they will certainly serve as a laboratory to study the structures of Yang-Mills,
discussed here, in a simpler scenario.

Our results raise some important and interesting questions related to the nature of the
conserved charges. As we have shown, they are truly gauge invariant, and so, in principle, such
charges are physical observables. In the case of QCD, they are color singlets (i.e., transform
under the scalar representation of SU(3) color) and so may not be confined. Therefore, the
hadrons could carry such charges, even though the quarks may not. In order to analyze such
an issue it has been considered classical Yang-Mills in (1 + 1)-dimensions and the equivalent
of our three-dimensional charges has been constructed [38]. Then it has been considered the
quantum version of that two-dimensional gauge theory on a lattice, and it has been evaluated
the expectation values of the charges in some particle configurations, at the strong coupling
limit, where the plaquette action is dominated by the hopping term. The results are quite
interesting [39]. The mesons and baryons do present non-vanishing expectation values of
the charges. The quarks, however, not being color singlets, present vanishing expectation
values for the charges. One certainly has to study such an issue in a more complete and
realistic scenario, since the charges may have the potential of being order parameters of
some phases of non-abelian gauge theories.

Clearly, the most important issue still to be investigated is the role of such structures,
which resemble integrability, on the quantum Yang-Mills theories. One can approach such
a problem from different perspectives and methods. It would be interesting to check if the
hidden symmetries we presented in this paper might be broken or not at the quantum level.
In addition, the conservation of the charges may present quantum anomalies, and they may
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introduce selection rules in many processes, which will be important in the properties of
quantum Yang-Mills. Certainly, the results presented in this paper open up several ways to
investigate the non-perturbative aspects of non-abelian gauge theories.
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A A particular scanning of R3
t

An example of a scanning of R3
t is

x1 = ζ cos2 τ (1 − cos σ) − L; 0 ≤ σ ≤ 2 π; L → ∞
x2 = −ζ cos τ sin σ; −π

2 ≤ τ ≤ π

2 (A.1)

x3 = ζ cos τ sin τ (1 − cos σ) ; 0 ≤ ζ < ∞

The reference point is xR = (−L , 0 , 0), the surfaces of constant ζ are spheres of radius ζ,
with center at (−L + ζ , 0 , 0). Indeed


x1 + L − ζ

2 +

x22 +


x32 = ζ2. The Jacobian,

defined in (5.28), becomes

εijk
d xi

d σ

d xj

d τ

d xk

d ζ
= 4 ζ2 cos3 τ sin4


σ

2


(A.2)

and so it is positive, and ϑ = 1. Note that the Jacobian only vanishes at the reference point
xR, since it corresponds to σ = 0 or 2 π, or to ζ = 0 (the infinitesimally small sphere around
xR, or to τ = −π

2 or π
2 (the infinitesimally small loops around xR).
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B Proof of relation (2.27)

Note that, in (2.25), whenever we have the commutator of two matrices of the same type,
we can use the following manipulations to eliminate the intertwined integrals

 σf

σi

dσ

 σ

σi

dσ′ Mκρ


σ′ , Mµν (σ)

 dxκ

dσ′
dxµ

dσ


d xρ (σ′)

d τ

d xν (σ)
d ζ

− d xρ (σ′)
d ζ

d xν (σ)
d τ



=
 σf

σi

dσ

 σ

σi

dσ′


Mκρ


σ′ dxκ

dσ′
d xρ (σ′)

d τ
, Mµν (σ) dxµ

dσ

d xν (σ)
d ζ



+


Mµν (σ) dxµ

dσ

d xν (σ)
d τ

, Mκρ


σ′ dxκ

dσ′
d xρ (σ′)

d ζ



=
 σf

σi

dσ

 σ

σi

dσ′ +
 σf

σi

dσ′
 σ′

σi

dσ

 
Mκρ


σ′ dxκ

dσ′
d xρ (σ′)

d τ
, Mµν (σ) dxµ

dσ

d xν (σ)
d ζ



=
  σf

σi

dσ′ Mκρ


σ′ dxκ

dσ′
d xρ (σ′)

d τ
,

 σf

σi

dσ Mµν (σ) dxµ

dσ

d xν (σ)
d ζ


(B.1)

C The quantity M given in (5.20)

The Wilson line operator W is defined on a given curve xµ (σ), parameterized by σ through
the equation (2.32), such that xµ (σi) corresponds to the reference point xR. If we vary
such a curve, xµ (σ) → xµ (σ) + δxµ (σ), keeping the reference point xR fixed we get that
W , integrated up to a given point σ, changes as (for the details of such a calculation
see [1, 2, 13, 14], specially section 2 of [13])

W −1 (σ) δW (σ) = −i e W −1 (σ) Aµ (σ) W (σ) δxµ (σ) + i e

 σ

σi

dσ′ W −1 Fµν W
d xµ

d σ′ δxν

(C.1)
In the scanning of a given volume Ω, we have the loops labelled by τ and the closed surfaces
labelled by ζ. So, we can consider the variations of the Wilson line when we vary a given
loop in the scanning to one infinitesimally close to it on the same surface, and in such a
case we have δxµ = d xµ

d τ dτ . Similarly, we can consider the variation of W when we vary
a given loop on a given surface to one lying on a surface infinitesimally close to it, and
in such a case we have δxµ = d xµ

d ζ dζ. Therefore, from (C.1) we get differential equations
for W associated to such variations

W −1 (σ) dW

dτ/ζ
(σ) = −ieW −1 (σ) Aµ (σ) W (σ) dxµ

dτ/ζ
(σ)+ie

 σ

σi

dσ′ W −1 Fµν W
dxµ

dσ′
dxν

dτ/ζ
(C.2)

If we close the loop, integrating up to σf , we get

W −1 (σf ) d W

d τ/ζ
(σf ) = i e

 σf

σi

dσ′ W −1 Fµν W
d xµ

d σ′
d xν

d τ/ζ
(C.3)

That is so, because we always keep the reference point fixed, and so (see appendix A for
an example of scanning of R3

t )

d xµ

d τ
= d xµ

d ζ
= 0 at σ = σi and σ = σf (C.4)
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For the case where the volume Ω corresponds to the spatial sub-manifold R3
t , we can

use (C.2) to express the quantity bτ/ζ (σ), defined in (4.2), as

bτ/ζ (σ) = −W −1 (σ) Ai W (σ) d xi

d τ/ζ
+ i

e
W −1 (σ) d W (σ)

d τ/ζ
; for σ < σf (C.5)

When we close the loop, i.e., take the integral in (4.2) up to σf , it turns out, due to (C.4), that

bτ/ζ (σf ) = i

e
W −1 (σf ) d W (σf )

d τ/ζ
(C.6)

For any given Lie algebra valued quantity L conjugated with the Wilson line, we have
from (C.5), that

d

d τ/ζ


W −1 (σ) L (σ) W (σ)


= W −1 (σ) DiL (σ) W (σ) d xi

d τ/ζ

−i e


W −1 (σ) L (σ) W (σ) , bτ/ζ (σ)


(C.7)

where Di is the covariant derivative in the adjoint representation, i.e. Di∗ = ∂i ∗ +i e [ Ai , ∗ ].
In addition, from the defining equation of the Wilson line (2.32), we have that

d

d σ


W −1 (σ) L (σ) W (σ)


= W −1 (σ) DiL (σ) W (σ) d xi

d σ
(C.8)

We shall need the identity

d

d τ


εijk

d xj

d σ

d xk

d ζ


− d

d ζ


εijk

d xj

d σ

d xk

d τ


= d

d σ


εijk

d xj

d τ

d xk

d ζ


(C.9)

Therefore, using (C.7), (C.8) and (C.9) we have from (4.2), (4.4) and (5.15) that

d Tτ

d ζ
− d Tζ

d τ
= −i e

 σf

σi

dσ


− d

d σ


W −1 (α Bi + β Ei) W εijk

d xj

d τ

d xk

d ζ



+ W −1Dl (α Bi + β Ei) W εijk


d xj

d σ

d xk

d τ

d xl

d ζ
− d xj

d σ

d xk

d ζ

d xl

d τ
+ d xj

d τ

d xk

d ζ

d xl

d σ



+ i e


W −1 (α Bi + β Ei) W , bτ (σ)


εijk
d xj

d σ

d xk

d ζ

− i e


W −1 (α Bi + β Ei) W , bζ (σ)


εijk
d xj

d σ

d xk

d τ


(C.10)

From (C.4) we observe that the first term on the right-hand side of (C.10) vanishes. In
addition, we have that

εijk


d xj

d σ

d xk

d τ

d xl

d ζ
− d xj

d σ

d xk

d ζ

d xl

d τ
+ d xj

d τ

d xk

d ζ

d xl

d σ


= δil εjkm

d xj

d σ

d xk

d τ

d xm

d ζ
(C.11)
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Using (4.2), (4.8) and (4.9), we have that
 σf

σi

dσ


W −1 (α Bi + β Ei) W , bτ (σ)


εijk

d xj

d σ

d xk

d ζ

−


W −1 (α Bi + β Ei) W , bζ (σ)


εijk
d xj

d σ

d xk

d τ



=
 σf

σi

dσ


α

d bζ (σ)
d σ

+ β
d eζ (σ)

d σ
, bτ (σ)


−


α
d bτ (σ)

d σ
+ β

d eτ (σ)
d σ

, bζ (σ)


= i (β ρG + α ρmag.) (C.12)

where we have used the fact that, due to (4.2), we have bτ/ζ (σi) = 0.
Therefore, (C.10) becomes

d Tτ

d ζ
− d Tζ

d τ
− ie2 (β ρG + α ρmag.) = −ie

 σf

σi

dσW −1 (α DlBl + β DlEl) W εijk
d xi

d σ

d xj

d τ

d xk

d ζ
(C.13)

Adding
−i e2 β ρM


to both sides of (C.13) (with ρM given in (4.7)), we get that (5.20)

is indeed equal to (5.25).

D Poisson brackets for the gauge fields

In order to evaluate the transformations of the gauge fields, the electric and magnetic fields,
we need the Poisson brackets involving the Wilson line. Note that, since we are in R3

t , the
derivatives with respect to σ, τ , and ζ are space derivatives, and so they commute with
the equal time Poisson bracket. Therefore, the Poisson bracket of a given quantity X with
a spatial Wilson line can be extracted directly from the holonomy equations restricted to
space loops (see (2.32))

d W

d σ
+ i e Ai

d xi

d σ
W = 0; d W −1

d σ
− i e W −1 Ai

d xi

d σ
= 0 (D.1)

Indeed, we get that

d

W −1 { X , W }P B



d σ
+ i e W −1 { X , Ai }P B W

d xi

d σ
= 0 (D.2)

where we have used the fact that X does not depend upon σ. Therefore, since W (σi) is a
constant of integration independent of the fields, we get that

{ X , W (σ) }P B = −i e W (σ)
 σ

σi

dσ′ W −1 σ′ { X , Ai


σ′ }P B W


σ′ d xi

d σ′ (D.3)

In addition, from the properties of the Poisson bracket, we get that

{ X , W −1 Ta W }P B =


W −1 Ta W , W −1 { X , W }P B


(D.4)

From the Poisson bracket relations (3.11) we observe that the gauge field Ai and magnetic
field Bi commute. In addition, from (D.3) we have that Ai commutes with the Wilson line
W . Therefore, from (4.2) we have that

{ Aa
i (x , t) , bτ/ζ (σ) }P B = 0 (D.5)
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From (3.11), (4.2), (D.3) and (D.4) we have that

{ Aa
i (x , t) , eτ (σ) }P B =

 σ

σi

dσ′ δ(3) (x − y) εijk
d yj

d σ′
d yk

d τ
W −1 σ′ Ta W


σ′ (D.6)

where we have used, in the scanning of R3
t , the correspondence


x1 , x2 , x3


≡ (ζx , τx , σx) ;


y1 , y2 , y3


≡ 

ζ , τ , σ′ (D.7)

We observe that

δ(3) (x − y) εijk
d xi

d σx/τx

d yj

d σ′
d yk

d τ
= 0 (D.8)

since the three dimensional Dirac delta function impose the points xi and yi to coincide, and
when that happens the vectors d xi

d σx
and d yj

d σ′ are parallel, as well as d xi

d τx
and d yk

d τ . Therefore

{ Aa
i (x , t) d xi

d σx
, eτ (σ) }P B = 0 (D.9)

{ Aa
i (x , t) d xi

d τx
, eτ (σ) }P B = 0

On the other hand, using (5.28) and (7.2), we get

{ Aa
i (x, t) dxi

dζx
, eτ (σ) }P B = ϑδ (ζ − ζx) δ (τ − τx) θ (σ − σx) W −1 (σx) TaW (σx) (D.10)

where θ (σ − σ′) is the step function, i.e. θ (σ − σ′) = 1 for σ ≥ σ′ and zero otherwise.
From (3.11) and (D.3) we have that the magnetic field Bi commutes with the Wilson

line W , and so, from (4.2), we have that

{ Ba
i (x , t) , bτ/ζ (σ) }P B = 0 (D.11)

Using (3.12), we have from (4.2) that

{ Ba
i (x , t) , eτ/ζ (σ) }P B =

 σ

σi

dσ′


d yi

d σ′
d yj

d τ/ζ
− d yj

d σ′
d yi

d τ/ζ


× (D.12)

×W −1 σ′


−Ta
∂ δ(3) (x − y)

∂ xj
+ i e [ Aj (x) , Ta ] δ(3) (x − y)


W


σ′

Using (D.3), (D.4) and (3.11) we get

{ Ea
i (x, t) , eτ/ζ (σ) }P B = ie

 σ

σi

dσ′


deτ/ζ (σ′)
dσ′ ,

 σ′

σi

dσ′′W −1 σ′′TaW

σ′′ dzi

dσ′′ δ (x − z)


(D.13)
where we have used, in the scanning of R3

t , besides (D.7), the correspondence

z1 , z2 , z3


≡ 

ζ , τ , σ′′ (D.14)
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Note that we have

εijk
d zi

d σ′′
d xj

d σx

d xk

d τx/ζx
δ (x − z) = 0 (D.15)

as the delta function imposes d zi

d σ′′ and d xj

d σx
to be parallel. Therefore

{ Ea
i (x , t) εijk

d xj

d σx

d xk

d τx/ζx
, eτ/ζ (σ) }P B = 0 (D.16)

Using (C.5), (D.3), (D.4), and (3.11) we get that

{ Ea
i (x , t) , bτ/ζ (σ) }P B = W −1 (σ) Ta W (σ) d wi

dτ/ζ
δ(3) (x − w)

+i e


bτ/ζ (σ) ,

 σ

σi

dσ′ W −1 σ′ Ta W

σ′ d yi

dσ′ δ(3) (x − y)


− d

d τ/ζ

 σ

σi

dσ′ W −1 σ′ Ta W

σ′ d yi

dσ′ δ(3) (x − y) (D.17)

where we have used, in the scanning of R3
t , besides (D.7) and (D.14), the correspondence


w1 , w2 , w3


≡ (ζ , τ , σ) (D.18)

If we take σ = σf and use (C.6) instead of (C.5), we get

{ Ea
i (x , t) , bτ/ζ (σf ) }P B = i e


bτ/ζ (σf ) ,

 σf

σi

dσ′ W −1 σ′ Ta W

σ′ d yi

dσ′ δ(3) (x − y)


− d

d τ/ζ

 σf

σi

dσ′ W −1 σ′ Ta W

σ′ d yi

dσ′ δ(3) (x − y) (D.19)

Using relations similar to (D.15) we get, from (D.19), that

{ Ea
i (x , t) εijk

d xj

d σx

d xk

d τx/ζx
, bτ/ζ (σf ) }P B = 0 (D.20)

E Poisson brackets involving HC and HB

Using (3.16) we get that HC , defined in (6.2), satifies

{ HC , Ai (y) }P B = DiA0 (y) −


d3x
∂

∂ xi


A0 (x) δ(3) (x − y)


(E.1)

as A0 is a Lagrange multiplier, and so, drops out of the Poisson bracket, and where DiA0 =
∂iA0 + i e [ Ai , A0 ]. Using (D.1), we get that for any quantity X,

d

d σ


W −1 (σ) X W (σ)


= W −1 (σ) (∂iX + i e [ Ai , X ]) W (σ) d xi

d σ
(E.2)

Therefore, from (D.3) we get

{ HC , W (σ) }P B = −i e W (σ)
 σ

σi

dσ′ d

d σ′


W −1 σ′ A0


σ′ W


σ′ (E.3)

−
 σ

σi

dσ′ W −1 σ′ Tb W

σ′ d yi

d σ′


d3x

∂

∂ xi


Ab

0 (x) δ(3) (x − y)

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Using (H.4) we get

d yi

d σ′


d3x

∂

∂ xi


Ab

0 (x) δ(3) (x − y)


=

= ϑ

 τf

τi

dτ

 σf

σi

dσ Ab
0 (x) δ(3) (x − y) εijk

d yi

d σ′
d xj

d σ

d xk

d τ
|ζ=ζf

= 0 (E.4)

since the vectors d yi

d σ′ and d xj

d σ become parallel due to the delta function. Therefore

{ HC , W (σ) }P B = −i e

A0 (x (σ)) W (σ) − W (σ) W −1

R A0 (xR) WR


(E.5)

where WR = W (σi), and xR is the reference point sitting on the border of R3, at the initial
and final points of every loop.

Using (3.16) and (E.5), we get from (4.2) that

{ HC , eτ/ζ (σf ) }P B = i e

eτ/ζ (σf ) , W −1

R A0 (xR) WR


(E.6)

Similarly, from (C.6) and (E.5) we get that

{ HC , bτ/ζ (σf ) }P B = i e

bτ/ζ (σf ) , W −1

R A0 (xR) WR


(E.7)

We now evaluate some quantities important for the transformation of HB . Note that in
the derivation of the abelian Gauss theorem (H.4) we never use the fact that the derivatives
commute when acting on the quantity bl. Therefore, we can use (H.4) to get

εijk


d3y

∂

∂yj

∂

∂yk
[dba (y) Tr (Bi (y) Ta)] =

= ϑ

 τf

τi

dτ

 σf

σi

dσ
∂

∂yk
[dba (y) Tr (Bi (y) Ta)]


d yk

d σ

d yi

d τ
− d yi

d σ

d yk

d τ


|ζ=ζf

→ 1
r

1
2 +δ

as r → ∞ (E.8)

where we have used the boundary conditions (2.47) and (6.13). Now, using (6.27), we have


d3y Tr [Dj Bi (y) Ta] Sba
ij (y) =

= ϑ

 τf

τi

dτ

 σf

σi

dσ dba (x) Tr [Dj Bi (x) Ta]


d xi

d σ

d xj

d τ
− d xj

d σ

d xi

d τ


|ζ=ζf

(E.9)

In order for the magnetic field to satisfy the boundary condition (2.47), we need

Ai → 1
r1/2+δ

as r → ∞ for δ ≥ 1/2; i = 1, 2, 3 (E.10)

and
Ai → 1

r3/4+δ/2 as r → ∞ for 0 < δ ≤ 1/2; i = 1, 2, 3 (E.11)

Therefore, the slowest possible decay rate for the covariant derivative of the magnetic field is

Dj Bi → 1
r

9
4 + 3

2 δ
as r → ∞ for 0 < δ ≤ 1/2; i, j = 1, 2, 3 (E.12)
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Consequently, using (6.13), we get


d3y Tr [Dj Bi (y) Ta] Sba
ij (y) = 1

r
1
4 + 3

2 δ
as r → ∞ for 0 < δ ≤ 1/2 (E.13)

Using (H.4) and (6.27) we get


d3y
∂

∂yj


Tr (Bi (y) Ta) Sba

ij (y)


=

=
 τf

τi

dτ ′
 σf

σi

dσ′ εjmn
d ym

d σ′
d yn

d τ ′ Tr (Bi (y) Ta) ×

×
 τf

τi

dτ

 σf

σi

dσ dba (x) δ(3) (x − y)


d xi

d σ

d xj

d τ
− d xj

d σ

d xi

d τ


|ζ=ζf

= 0 (E.14)

It vanishes because

εjmn
d ym

d σ′
d yn

d τ ′
d xj

d τ
δ(3) (x − y) = 0; εjmn

d ym

d σ′
d yn

d τ ′
d xj

d σ
δ(3) (x − y) = 0 (E.15)

F The algebra of the fluxes eτ/ζ and bτ/ζ

Let us evaluate the Poisson brackets among the fluxes eτ/ζ (σ) and bτ/ζ (σ), defined in (4.2).
Since the Wilson line only involves the gauge fields Ai, we get from (3.11) and (D.3) that

{W (σ) ⊗, W

σ′}P B = 0 (F.1)

For the same reasons, we get from (C.5) that

{bτ/ζ (σ) ⊗, W

σ′}P B = 0 (F.2)

and also

{bτ/ζ (σ) ⊗, bτ ′/ζ′

σ′}P B = 0 (F.3)

Note that in (F.1), (F.2) and (F.3) the Wilson lines and the magnetic fluxes do not have to sit
on the same loop of the scanning of R3

t . They can be on different loops of different surfaces.
Consider now the quantity Ea

i εijk
d xj

d σ
d xk

d τ/ζ evaluated on a point in R3
t , which under

the scanning gets labelled by (σ , τ , ζ), i.e. xi (σ , τ , ζ). Take now a Wilson line evaluated
from the reference point xR to a point σ′, along a loop labelled by τ ′ and sitting on a
surface labelled by ζ ′. So, the points along that Wilson line are given by yi (σ′ , τ ′ , ζ ′).
From (3.11) and (D.3) we get that

{ Ea
i εijk

d xj

d σ

d xk

d τ/ζ
, W


σ′ }P B =

= i e W

σ′

 σ′

σi

dσ′′ W −1 σ′′ Ta W

σ′′ εijk

d yi

d σ′′
d xj

d σ

d xk

d τ/ζ
δ(3) (x − y) (F.4)

Note that the three dimensional Dirac delta function imply that (F.4) does not vanish
only if the points xi (σ , τ , ζ) and yi (σ′ , τ ′ , ζ ′) coincide. But when that happens the
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cross product of tangent vectors εijk
d yi

d σ′′
d xj

d σ , vanishes since d yi

d σ′′ and d xj

d σ will be parallel.
Consequently, (F.4) vanishes, and from (4.2) we get that

{eτ/ζ (σ) ⊗, W

σ′}P B = 0 (F.5)

and consequently the electric fluxes Poisson commute, i.e.

{eτ/ζ (σ) ⊗, eτ ′/ζ′

σ′}P B = 0 (F.6)

From (C.6) we observe that bτ/ζ (σf ) only involves the Wilson loop W (σf ), and so from (F.5)
we get that

{eτ/ζ (σ) ⊗, bτ ′/ζ′ (σf )}P B = 0 (F.7)

However, for σ < σf , we have from (C.5) that bτ/ζ (σ) involves, besides W (σ), the gauge
field Ai, and that does not Poisson commute with the electric field. Therefore, from the fact
that (F.4) vanishes, and using (3.11), (4.2), (C.5), (D.3) and (D.4), we get that

{eτ/ζ (σ) ⊗, bτ ′/ζ′

σ′}P B =

 σ

σi

dσ′′ W −1 σ′′ Ta W

σ′′ ⊗ W −1 σ′ Ta W


σ′ ×

×εijk
d xj

d σ′′
d xk

d τ/ζ

d yi

d τ ′/ζ ′ δ(3) (x − y) (F.8)

where we have used the same notation as above, i.e. the points of the loop where eτ/ζ (σ)
sits are xi (σ , τ , ζ), and the points of the loop where bτ/ζ (σ′) sits are yi (σ′ , τ ′ , ζ ′). The
integration in σ′′ is along the loop where eτ/ζ (σ) sits. Again the Dirac delta function implies
that (F.8) is only non-vanishing when the points xi (σ , τ , ζ) and yi (σ′ , τ ′ , ζ ′) coincide. But
the cross product of tangent vectors εijk

d xk

d τ/ζ
d yi

d τ ′/ζ′ is only non-vanishing when the tangent
vectors do not get parallel in the limit x → y. But that can not happen only for the cases
εijk

d xk

d τ
d yi

d ζ′ and εijk
d xk

d ζ
d yi

d τ ′ . Therefore, we get that

{eτ (σ) ⊗, bτ ′

σ′}P B = 0

{eζ (σ) ⊗, bζ′

σ′}P B = 0 (F.9)

{eτ (σ) ⊗, bζ′

σ′}P B = ϑ C δ


ζ − ζ ′ δ


τ − τ ′ θ


σ − σ′ ; for σ′ < σ′

f

{eζ (σ) ⊗, bτ ′

σ′}P B = −ϑ C δ


ζ − ζ ′ δ


τ − τ ′ θ


σ − σ′ ; for σ′ < σ′

f

with C defined in (G.3). In (F.9) we have used the fact the adjoint representation of a
compact semi-simple Lie group G is real and unitary, and so it is orthogonal, i.e. for g ∈ G,
we have from (5.38) that

g Ta g−1 ⊗ g Ta g−1 = Ta ⊗ Ta (F.10)

In addition, in (F.9), we have that θ (σ − σ′) is the step function, i.e. θ (σ − σ′) = 1 for σ ≥ σ′

and zero otherwise, and where we have used the fact that (see (5.28))

εijk
d xi

d σ

d xj

d τ

d xk

d ζ
δ(3) (x − y) = ϑ δ


ζ − ζ ′ δ


τ − τ ′ δ


σ − σ′ ; ϑ = ±1

(F.11)
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Note that from (F.6), (F.7) and (4.4), we get that

{eτ/ζ (σ) ⊗, Tτ (τ)}P B = 0 (F.12)

From (F.3) and (F.7) we get

{bτ/ζ (σf ) ⊗, Tτ (τ)}P B = 0 (F.13)

Consequently
{Tτ (τ1) ⊗, Tτ (τ2)}P B = 0 (F.14)

Using (3.11), (F.5), (F.6), (F.7) and (F.9), we get from (4.6), (4.7), (4.8) and (4.9) that

{eτ/ζ (σ) ⊗, Jspatial

τ ′}P B = β {eτ/ζ (σ) ⊗, ρG


τ ′}P B =

= −i β ϑ δ

ζ − ζ ′ δ


τ − τ ′

 σf

σi

dσ′ θ

σ − σ′


C , 1l ⊗ d eτ/ζ (σ′)

d σ′



= i β ϑ δ

ζ − ζ ′ δ


τ − τ ′ C , eτ/ζ (σ) ⊗ 1l


(F.15)

where we have made an integration by parts using the fact that d θ(σ−σ′)
d σ′ = −δ (σ − σ′),

and we have also used (G.4).
From (3.11), (F.2), (F.3) and (F.7) we get that

{bτ/ζ (σf ) ⊗, Jspatial (τ)}P B = 0 (F.16)

Therefore, from (4.4), (5.11), (F.14), (F.15) and (F.16) we get that

{Tτ (τ1 , ζ1 , α1 , β1) ⊗, A (ζ2 , α2 , β2)}P B =
= i e3 β1 β2 ϑ δ (ζ1 − ζ2) 1l ⊗ V(2) (τ1) [C , eτ (σf , τ1 , ζ1) ⊗ 1l ] 1l ⊗ V −1

(2) (τ1) (F.17)

where the subscript (2) in V(2) means it depends upon the parameters α2 and β2. In addition
from (3.11), (4.6), (5.11), (F.1), (F.2) and (F.5) we have that

{W (σ1 , τ1 , ζ1) ⊗, A (ζ2 , α2 , β2)}P B = 0 (F.18)

G The Poisson brackets for the charge densities

Using (3.11) and (1.17), we get that the equal time Poisson brackets of the matter densi-
ties (3.14) lead to two commuting copies of the Lie algebra of the gauge group

{ ρψ
a (x) , ρψ

b (y) }P B = fabc ρψ
c (x) δ(3) (x − y)

{ ρφ
a (x) , ρφ

b (y) }P B = fabc ρφ
c (x) δ(3) (x − y) (G.1)

{ ρψ
a (x) , ρφ

b (y) }P B = 0

Consequently, we have

{J0 (x) ⊗, J0 (y)}P B = i δ(3) (x − y) [C , 1l ⊗ J0 (x) ] = −i δ(3) (x − y) [C , J0 (x) ⊗ 1l ] (G.2)
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where we have defined the Casimir-like operator

C ≡ Ta ⊗ Ta (G.3)

satisfying

[C , 1l ⊗ L + L ⊗ 1l ] = 0; → [ Ta , L ] ⊗ Ta = −Ta ⊗ [ Ta , L ] (G.4)

with L being any element of the Lie algebra of the gauge group G.
Using the relations (F.3), (F.6) and (F.9), and the fact that d θ(σ−σ′)

d σ = δ (σ − σ′), we
can calculate the Poisson bracket among the components of the quantity ρG (τ , ζ) given
in (4.8). We obtain

{ρG (τ , ζ) ⊗, ρG


τ ′ , ζ ′}P B = −ϑ δ


ζ − ζ ′ δ


τ − τ ′ ×

×
 σf

σi

dσ


[ Ta , bτ (σ) ] ⊗


Ta ,

d eζ (σ)
d σ


−


Ta ,
d eζ (σ)

d σ


⊗ [ Ta , bτ (σ) ]

− [ Ta , bζ (σ) ] ⊗


Ta ,
d eτ (σ)

d σ


+


Ta ,
d eτ (σ)

d σ


⊗ [ Ta , bζ (σ) ]


(G.5)

We now use the Jacobi identity to show that for any two elements X and Y of the Lie
algebra of the gauge group, we get

[ Ta , X ] ⊗ [ Ta , Y ] − [ Ta , Y ] ⊗ [ Ta , X ] = Ta ⊗ [ [ X , Y ] , Ta ] (G.6)

Therefore, we get that

{ρG (τ , ζ) ⊗, ρG


τ ′ , ζ ′}P B = −i ϑ δ


ζ − ζ ′ δ


τ − τ ′ [C , 1l ⊗ ρG (τ , ζ) ]

= i ϑ δ

ζ − ζ ′ δ


τ − τ ′ [C , ρG (τ , ζ) ⊗ 1l ] (G.7)

with C defined in (G.3).
The matter densities, introduced in (3.13), clearly Poisson commutes with the Wilson

line. Therefore, using (G.2), (F.1) and (F.11) we get that the quantities ρM (τ , ζ), defined
in (4.7), satisfy

{ρM (τ , ζ) ⊗, ρM


τ ′ , ζ ′}P B = −i ϑ δ


ζ − ζ ′ δ


τ − τ ′ [C , 1l ⊗ ρM (τ , ζ) ]

= i ϑ δ

ζ − ζ ′ δ


τ − τ ′ [C , ρM (τ , ζ) ⊗ 1l ] (G.8)

The quantities eτ/ζ (σ) and bτ/ζ (σ) Poisson commute with the Wilson line. Therefore, we
get that

{ρG (τ , ζ) ⊗, ρM


τ ′ , ζ ′}P B = 0 (G.9)

From (F.2) and (F.5), and the fact that the matter fields Poisson commute with the gauge
fields, we get that

{ρM (τ , ζ) ⊗, bτ ′/ζ′

σ′}P B = {ρM (τ , ζ) ⊗, eτ ′/ζ′


σ′}P B = 0 (G.10)

and consequently

{ρM (τ , ζ) ⊗, ρmag.


ζ ′ , τ ′}P B = 0 (G.11)
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From (F.3) and (F.7) we get that

{ρG (τ , ζ) ⊗, bτ ′/ζ′

σ′

f


}P B = 0 (G.12)

and so

{ρG (τ , ζ) ⊗, ρmag.


ζ ′ , τ ′}P B = 0 (G.13)

So, the density of magnetic charge ρmag. Poisson commute with the densities ρM and ρG of
electric charges. From (F.3) we see the magnetic charge densities commute among themselves

{ρmag. (ζ , τ) ⊗, ρmag.


ζ ′ , τ ′}P B = 0 (G.14)

Using (F.9) we get that

{ρG (τ , ζ) ⊗, eτ ′/ζ′

σ′

f


}P B = i ϑ δ


ζ − ζ ′ δ


τ − τ ′ C , eτ ′/ζ′


σ′

f


⊗ 1l



= −i ϑ δ

ζ − ζ ′ δ


τ − τ ′ C , 1l ⊗ eτ ′/ζ′


σ′

f

 
(G.15)

In components, we get

{ρa
G (τ , ζ) , eb

τ ′/ζ′


σ′

f


}P B = −ϑ fabc e

c
τ ′/ζ′


σ′

f


δ

ζ − ζ ′ δ


τ − τ ′ (G.16)

H The Abelian Gauss theorem in R3

In the text, we have to deal with boundary terms that in many cases it needs the use of the
Abelian Gauss theorem. In order to get the factors correct in terms of the scanning variables,
we derive such a theorem here using the notation of section 2.1.

Let us consider the case where the space is R3, and let the two form Bij , i, j = 1, 2, 3,
in (2.1) be abelian, with a vanishing connection Ci = 0. Working with the Hodge dual

bi ≡ εijk Bjk (H.1)

we get that from (2.1) and (2.4) that

d ln V

d τ
= T ; T = 1

2

 σf

σi

dσ bi εijk
d xj

d σ

d xk

d τ
(H.2)

Then from (2.10) and (2.8), we get that

d ln V

d ζ
= K; K = 1

2

 τf

τi

dτ

 σf

σi

dσ
∂ bl

∂ xl
εijk

d xi

d σ

d xj

d τ

d xk

d ζ
(H.3)

Using the definition of Jacobian (5.28), we then get that

ϑ

 τf

τi

dτ

 σf

σi

dσ bi εijk
d xj

d σ

d xk

d τ
|ζ=ζf

=


R3
d3x

∂ bl

∂ xl
(H.4)

In dealing with the surface terms, we encounter other types of integrals over spatial
surfaces, labelled by the parameter ζ, and having the form

Iζ,i (f) ≡
 τf

τi

dτ

 σf

σi

dσ ∆ (σ , τ , ζ) ∂

∂ xi


f (x) δ(3) (x − y)


(H.5)
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where ∆ is the Jacobian, defined in (5.28), f (x) is a c-number function, and the points xi

and yi are parameterized as xi ≡ xi (σ , τ , ζ), and yi ≡ yi (σ′ , τ ′ , ζ ′).
Note that we have

d σ

δ xi
= ϑ

∆ εijk
d xj

d τ

d xk

d ζ
; d τ

δ xi
= ϑ

∆ εijk
d xj

d ζ

d xk

d σ
; d ζ

δ xi
= ϑ

∆ εijk
d xj

d σ

d xk

d τ
(H.6)

Replacing (H.6) into (H.5) we get, after integration by parts,

Iζ,i (f) = ϑ

 τf

τi

dτ

 σf

σi

dσ εijk


d

d σ


d xj

d τ

d xk

d ζ
f (x) δ(3) (x − y)



+ d

d τ


d xj

d ζ

d xk

d σ
f (x) δ(3) (x − y)


+ d

d ζ


d xj

d σ

d xk

d τ
f (x) δ(3) (x − y)


(H.7)

since the terms containing second derivatives of xi cancel out. Using the fact that, on the
variations of loops, surfaces, and volumes, the reference point xR is kept fixed, we get that

d xi

d τ
= d xi

d ζ
= 0 at σ = σi , σf and τ = τi , τf (H.8)

Therefore
Iζ,i (f) = ϑ

d

d ζ

 τf

τi

dτ

 σf

σi

dσ εijk
d xj

d σ

d xk

d τ
f (x) δ(3) (x − y) (H.9)

Note, however, that we have

εijk
d yi

d σ′
d xj

d σ

d xk

d τ
δ(3) (x − y) = 0; εijk

d yi

d τ ′
d xj

d σ

d xk

d τ
δ(3) (x − y) = 0 (H.10)

since that delta function imposes d yi

d σ′ and d xj

d σ to be parallel, and similar for d yi

d τ ′ and d xk

d τ .
Therefore, we conclude that

d yi

d σ′ Iζ,i (f) = 0; d yi

d τ ′ Iζ,i (f) = 0 (H.11)

I Poisson brackets involving the constraints

We now calculate some quantities relevant for the evaluation of the first term on the right-
hand side of (10.1). In order to simplify the notation, we introduce the operator, acting
on a given quantity X, as

Oζ (X) ≡
 τf

τi

dτ

 σf

σi

dσ ∆ (σ , τ , ζ) dba (x) Tb ⊗ { Ca (x) , X }P B ≡ Tb ⊗ Ob
ζ (X) (I.1)

which is integrated on a surface labelled by ζ, with its points parameterized as xi =
xi (σ , τ , ζ), ∆ is the Jacobian defined in (5.28), and where we have denoted the non-
integrable factor dba


V (τ) W −1 (σ)


, simply by dba (x).

Note that the operator (I.1) is similar to the operator (5.37), and satisfies the same
properties, i.e., it is a linear operator, satisfies the Leibniz rule, and commutes with the
space derivatives and space integrals.
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We now consider that operator acting on the Wilson line W , integrated from the reference
point xR, up to a point yi = yi (σ2 , τ2 , ζ2). Using (3.16) and (D.3) we get that

Ob
ζ1 (W (σ2)) = −i e W (σ2)

 τf

τi

dτ1

 σf

σi

dσ1 ∆ (σ1 , τ1 , ζ1) d
(1)
ba (x) × (I.2)

×
 σ2

σi

dσ′
2W −1 σ′

2



[ i e Ai (z) , Ta ] δ(3) (x − z) − ∂ δ(3) (x − z)
∂ xi

Ta


d zi

d σ′
2

W

σ′

2


where we have denoted xi = xi (σ1 , τ1 , ζ1) and zi = zi (σ′
2 , τ2 , ζ2), and the supperscript

(1) in d
(1)
ba (x), means that it depends upon the parameters α1 and β1, through the holon-

omy defined in (4.4), which we now denote as V(1), i.e. d
(1)
ba


V(1) (τ1) W −1 (σ1)


. We now

use (2.32), (F.11), and the definition of the quantity Ii in (H.5), to get

i

e
W −1 (σ2) Ob

ζ1 (W (σ2)) = −
 σ2

σi

dσ′
2 W −1 σ′

2


Ta W

σ′

2
 d zi

d σ′
2

Iζ1,i


d

(1)
ba


(I.3)

+δ (ζ1 − ζ2)
 σ2

σi

dσ′
2

d

d σ′
2


d

(1)
ba (z) W −1 σ′

2


Ta W

σ′

2


Since the adjoint representation matrix of a compact Lie group is orthogonal, we get (irre-
spective of the value of the parameters α and β), that

dba (z) Ta = W

σ′

2


V −1 (τ2) Tb V −1 (τ2) W −1 σ′
2


(I.4)

Therefore

d

d σ′
2


dba (z) W −1 σ′

2


Ta W

σ′

2


= d

d σ′
2


V −1 (τ2) Tb V (τ2)


= 0 (I.5)

Using (H.11), we get that the first term on the right-hand side of (I.3) also vanishes, and so

Ob
ζ1 (W (σ2)) = 0 (I.6)

It now follows from (C.6) and (I.6) that

Ob
ζ1


bτ2/ζ2 (σf )


= 0 (I.7)

From (I.1) and (4.2), we get, using (3.16), (F.11) and (I.6), that

Ob
ζ1


eτ2/ζ2 (σf )


= i e δ (ζ1 − ζ2)


eτ2/ζ2 (σf ) , V −1

(1) (τ2) Tb V(1) (τ2)


(I.8)

From (4.4), (I.7) and (I.8), we get

Ob
ζ1


T (2)

τ2 (τ2)


= e2 β2 δ (ζ1 − ζ2)

eτ2 (σf ) , V −1

(1) (τ2) Tb V(1) (τ2)


(I.9)

where the supperscript (2) in T (2)
τ2 (τ2) means it depends upon the parameters α2 and β2, in

the definition (4.4), which are different from those parameters appearing in the holonomy
V(1) (τ) in (I.9), also defined through (4.4).
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From (3.13), (3.15), (G.1), (3.16) and (I.1) we have

Oc
ζ1 (Cb (y)) = −e fabd

 τf

τi

dτ1

 σf

σi

dσ1 ∆ (σ1 , τ1 , ζ1) d(1)
ca (x)


Cd (x) δ(3) (x − y) (I.10)

+ Ed
i (y) ∂ δ(3) (x − y)

∂ xi
+ Ed

i (x) ∂ δ(3) (x − y)
∂ yi

− ∂ Ed
i (x)

∂ xi
δ(3) (x − y)



where xi = xi (σ1 , τ1 , ζ1) and yi = yi (σ2 , τ2 , ζ2). Using (F.11) and (H.5)

Oc
ζ1 (Cb (y)) = −efabd



δ (ζ1 − ζ2)


d(1)

ca (y) Cd (y) −
∂

d

(1)
ca (y) Ed

i (y)


∂yi


 + Ed

i (y) Iζ1,i


d(1)

ca



+
 τf

τi

dτ1

 σf

σi

dσ1∆ (σ1, τ1, ζ1) d(1)
ca (x) Ed

i (x) ∂δ(3) (x − y)
∂yi


(I.11)

Using (I.11) we have that

Icd ≡
 τf

τi

dτ1

 σf

σi

dσ1∆ (σ1, τ1, ζ1) d(1)
ca (x)

 τf

τi

dτ2

 σf

σi

dσ2∆ (σ2, τ2, ζ2) d
(2)
db (y) ×

× { Ca (x) , Cb (y) }P B

=
 τf

τi

dτ2

 σf

σi

dσ2∆ (σ2, τ2, ζ2) d
(2)
db (y) Oc

ζ1 (Cb (y))

= −efabe

 τf

τi

dτ2

 σf

σi

dσ2∆ (σ2, τ2, ζ2) d
(2)
db (y) ×

×


δ (ζ1 − ζ2)


d(1)

ca (y) Ce (y) −
∂

d

(1)
ca (y) Ee

i (y)


∂yi


 + Ee

i (y) Iζ1,i


d(1)

ca




 (I.12)

−efabe

 τf

τi

dτ1

 σf

σi

dσ1∆ (σ1, τ1, ζ1) d(1)
ca (x) Ee

i (x)

Iζ2,i


d

(2)
db


− δ (ζ1 − ζ2) ∂d

(2)
db (x)
∂xi



and so

Icd = −e fabe δ (ζ1 − ζ2)
 τf

τi

dτ2

 σf

σi

dσ2 ∆ (σ2 , τ2 , ζ2) ×

×

d(1)

ca (y) d
(2)
db (y) Ce (y) −

∂

d

(1)
ca (y) d

(2)
db (y) Ee

i (y)


∂ yi




−e fabe

 τf

τi

dτ2

 σf

σi

dσ2 ∆ (σ2 , τ2 , ζ2) d
(2)
db (y) Ee

i (y) Iζ1,i


d(1)

ca



−e fabe

 τf

τi

dτ1

 σf

σi

dσ1 ∆ (σ1 , τ1 , ζ1) d(1)
ca (x) Ee

i (x) Iζ2,i


d

(2)
db


(I.13)

where we have used the fact that the terms multiplied by δ (ζ1 − ζ2), are in fact on the same
surface (labelled by ζ1 or equivalently ζ2), and so the dummy integrals in τ1 and σ1, can
be swapped to the dummy integrals in τ2 and σ2. In addition, the supperscript (s) in d(s)

means it depends on the parameters αs and βs, for s = 1, 2.
We now use (H.9) to write

 τf

τi

dτ1

 σf

σi

dσ1 ∆ (σ1 , τ1 , ζ1) d(1)
ca (x) Ee

i (x) Iζ2,i


d

(2)
db



= ϑ
d

d ζ2

 τf

τi

dτ2

 σf

σi

dσ2 εijk
d yj

d σ2

d yk

d τ2
d

(2)
db (y) d(1)

ca (y) Ee
i (y) δ (ζ1 − ζ2) (I.14)
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since the integrals in τ1 and σ1 commute with the ζ2-derivative, and where we have used (F.11).
A similar manipulation can be performed on the term containing Iζ1,i


d

(1)
ca


on the right

hand side of (I.13).
Performing manipulations similar to those done from (H.5) through (H.9) we get that

 τf

τi

dτ2

 σf

σi

dσ2 ∆ (σ2 , τ2 , ζ2)
∂

d

(1)
ca (y) d

(2)
db (y) Ee

i (y)


∂ yi
=

= ϑ
d

d ζ2

 τf

τi

dτ2

 σf

σi

dσ2 εijk
d yj

d σ2

d yk

d τ2
d

(2)
db (y) d(1)

ca (y) Ee
i (y) (I.15)

Therefore, using (I.14) and (I.15), we get

Icd = − e fabe δ (ζ1 − ζ2)
 τf

τi

dτ2

 σf

σi

dσ2 ∆ (σ2 , τ2 , ζ2) d(1)
ca (y) d

(2)
db (y) Ce (y)

+ e ϑ fabe δ (ζ1 − ζ2) d

d ζ2

 τf

τi

dτ2

 σf

σi

dσ2 εijk
d yj

d σ2

d yk

d τ2
d(1)

ca (y) d
(2)
db (y) Ee

i (y)

− e ϑ fabe
d

d ζ1

 τf

τi

dτ1

 σf

σi

dσ1 εijk
d xj

d σ1

d xk

d τ1
d(1)

ca (x) d
(2)
db (x) Ee

i (x) δ (ζ1 − ζ2)

− e ϑ fabe
d

d ζ2

 τf

τi

dτ2

 σf

σi

dσ2 εijk
d yj

d σ2

d yk

d τ2
d(1)

ca (y) d
(2)
db (y) Ee

i (y) δ (ζ1 − ζ2) (I.16)

Consider now

fabe d(1)
ca (y) d

(2)
db (y) Tc ⊗ Td =

= fabe V(1) (τ2) W −1 (σ2) Ta W (σ2) V −1
(1) (τ2) ⊗ V(2) (τ2) W −1 (σ2) Tb W (σ2) V −1

(2) (τ2)

= −i V(1) (τ2) W −1 (σ2) [ Tb , Te ] W (σ2) V −1
(1) (τ2) ⊗ V(2) (τ2) W −1 (σ2) Tb W (σ2) V −1

(2) (τ2)

= −i V(1) (τ2)


Tb , W −1 (σ2) Te W (σ2)


V −1
(1) (τ2) ⊗ V(2) (τ2) Tb V −1

(2) (τ2)

= −i V(1) (τ2) ⊗ V(2) (τ2)

C , W −1 (σ2) Te W (σ2) ⊗ 1l


V −1

(1) (τ2) ⊗ V −1
(2) (τ2) (I.17)

where we have used (F.10). Using (4.2) and (10.2) we then have

Icd Tc ⊗ Td = i e δ (ζ1 − ζ2)
 τf

τi

dτ2

 σf

σi

dσ2 ∆ (σ2 , τ2 , ζ2) ×

× V(1) (τ2) ⊗ V(2) (τ2)

C , W −1 (σ2) C W (σ2) ⊗ 1l


V −1

(1) (τ2) ⊗ V −1
(2) (τ2) (I.18)

+i e ϑ


−δ (ζ1 − ζ2) d Y (ζ2 , τf )

d ζ2
+ d (Y (ζ1 , τf ) δ (ζ1 − ζ2))

d ζ1
+ d (Y (ζ2 , τf ) δ (ζ1 − ζ2))

d ζ2



J Invariance of the Hamiltonian under the commutator of two
transformations generated by the charges

We now show that the commutator of two transformations generated by the charges, given
in (11.10), is a symmetry of the total Hamiltonian HT (6.1), i.e.

[ δN1,α1,β1 , δN2,α2,β2 ] HT
∼= 0 (J.1)
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From (11.13), (11.5) and (10.4), we have that

[ δN1,α1,β1 , δN2,α2,β2 ] X ∼= ε1 ε2 (α1 − α2) TrRL


QN1

(1) (ζf ) ⊗ QN2
(2) (ζf ) × (J.2)

×
 ζf

ζi

dζ

 τf

τi

dτ

 τ

τi

dτ ′
 σf

σi

dσ ∆(y)Υa


σ, τ, τ ′, ζ

 { X , Ca (y) }P B



where we have defined Υa as

Υa(σ, τ, τ ′, ζ) = ieϑ


Q−1

⊗ (ζ) d Z (ζ, τ)
d τ

Q⊗ (ζ) , β1 Tb ⊗ 1l d
(1)
ba (y) + β2 1l ⊗ Tb d

(2)
ba (y)


(J.3)

where Υa involves the points yi = yi (σ , τ ′ , ζ) and xi = (σ, τ, ζ). ∆ is the Jacobian defined
in (5.28), and where we have denoted the non-integrable factor dba


Q−1(ζ) V (τ ′) W −1 (σ)


,

simply by dba (y). The supperscript (s) in d
(s)
ba denotes the dependence on the parameters

(αs, βs).
We have not considered the Poisson bracket { X , Υa(σ, τ, τ ′, ζ) }P B in (J.2), because it

will be multiplied by Ca (y), and so it will not contribute when the constraints are imposed.
In order to simplify the calculations, we evaluate the commutator of transformations

for each term of the total Hamiltonian HT , given in (6.2).
Taking X as HE in (J.2), where HE is given (6.2), it is straightforward from (6.11), that

[ δN1,α1,β1 , δN2,α2,β2 ] HE = 0 (J.4)

Now, using the relations (3.16) to obtain how the remaining terms of HT transforms
under the constraints (3.15), we get the following

{ Hψ + Hφ , Ca(y) }P B = e


d3z

∂

∂zi


Ja

i (z) δ(3)(y − z)


(J.5)

{ HC , Ca(y) }P B = e fabc


Ab

0(y) Cc(y) +


d3z Ec
i (y) ∂

∂zi


Ab

0(z) δ(3)(y − z)


{ HB , Ca(y) }P B = −εijk


d3z

∂

∂zi


Ba

k(z)∂δ(3)(y − z)
∂yj

+ efabcA
c
j(y)Bb

k(z)δ(3)(y − z)


where Ji are the spatial components of the matter currents given in (2.18). Notice that we
can use the abelian Gauss law (H.4) to rewrite the integrals on the variable zi = zi(σz, τz, ζz)
in terms of an integral on the two-sphere S2

∞ of spatial infinity.
To obtain the transformations of each term of the total Hamiltonian, we need to deal

with the integrals involving Υa and the Dirac delta δ(3)(y − z). Hence, we can calculate the
integrals involving those Dirac delta and Υa terms as

IΥ
a ≡

 ζf

ζi

dζ

 τf

τi

dτ

 τ

τi

dτ ′
 σf

σi

dσ Υa(σ, τ, τ ′, ζ) ∆(y) δ(3)(y − z(σz, τz, ζz))

=
 τf

τz

dτ Υa(σz, τz, ζz, τ) (J.6)

and, when it involves the derivative of the Dirac delta:

IΥ
a,i ≡

 ζf

ζi

dζ

 τf

τi

dτ

 τ

τi

dτ ′
 σf

σi

dσ Υa(σ, τ, τ ′, ζ) ∆(y) ∂

∂yi
δ(3)(y − z(σz, τz, ζz))

=
 ζf

ζi

dζ

 τf

τi

dτ

 τ

τi

dτ ′
 σf

σi

dσ ∆(y)


∂

∂yi


Υaδ(3)(y − z)


− δ(3)(y − z) ∂Υa

∂yi


(J.7)
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Note that there is a total derivative in the first term on the right-hand side of (J.7), involving
the integrals on σ and τ ′. We have the same expression as in (H.5) despite the integration
interval. By similar reasoning that leads to (H.7), and using the conditions (H.8), we
obtain that

 τ

τi

dτ ′
 σf

σi

dσ ∆(y) ∂

∂yi


Υaδ(3)(y − z)


= (J.8)

= εijkϑ

 τ

τi

dτ ′
 σf

σi

dσ


d

d τ ′


d yj

d ζ

d yk

d σ
Υaδ(3) (y − z)


+ d

d ζ


d yj

d σ

d yk

d τ ′ Υaδ(3) (y − z)


= εijkϑ

 σf

σi

dσ


d xj

d ζ

d xk

d σ
Υaδ(3) (x − z)



+ d

d ζ

 τ

τi

dτ ′
 σf

σi

dσ


d yj

d σ

d yk

d τ ′ Υaδ(3) (y − z)


where we have denoted the points at the loop labelled by τ , by xi = xi(σ, τ, ζ). Substitut-
ing (J.8) into (J.7) and using (F.11) to integrate the last term involving the Dirac delta
on the right-hand side of (J.7), we obtain that

IΥ
a,i = εijkϑ

 τf

τi

dτ

 τ

τi

dτ ′
 σf

σi

dσ


d yj

d σ

d yk

d τ ′ Υaδ(3) (y − z)


ζ=ζf

(J.9)

+εijkϑ

 ζf

ζi

dζ

 τf

τi

dτ

 σf

σi

dσ


d xj

d ζ

d xk

d σ
Υaδ(3) (x − z)


−
 τf

τz

dτ
∂

∂zi
Υa(σz, τz, ζz, τ).

Now, consider the commutator of transformations acting in the matter sector HM =
Hψ + Hφ. Taking HM as X in (J.2), and using (J.5) and (J.6), we have the following

[ δN1,α1,β1 , δN2,α2,β2 ] HM
∼= ϑ e ε1 ε2 (α1 − α2) ×

× TrRL


QN1

(1) (ζf ) ⊗ QN2
(2) (ζf )


εimn

 τf

τi

dτz

 σf

σi

dσz
dzm

dσz

dzn

dτz
Ja

i (z) IΥ
a (z)



ζz=ζf


(J.10)

The surface, in the scanning of R3, corresponding to ζz = ζf is the two sphere S2
∞ at spatial

infinity. The parameters σz and τz are angles on such a sphere, and ζ is associated with
the radial direction. The tangent and radial vectors behave as

dzi

dσz/τz
→ r,

dzi

dζz
→ s(σ, τ ), r → ∞ (J.11)

where s(σ, τ ) is a function of the angles of the sphere at ζz = ζf . Consequently, the Jacobian
at spatial infinity behaves as

∆(z) → r2, r → ∞. (J.12)

If the matter currents satisfy the boundary conditions (2.47), then at large distances, it
should fall as

Ja
i → 1

r2+δ′ , r → ∞ (J.13)
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with δ′ > 0. Hence, the product of Ji with the surface element should fall as 1/rδ′ at
large distances. In addition, from the expression of Υa (J.3), we observe that except for
the magnetic flux bτ in the definition of Z, see (10.12), the remaining terms are all phase
factors and do not contribute to the magnitude of Υa at infinity. So Υa should fall as bτ

falls, thus from (6.14), we have

Υa → 1
rδ− 1

2
, r → ∞ (J.14)

with δ > 0. So, since the integral on τ in (J.6) is an angle integral, using (J.14) we have that

IΥ
a → 1

rδ− 1
2

r → ∞ (J.15)

Considering the asymptotic behavior of (J.13) and (J.15) in (J.10), we get into that

[ δN1,α1,β1 , δN2,α2,β2 ] HM → 1
rδ+δ′−1/2 , r → ∞ (J.16)

and so

[ δN1,α1,β1 , δN2,α2,β2 ] HM
∼= 0; if δ + δ′ >

1
2 (J.17)

When the constraints (3.15) hold true, the first term on the right-hand side of the
expression involving HC in (J.5) vanishes. Then, taking X as HC in (J.2), performing the
integral over yi = yi(σ, τ ′, ζ), and using (J.6), we get that the commutator of transformations
acting on HC becomes

[ δN1,α1,β1 , δN2,α2,β2 ] HC
∼= ϑ e ε1 ε2 (α1 − α2) × (J.18)

×TrRL


QN1

(1) (ζf ) ⊗ QN2
(2) (ζf )


εimn fabc

 τf

τi

dτz

 σf

σi

dσz
dzm

dσz

dzn

dτz
Ab

0(z) Ec
i (z) IΥ

a (z)


ζz=ζf



Since σx and τx are angle variables on the surface S2
∞, corresponding to ζ = ζf , we get

that dzi

dσz/τx
→ r2, as r → ∞. Then, from (2.47), (6.20) and (J.15), we get that

[ δN1,α1,β1 , δN2,α2,β2 ] HC
∼= 0; if δ >

1
6 (J.19)

Finally, taking X as HB in (J.2), the transformation of HB can be written using the
result in (J.5), (J.6), and (J.9). Thus, we have the following

[ δN1,α1,β1 , δN2,α2,β2 ] HB
∼= −ϑ ε1 ε2 (α1 − α2) × (J.20)

×TrRL


QN1

(1) (ζf ) ⊗ QN2
(2) (ζf )





εijk

 τf

τi

dτz

 σf

σi

dσz
dzj

dσz

dzk

dτz
Ba

k(z) IΥ
a,i(z)



ζz=ζf

+


e εijk fabc

 τf

τi

dτz

 σf

σi

dσz
dzj

dσz

dzk

dτz
Ac

j(z) Bb
k(z) IΥ

a (z)


ζz=ζf






Using (J.15), (J.11), (J.12) and the relation (7.2), the only term that survives when IΥ
a,i

is taken at spatial infinity is the first on the right-hand side in (J.9). In addition, if the
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magnetic field Bk satisfies the condition (2.47), then Ak should satisfy (6.20). Considering
that (J.15), the last term on the right-hand side of (J.20) vanishes by similar reasoning to
the right-hand side of (J.18). Hence, (J.20) becomes

[ δN1,α1,β1 , δN2,α2,β2 ] HB
∼= −ϑ ε1 ε2 (α1 − α2) TrRL


QN1

(1) (ζf ) ⊗ QN2
(2) (ζf ) ×

×
 τf

τi

dτz

 σf

σi

dσz

 τf

τi

dτ

 τ

τi

dτ ′
 σf

σi

dσ Ba
k(z)Υaδ(3) (y − z) ×

×


dzm

dσz

dzn

dτz

d ym

d σ

d yn

d τ ′ − dzm

dσz

dzn

dτz

d yn

d σ

d ym

d τ ′



ζ,ζz=ζf


(J.21)

where the right-hand side does not fall fast enough at spatial infinity to vanish. However,
from the expression (J.3) of Υa and the cyclic property of trace, the terms inside in (J.21),
can be rearranged and written as a commutator between the charge operators Q(ζf , αs, βs)
and Ba

kdba(Q−1
s (ζf )Vs(τz)W −1(σz))Tb with s = 1, 2. So, from (2.65), the magnetic field Bi

at spatial infinity lies in the direction of the generator c, which together with c, belongs
to a Cartan subalgebra. From the discussion that follows the expression (11.5), when the
constraints (3.15) and the Bianchi identity DiBi = 0 are imposed, the charge operator
Q(ζf , αs, βs) can be expressed as a exponentiation of the same Cartan subalgebra generators,
c and c (see (11.7)). Therefore, such commutators vanish, and we obtain that

[ δN1,α1,β1 , δN2,α2,β2 ] HB
∼= 0. (J.22)

Collecting the results (J.4), (J.17), (J.19), (J.22) we verify that (J.1) is indeed satisfied.
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