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Haviland and Thomason and Chung and Graham were the first to investigate
systematically some properties of quasi-random hypergraphs. In particular, in a
series of articles, Chung and Graham considered several quite disparate properties
of random-like hypergraphs of density 1/2 and proved that they are in fact equiva-
lent. The central concept in their work turned out to be the so called deviation of a
hypergraph. They proved that having small deviation is equivalent to a variety of
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other properties that describe quasi-randomness. In this paper, we consider the
concept of discrepancy for k-uniform hypergraphs with an arbitrary constant
density d (0 <d < 1) and prove that the condition of having asymptotically vanish-
ing discrepancy is equivalent to several other quasi-random properties of #, similar
to the ones introduced by Chung and Graham. In particular, we prove that the
correct “spectrum’ of the s-vertex subhypergraphs is equivalent to quasi-random-
ness for any s> 2k. Our work may be viewed as a continuation of the work of
Chung and Graham, although our proof techniques are different in certain
important parts. © 2002 Elsevier Science

1. INTRODUCTION AND THE MAIN RESULT

The rich interplay between the investigation of deterministic combina-
torial structures and random combinatorial structures has been an impor-
tant feature of modern combinatorics. One aspect of this interaction
focuses on the study of deterministic structures that “mimic” the behavior
of random ones, from certain specific points of view.

In this paper, we are interested in “quasi-random” hypergraphs, in the
sense of Chung and Graham [5, 6]. Haviland and Thomason [9, 10],
Chung [4], and Chung and Graham [5, 6] have already established the
fundamental results in this area. Babai et al. [3] have implicitly found a
connection between communication complexity and what is known as
“hypergraph discrepancy,” a key concept, as we shall see, in the study of
quasi-random hypergraphs. This connection was explored further by
Chung and Tetali [7]. Here, we carry out our investigation very much
along the lines of Chung and Graham [5, 6], except that we focus
on hypergraphs of arbitrary constant density, making use of different
techniques in certain delicate parts.

In the remainder of this introduction, we carefully discuss a result of
Chung and Graham [5] and state our main result, Theorem 1.3 below.

1.1. The Result of Chung and Graham

We need to start with some definitions. For a set J and an integer k > 2,
let [V7]* denote the system of all k-element subsets of V. A subset 4 = [V ]*
is called a k-uniform hypergraph. If k =2, we have a graph. We sometimes
use the notation ¥ = (V(9), E(%)). If there is no danger of confusion, we
shall identify the hypergraphs with their edge sets. In particular, we write
|| for the number of edges in s#. Throughout this paper, the integer & is
assumed to be a fixed constant.

For any /-uniform hypergraph ¢ and k > 1, let #.(%) be the set of all
k-element sets that span a clique K{’ on k vertices. We also denote by
K, (2) the complete k-partite k-uniform hypergraph whose every partite set
contains precisely two vertices. We refer to K,(2) as the generalized
octahedron, or, simply, the octahedron.
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We also consider a function u,:[V]*— {—1,1} such that, for all
ee [V we have

© {—1, if eeH

29 =1, it e¢ .

Let [k]={1,2,....,k} and let V* denote the set of all 2k-tuples
(vy, 0y, ..., ), Where v, €V (1<i<2k). Furthermore, let II%:V%* -
{—1, 1} be given by

H(JI;)(ula coes Uy Uy oy ) = l_[ Ur(Ers -y &),

k
e=(&)i=1

where the product is over all vectors ¢ = (g;)f_, with ¢ € {u;, v,} for all i
and we understand u, to be 1 on arguments with repeated entries.
The deviation dev(s#) of s# is defined by

1
dev(]f)zmc > Yy, ..., u, v, ..., 0,).

u,v; €V, ie[k]

Note that the quantity m* dev(#) is essentially the difference between the
number of 2k-tuples that induce an even number of edges and the number
of 2k-tuples that induce an odd number of edges.

For two hypergraphs 4 and 2, we denote by (%) the set of all induced
subhypergraphs of # that are isomorphic to 4. We also write (%)™ for the
number of weak (i.e., not necessarily induced) subhypergraphs of s that
are isomorphic to ¥. Furthermore, we need the notion of the link of a
vertex.

DerINiTION 1.1, Let o be a k-uniform hypergraph and x e V(#). We
shall call the (k— 1)-uniform hypergraph

H(x)={e\{x}:ee H, xce}
the link of the vertex x in #. For a subset W <V (#), we define # (W) by
HW)= () #(x).
xeW
For simplicity, if W = {x,, ..., X}, we write #(x,, ..., x;).

Observe that if s is k-partite, then #(x) is (k—1)-partite for every
x e V. Furthermore, if k=2, then #(x) may be identified with the
set of all vertices connected to x; ie., #(x) is the neighborhood of x.
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Furthermore, #(x, x') is the set of all vertices connected to both x and x’;
i.e., #(x, x") is the “joint neighborhood” of x and x'.

In [5], Chung and Graham proved that if the density of an m-vertex
k-uniform hypergraph # is 1/2, i.e., |#| = (1/2+0(1))(}), where o(1) - 0
as m — oo, then the following statements are equivalent:

Q,(s): for all k-uniform hypergraphs ¢ on s>2k vertices and
automorphism group Aut(%),

H my ,_¢ s!
Kg)‘:(”"“))(s)z * Au@)”

Q,: for all k-uniform hypergraphs % on 2k vertices and auto-
morphism group Aut(%),

#\| m\ gy (26!
Kg>|‘(”"(l))<2k>2 A

Q;: dev(o#) =o(1),

Q,: for almost all choices of x, y € V, the (k— 1)-uniform hypergraph
H(x) A #(y), that is, the complement [V]* '\ (H#(x) A #(y)) of the
symmetric difference of #(x) and J#(y), satisfies Q, with k replaced
by k—1,

Qs: fork—1<r<2kandalmostallx, yeV,

H(x, .
(2 ) osean(7)e

The equivalence of these properties is understood in the following sense.
For two properties involving o(1) terms P = P(o(1)) and P’ = P’(o(1)), the
implication “P = P’” means that for every &> 0 there is a ¢ > 0 so that
any k-uniform hypergraph # on m vertices satisfying P(J) must also
satisfy P’(¢), provided m > M,(¢).

Chung and Graham [5] stated that ““it would be profitable to explore
quasi-randomness extended to simulating random k-uniform hypergraphs
G,(n) for p#1/2, or, more generally, for p = p(n), especially along the
lines carried out so fruitfully by Thomason [12, 13].”” Our present aim is to
take the first steps in this direction. In this paper, we concentrate on the
case in which p is an arbitrary constant. In certain crucial parts, our
methods are different from the ones of Chung and Graham. In fact, it
seems to us that the fact that the density of # is 1/2 is essential in certain
proofs in [5] (especially those involving the concept of deviation).
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1.2. Discrepancy and the Subgraph Counting Formula

The following concept was proposed by Frankl and Rodl and was later
used by Chung [4] and Chung and Graham in [5, 6]. For an m-vertex
k-uniform hypergraph # with vertex set V', we define the density d(#) and
the discrepancy disc, ,(#) of A,

m\-1
aon =11}
and
. 1 ]
dise,(#) = max_ || 0 (D)~ 1# 0 KGN, (D)
gl

where the maximum is taken over all (k— 1)-uniform hypergraphs ¥ with
vertex set ¥, and 4 is the complement [V ]*\ # of #.

To accommodate arbitrary densities, we extend the latter concept as
follows.

DerINiTION 1.2, Let & be a k-uniform hypergraph with vertex set V'
with |[V| = m. We define the discrepancy disc(#) of A as

diSC(e%’)=ik max || 0 A (G)|—d(H) | (D)l @

m- gk

where the maximum is taken over all (k— 1)-uniform hypergraphs ¢ with
vertex set V.

Observe that if d(#) = 1/2, then disc(#) = (1/2) disc,,(#), so both
notions are equivalent. Following some initial considerations by Frankl
and R6dl, Chung and Graham investigated the relation between discrep-
ancy and deviation. In fact, Chung [4] succeeded in proving the following
inequalities closely connecting these quantities:

() dev(#) < 4K(disc, ,(#)) "7,
(i) disc,,(#) < (dev(#))"/*"

For simplicity, we state the inequalities for the density 1/2 case. For the
general case, see Section 5 of [4].

Before we proceed, we need to introduce a new concept. If the vertex set
of a hypergraph is totally ordered, we say that we have an ordered
hypergraph. Given two ordered hypergraphs 4., and s, where < and
<" denote the orderings on the vertex sets of ¥=9%_ and # = ., we
say that a function f: V(%) — V() is an embedding of ordered hypergraphs
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if (i) it is an injection, (ii) it respects the orderings, ie., f(x)<'f(y)
whenever x < y, and (iii) f(g) € # if and only if g € 4, where f(g) is the
set formed by the images of all the vertices in g.

Furthermore, if ¥ = % and # = £_., we write

H\ [
g ). \9
for the number of such embeddings. We use the same symbol “<”’ for the
orders involved in case this causes no confusion.
As our main result, we shall prove the following extension of Chung and

Graham’s result (in the sense that the density of # is allowed to be
different from 1/2).

THEOREM 1.3. Let # = (V, E) be a k-uniform hypergraph of density d
on m vertices. Then the following statements are equivalent:

P;:  disc(£) =0(1),

P,:  disc(#(x)) =0(1) and d(#(x))=(14+0(1))d for all but o(m)
vertices x eV and disc(#(x, y)) = o(1) and d(#(x, y)) = (1+0(1)) d* for
all but o(m?) pairs x, y eV,

P,: disc(H#(x, ) =o0(1) and d(H#(x, y)) = (1+0(1)) d* for all but
o(m?) pairs x, yeV,

P,: the number of non-induced copies of K,(2) in 5 is asymptotically
minimized among all k-uniform hypergraphs of density d; indeed,

H O\ m* ok

Ps:  for every s = 2k and all k-uniform hypergraphs % on s vertices with
e(%) edges and automorphism group Aut(9),

s!

H s
()| aron (3 )ama-ai-en s,

P5:  for every ordering S, of # and for every fixed integer s> 2k,
every ordered k-uniform hypergraph 4_ on s vertices with e(9) edges is such
that

K”) ‘:(1+o(1))(’”)de<g>(1—d)<i>-e<g>,
Y < S
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Ps:  for all k-uniform hypergraphs % on 2k vertices with e(¥9) edges and
automorphism group Aut(9),

N\ m\ .. 5 g (260!
K% >"(1+O(1))<2k>d( A=) @)

Pi:  for every ordering # . of #, every ordered k-uniform hypergraph
G on 2k vertices with e(%) edges is such that

H m g 2y _e(9
Kg >< ‘=(1+0(1)) <2k>d( (1 —d) D=,

The equivalence between properties is understood in the sense of Chung
and Graham’s approach.

Note that, similarly to the case where k = 2 (see, e.g., [1, 2]), the equiva-
lence among the above properties may be used to develop a fast algorithm
for checking whether a given hypergraph is quasi-random. While it is hard
to check whether disc(J#) < 6 directly from the definition of disc(s#), one
may check property P, in O(m%*) time. This may be further improved using
techniques from [1, 117].

Some of the implications in Theorem 1.3 are fairly easy or are by now
quite standard. There are, however, two implications that appear to be
quite difficult.

The proof of Chung and Graham that dev,,,(#) = o(1) implies P;s (the
“subgraph counting formula”) is based on an approach that has its roots in
a seminal paper of Wilson [14]. This beautiful proof seems to make non-
trivial use of the fact that d(#) = 1/2. Our proof of the implication that
small discrepancy implies the subgraph counting formula (P, = P%) is
based on a different technique, which works well in the arbitrary constant
density case (see Section 6).

The second implication with a rather technical proof is P, = P;. This
proof is based on the observation that in k-uniform k-partite hypergraphs
the regularity of links and pair-links implies the regularity of the whole
hypergraph. For details, we refer the reader to Sections 3.1 and 4.

Remark. Let us make some remarks on the asymptotic notation that
we shall use.

Unless otherwise stated, we understand by o(1) a function approaching
zero as the number of vertices of a given hypergraph goes to infinity.

We also use x~y if x=(140(1))y and x=2y if x=(1+0(1)) y.
Finally, we write O,(x) for a term y such that |y| < x.
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2. DEFINITIONS

Besides introducing some definitions and notation, our aim in this
section is to argue that, for most of the purposes of this paper, we may
restrict ourselves to the case of k-partite k-uniform hypergraphs. To this
end, we first set up a few facts concerning k-partite hypergraphs.

2.1. Definitions for Partite Hypergraphs

For simplicity, we first introduce the term cylinder to mean partite
hypergraphs.

DerINiTION 2.1. Let k>1/>2 be two integers. We shall refer to any
k-partite [-uniform hypergraph # =W, v --- UV,, E) as a k-partite
I-cylinder or (k,1)-cylinder. If | =k—1, we shall often write # for the
subhypergraph of # induced on |);, V;. Clearly, # = U%_, #. We shall
also denote by K{’(V,,...,V;) the complete (k,!)-cylinder with vertex
partition V; U --- U V.

DerFiNiTION 2.2, For a (k, [)-cylinder #, we shall denote by J(#),
I <j<k, the (k,j)-cylinder whose edges are precisely those j-element
subsets of V() that span cliques of order j in .

Clearly, the quantity |#;(#)| counts the total number of cliques of order
jin # . In the case in which / = 1, the (k, j)-cylinder #;() is the complete
k-partite j-uniform hypergraph on | # = (), » 5.

When we deal with cylinders, we have to measure density according to
their natural vertex partitions.

DerFmniTION 2.3. Let & be a (k, k)-cylinder with k-partition V' =V; u
- UV,. We define the k-partite density or simply the density d(#) of
H by

d(#) = _A .
AN
To be precise, we should have a distinguished piece of notation for the
notion of k-partite density. However, the context will always make it clear
which notion we mean when we talk about the density of a (k, k)-cylinder.
We should also be careful when we talk about the discrepancy of a
cylinder.
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DEerFINITION 2.4. Let # be a (k, k)-cylinder with vertex set V =
ViU -+ UV,. We define the discrepancy disc(#) of # as follows:

. 1
disc(#)=——— max |[|# nAH(D)|—d(H) | A (DI, @
Vil Vil grl!

where the maximum is taken over all (k, k— 1)-cylinders ¢ with vertex set
V=ruv--ul,.

We now introduce a simple but important concept concerning the
“regularity” of a (k, k)-cylinder.

DrerINiTION 2.5. Let # be a (k, k)-cylinder with k-partition V =
Viu --- UV, and let 6 < a be two positive real numbers. We say that J# is
(0, a)-regular if the following condition is satisfied: if ¥ is any (k, k—1)-
cylinder such that

|(D) =0 |- Vil 5
then
(0 —0) |H(D)| < |H N A (D) < (a+0) | A (D). (6)

One should observe that the (J, a)-regularity of a hypergraph s# does
not imply that 5 has density «; we may only conclude that the density of a
(0, o)-regular hypergraph is between « —J and o+ J. Moreover, the follow-
ing simple facts hold.

Fact 2.6. Let A be a (0, a)-regular (k, k)-cylinder. Then disc(H#) < 20.

Fact 2.7. Suppose # is a (k, k)-cylinder with k-partitionV =V, U --- U
V,. Put o = d(H#) and assume that disc(H#) < 8. Then A is (6%, a)-regular.

2.2. The k-Partite Reduction

Suppose S is a k-uniform hypergraph and let #” be one of its k-partite
spanning subhypergraphs. In this section, we try to relate the deviation and
the discrepancy of #”’ to those of .

DerINiTION 2.8. Let o =(V, E) be a k-uniform hypergraph with m
vertices and let 2 = (V;)* be a partition of the vertex set /. We denote by
H#, the (k, k)-cylinder consisting of the edges & € # satisfying |hnV;|=1
foralli e [k].

The following proposition holds.
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PROPOSITION 2.9. For any partition 2 = (V;)* of V., we have
() disc(o#) = |[d(Ap) —d(A)| V1| - Vil /m*, and
(i) disc(H#5,) <2 disc(H#) m*/|Vy|--- Vil

Proof. Let 2 = (V;)¥ be any partition of V. Observe that #, consists
precisely of the vertex sets of those copies of K¢V in K=K
", ..., Vi) which are also edges in #; that is, #, = # N A4, (K). Since
| (K)| = | A (KEDV, ..., V)| = Vil --- Vi, this implies the first part of
the proposition by taking 4 = K in (2).

On the other hand, let 4, = ["]*"! be a (k, k—1)-cylinder for which the
maximum is attained in (4), the definition of disc(s#,). Observe that
Hy N K (%) = H N A (%,). Then

. 1
disc(t) = e I O ()| = () 1 ()]
1 k
1
<————||# N H(%)|—d(H) | H(%,
TABSAL (G —d(AH) | A ()|
1
+—|d(H) | A (%) | —d(H,) | H(F,
A AL SO CAYEACY]
< dise(H) +—— | ()| [A(H) —d( )]
NARNA Wil [Vl 7
m g d d
< ———disc(H) +|d(H#) —d(H#,
mk d
< —— disc(H#),
il 5

where in the last inequality we used (i). |
We shall also need the following fact, which follows easily from, say,
Chebyshev’s inequality.
Fact 2.10. Let s# = (V, E) be an m-vertex k-uniform hypergraph. Then
(1—o0(1)) k™ partitions P = (V,)* of V satisfy
@) Vil=U+o0(1)) m/k forallie[k],
() || = A +o(1))(k!/Kk")|H#|, and
(i) d(A)=1+o0(1)) d(H),
where o(1) = 0 as |#|/m*~' - .

An immediate consequence of the previous proposition and Fact 2.10 is
the following.
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CLam 2.11.  If disc(#) = o(1), then disc(#,) =o(1) for (1—o(1)) k™
partitions P = (V;)* of V.

With some more effort, one may prove a converse to Claim 2.11.

CLam 2.12.  Suppose there exists a positive real number y > 0 such that
disc(#,) = o(1) for yk™ partitions P = (V;)¥ of V. Then disc(#) = o(1).

Proof. Let & be a set of partitions # for which disc(#;) = o(1) and
|| = yk™. Suppose disc(#) = for some fixed 6 >0, and let ¥, be a
(k—1)-uniform hypergraph for which the maximum is attained in (2), the
definition of disc(#). Let 2= (V;)¥ €% be a partition satisfying the
conclusion of Fact 2.10 with respect to #, # N #,.(%), and #,(%,). Such
a partition must exist since yk”+ (1 —o0(1)) k" > k™. Observe that, then,

|5 O A (D) = (H 0 H(%)) | = (1+0(1)) % |2 N A (%),
and
(% 0 KEP Vi o, VO = [(Hi(%))o| = (1 +0(1)) % FACHE
and, from (iii) of Fact 2.10,

d(#5) = (14+0(1)) d(o¢).

For convenience, put K = K& YV, ..., V). We use an approach similar to
the one in Proposition 2.9 to get

1
disc(#) =7 [|# N H(G)| —d(H) | A (%)]|

k

— |+ (1)) |75 0 H(%)]

k

k
—(+o(1) d(A) 114 (G N K))

1 k*
S g |1 0 A (K 0G| —d(Ay) | H(Gy 0 K

k

k o()(|1#5 N H (K 0 G)|+d(H) | H(% N KD

T

<1 +0(1))%disc(3’fg,)+ lki' o(1) 2<k>

2k*
dlsc(%@,) +—

% o(1).

k
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Since by our assumptions disc(#,) =o0(1), we immediately obtain that
disc(##) < d for large enough m, which is a contradiction. ||

We now state the k-partite version of a part of our main result,
Theorem 1.3.

THEOREM 2.13. Suppose V=V, v --- UV, |Vi|=--- =V, =n, and let
H =(V,E) be a (k, k)-cylinder with |#|=dn*. Then the following four
conditions are equivalent:

C,: His (o(1), d)-regular;
C,: H(x) is (o(1),d)-regular for all but o(n) vertices x€V, and
H(x, y) is (o(1), d*)-regular for all but o(n?) pairs x, y € V,;
C;: H(x,y) is (o(1), d*)-regular for all but o(n®) pairs x, y e Vy;
C,:  the number of copies of K, (2) in # is asymptotically minlzc'mized
among all such (k, k)-cylinders of density d, and equals (1+o(1)) n*d* /2*.
Remark. The simplifying condition |V}|= --- =|V,|=n has the sole

purpose of making the proof more readable and transparent. The immedi-
ate generalization of Theorem 2.13 for V}, ..., V;, of arbitrary sizes holds.

The proof of Theorem 2.13 will be given in Sections 4 and 5.

3. THE DERIVATION OF THE GENERAL CASE

In this part, we prove Theorem 1.3. We divide this proof into five
sections. In Section 3.1, we show the equivalence of properties P,, P,, and
P,. The proof of P, = P, is in Section 3.2. Both sections use Theorem 2.13
as the main tool. In Section 3.3, we prove P, = P§ using the “subhy-
pergraph counting formula” from Section 6. Then we show that P§ =
P; = P; and P, = Py = P; (see Section 3.4). Finally, we prove P; =
P, in Section 3.5. The flow of the whole proof is described in the following
diagram:

P, = P = P

f |
P, P, <« P,
f y {

P = P < P

3.1. Proof of P, < P, <P,

We are now ready to show that, in the first part of the proof of
Theorem 1.3, we may assume the hypergraph # to be k-partite. To be
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more precise, we show that the equivalence P, < P, < P; in Theorem 1.3
follows from Theorem 2.13. We shall illustrate this on P, = P,; the other
implications are handled similarly. In fact, we shall be somewhat sketchy;
we shall only indicate the double counting argument that gives this result.

Suppose that we have a k-uniform hypergraph # with density d such
that disc(s#) = o(1). From Fact 2.10 and Claim 2.11 we know that for all
but o(1) k™ partitions 2 of V' we have disc(#,) =o0(1) and d(%,) =
(I1+0(1)) d. For every partition £, denote by X () the set of all vertices
x eV such that either disc(5#,(x))#o(l) or disc(s#,) # o(1). From
Theorem 2.13 and Facts 2.6 and 2.7, we know that for all but o(1) &™ par-
titions 2, we have |X(2)| = o(m). For the remaining o(1) k™ partitions 2,
we use | X (2)| < m. For a vertex x eV, we define 22(x) to be the collection
of all partitions £ for which x € X(£). One can easily see that

Y X)) =% 12()l.

2 xeV

Let S be the set of vertices x € V for which |2(x)| > (1/2) k™. Then

o(1) k"m+o(m) k™ =y |X(P)| = ), |P(x)|>;|S| k",
2 xeV
hence |S| = o(m). This means that, for almost all vertices x € V', we have
disc(#(x),) = disc(#,(x)) = o(1) for at least (1/2) k™ partitions £. By
Claim 2.12, it follows that disc(s#(x)) =0(1) for all but o(m) vertices
x € V. We proceed similarly in order to show that disc(s#(x, y)) = o(1) for
all but o(m?) pairs x, ye V.

3.2. The Minimization of the Number of Octahedra

The aim of this section is to show that property P, can be derived from
property P, using the equivalence of the k-partite properties C; and C,. We
start with the following lemma.

Lemma 3.1. Suppose a k-uniform hypergraph # on m vertices with
density d = d(H) is such that

A \V m2* ok
(o) |~ 5 @
Then, for almost all partitions P of V. =V (),
Hy \V n* ok
(o) |5 ®

holds for n=m/k.
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Proof. Put

X = ‘(Kﬁ))w‘ ‘

We consider X as a r.v. on the uniform probability space of all partitions &
of the vertex set V' of #. Clearly, we may write X as a sum of 0-1 indicator
random variables as

Xzz X,
%

where the sum is over all # < # with # =~ K, (2) and X, (£) =1 if and
only if # < #,. Note that P(X, =1)=P(X < #,)=k! k" */k™.
Therefore, using (7), we have

EX) =Y E(Xy)=Y P(X, = 1)~ m*  ckVk"* % 72 ©)

e e 25k ! k" 2k

We now invoke a lemma that will be proved in Section 5.1. Indeed,
2k

Claim 5.2 states that
(o) |2
>
K(2)

~ ok

k

d? (10)

for all (k, k)-cylinders ¢ of density d with n vertices in each of its vertex
classes. Comparing (9) and (10), we deduce that the expectation of X is
asymptotically equal to min X, and hence

P <X> (1+;7)’;—2:d2k>= o(1)

for any fixed # > 0. This completes the proof of Lemma 3.1. ||
We turn to the proof of the implication P, = P,.

Proof of P, = P,. Let A be a k-uniform hypergraph on m vertices such

m2k

2k
~2k_k!d , (11)
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where d is the density d(s#) of #. Lemma 3.1 then implies that almost all
vertex partitions 2 = (V;)* are such that

()
K, (2)
where n =m/k. The implication C, = C,; of Theorem 2.13 gives that, then,
the (k, k)-cylinder 5, is (o(1), d(#,))-regular for almost all 2. We now
use Fact 2.6 to conclude that s, satisfies disc(#,)=o0(1) for a.a. 2.

We may then apply Claim 2.12 with, say, y=1/2, to deduce that
disc(#) = o(1); in other words, property P, holds for #. ||

2k
n ok

7 >

3.3. Proof of P, = P

In this section, we prove that any k-uniform hypergraph # with
disc(#) = 0o(1) must be such that any k-uniform hypergraph 4 on s
vertices must occur as an induced subhypergraph of # as many times as
one would expect if s# were a truly random hypergraph with density d.
Our proof will be based on a certain technical result, the “subhypergraph
counting formula,” which will be proved in Section 6.

Proof of P, = P5. We need to show that for every given integer s > 2k,
real number ¢ > 0, and density d € (0, 1), there exists a real number ¢ >0
such that property P, (J) (i.e., property P; with o(1) replaced by J) implies
property Pi(e, s) (i.e., property P; with given s and o(l) replaced by
0.(¢)).

Let J,=0,(d,e) be the positive real number determined by
Corollary 6.13 and dy, =min{d, 1—d}. Choose 6 >0 of the form 1/¢%*,
where ¢ € N, satisfying

1 /6,\*
b= n< <5> , (122)
and
w1 _ed? 1
O =S 1002 S5 (12)

Let m = m(d, ¢) be an integer divisible by ¢ and set n =m/z.

Suppose that # =, and ¥=%_, are two ordered k-uniform
hypergraphs such that V(#) = {v; <’ v, <’ <'v,,}, V(%) = {w; <w, <
- < w,}, d(H#)=d, and disc(H#) < 9.

For every ie[t] set V,={v,,,. 1:j€[n]} and note that
V(#)=\J;_,V; is a partition of V(#). An s-tuple {u,, ..., u,} is crossing,
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or transversal, if |{u,, ..., u,} nV;| <1 for all i € [¢]. Note that the number
of non-crossing s-tuples is bounded from above by

; n\/m-—2 _1 T—l m—2 @
G- )05
_m(m—1t) (s\(m—2 (m)2<1 s\/m
i), (2>(s—2>(s)2\?<2><s>'

Since the number of crossing s-tuples is (©) n*, we have the following fact.

Fact 32. (- r' <@/t

For I < [t], put o = #[;; V:] and observe that s# is an (|I|, k)-
cylinder. One can mimic the proof of Proposition 2.9 and obtain the
following fact.

Fact 3.3. For every I € [t]%, we have d(#,) = d+0,(6"%) and
disc(o) <20 x th =262

Consequently, owing to Fact 2.7, the cylinder #, is (26"/*, d)-regular.

Thus, the (s, k)-cylinder #; satisfies the assumptions of Corollary 6.13
for every Ie[¢]". Therefore, there exist (1+0,(e)) d“®(1—d)® =@ p*
transversal copies of 4 in each J# (I € [t]°).

Let I = {i, <i, < --- <i,} € [t]* and consider one transversal copy of ¥
in # on vertices u; <u, < --- <u,, where u; €V, for every je [s]. Then
the mapping ¢: V(%) — V(#) defined by ¢(w;) =u, (i € [s]) is an injection
preserving order, and preserving edges and non-edges of ¥; thus, ¢ € (%)~ .
In view of the previous paragraph, we have

(140, (8)) d“ (1 —d) D= p> <;> (13)

such mappings.

On the other hand, let ¢ e (%).. The s-tuple {p(w,)<'@(w,) <’
.- <" @(w,)} is either crossing or not.

In the first case, this s-tuple induces a transversal copy of ¢ in s, and,
therefore, equation (13) yields the number of mappings ¢ for which this
case occurs. In the second case, {p(w;) <" @(w,) <'--- <’ @(w,)} is not
crossing. By Fact 3.2, there are at most (3)(’)/¢ mappings ¢ yielding this
case.
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Combining these two cases together implies that

H » 5 o@y s [ 1/s\/m
(). oo (Jeo(1))

To complete the proof, it suffices to show that

(14 0,(¢)) d“P(1 —d)©~® ps x <t>+01<1 <S><m>>
s t\2 Ky

= (14 0,(2¢)) (’:) d“O(1 —d) D=, (14)

Owing to (12b), we have

1/s\/m e (m s
2 & e« — )o@ 1
t<2><s><100<s)d (1 =)=, (132)
and
zs—<;>t“1>f—l%ots. (15b)

Since (15a) holds, (14) follows from the following inequality

(1—¢/2) (’:’><n<;>< (1+¢/2) (':)

While the right-hand side of this inequality is immediate, the left-hand side
is a consequence of (15b). |

3.4. Proof of P5 = Py = Ps and Py = P = P

Implications P; => P; and P§ = P are trivial since Py (respectively, Pg)
is a special case of Ps (respectively, P5). Moreover, Py = P, is a special
case of P§ = P, therefore, it suffices to prove that P§ = P;.

Proof of P5 = Ps. Given two hypergraphs ¢ and #, let us denote by
(¢ )i the set of injections @: V(%) — V() such that ¢(g) € # if and only
if g € 4. Moreover, we write (7% )i for the set of such injections such that
¢(g) € # whenever g € 4. Thus, (Z)mj is the set of embeddings ¢ of ¢ into

A such that ¢(V (%)) induces an isomorphic copy of ¢ in s, whereas
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(";)}ﬁj is the set of embeddings ¢ such that ¢(}(%)) induces a superhy-
pergraph of ¢ in . If ¥ has automorphism group Aut(%), it is easy to

verify that we have
H
G Jinj

and similarly for (%)Y and (%)".

inj

Suppose now that # is an ordered hypergraph with ordering <'. Then

H A,
(%)Y (%) @

where the union ranges over the set of all total orderings < of V(%).
Furthermore, a moment’s thought shows that the union in (17) is a disjoint
union. Hence

= |<Z>‘|Aut(g)|, (16)

H H,
Kg)mj _g <g< )‘ (9
Since P} holds, we have
K‘m’ >‘ = (1+o(1)) <m>de<g)(1—d)<i>—e“>
Y. s

for every total ordering < of V' (%). Since there exist s! total orderings of
V (%), combining (16) and (18) yields P;. ||

3.5. Minimization of Octahedra from Subhypergraph Counting

We now prove that property P (which concerns a certain ‘“‘subhy-
pergraph counting formula™ for induced subhypergraphs) implies property
P, (which concerns the number of (weak) subhypergraphs isomorphic to
octahedra). The proof will have two parts. In the first part we shall show
that, for every hypergraph s with density d, the number of copies of
A (2) in S is bounded from below by

m2k

2k
2k d

(1+o(1))

(sce Lemma 3.5). In the second part, we shall prove that P; implies the
asymptotic equality (3) given in property P, of Theorem 1.3. We start with
the following lemma.
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LemMmA 3.4. Suppose the k-uniform hypergraph # with m vertices and
with density d = d() is such that #, satisfies

% w n2k 2"
KKk(z)> |Z 24 (19)

for almost all partitions P = (V,)* of the vertex set V =V (H), where
2k

n=m/k. Then
H\V m
>
‘<Kk(2)> = 2%k

k

d*. (20)

Proof. This lemma follows easily from a double counting argument.
Let us consider the family of pairs (£, 2) such that

O K2)=A <A,
(i) 2 = (V;)¥ is such that (19) holds and |V;| ~n=m/k (1 <i<k),

and, finally,
(i) A < H#,.
On the one hand, the number N of such pairs (#, 2) is

Y [{: (i) and (iii) hold}|, Q1)

where the sum is over all Z for which (ii) holds. Thus, because of our
assumption on # and Fact 2.10, we have that

I’l2k k
Nz k™ oF d*. 22)
On the other hand, we have that
k! km2, (23)

V=2, 1{#: (i) and (i) hold}] ~ K;fz))w

where the sum is over all ¢ that satisfy (i). Above, we again made use of
Fact 2.10 to estimate the number of relevant partitions £ for each fixed #".
Comparing (22) and (23), we deduce (20). |

The proof of the lower bound on the number of #,(2) in # is straight-
forward now.
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LemmA 3.5. For any m-vertex k-uniform hypergraph # with density
2k

d=d(X),
H\V S m
(co)

2k
by ﬁd . 24)

Proof. We know that all but o(1) k™ partitions & satisfies |V;|=
n~m/k and d(#,) ~ d (see Fact 2.10). By Claim 5.2 we know that

Ay \|o 7
AOY i

and, therefore, by Lemma 3.4, (24) holds. ||

Proof of Pg = P,. Let # be a k-uniform hypergraph on m vertices such
that, for any k-uniform hypergraph ¢ on 2k vertices, we have

AN (m\ . 5 ey (200!
‘<%>’~<2k>d()(l_d)()  Aw@) @)

where d =d() is the density of # and Aut(%) is the automorphism
group of 4. From (16) it follows that, for any such ¢, we have

(%),

where, as usual, (@), =a(a—1)---(a—b+1). We are interested in estimat-

ing |(%);]- Clearly,
HN\” H
= 27
<?>i,,j 9 <%’>mj’ @)

where the union ranges over all k-uniform hypergraphs ¢’ with the same
vertex set as ¥ and ¥’ © 4. Furthermore, a moment’s thought shows that
the union in (27) is a disjoint union. Hence

o)1),

~ 2 (m)y d*“(1 —d)(sz)—e(?')
g,

~ (m)y AP (1 —d) D=, (26)

)

g

= Z Z (m)y, d°D+(1 _d)(zlf)—e(g)_,

t=>0 e(¥)=e(9)+t
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2k
= z < k >_e(g) (m)zk de(¥)+t(l _d)(zlf)—e(?)—t
t=0
t

2k
= (m)Zk de® Z < k >_e(g) dt(l _d)(zlf)—e(fﬁ)—t

t=0 ¢
= (m)y 4.

W w
‘(Kk(Z) >inj

It now suffices to recall the analogue of (16) for weak subhypergraphs to
conclude the proof of P,, since |Aut(K,(2))| =k!2*. |

Thus,

~ (m)y, d*.

4. PROOF OF C, < G,

In this section, we shall prove the equivalence of conditions C; and C, in
Theorem 2.13. We start with a fairly standard proof of C, = C, (see
Section 4.1), and then, in Section 4.2, we prove the converse C, = C,.

4.1. Proof of C; = C,

The proof follows from the two claims below.

CLamM 4.1. Suppose0<e'?<d,V=V,u --- UV, [Vi|=-- =Vil =n,
and let # = (V, E) be an (g, d)-regular (k, k)-cylinder. Then for all but at
most 2&'/%n vertices x € V,, the link #(x) is (¢'/%, d)-regular.

Proof. Let X~ be the set of all vertices x €V, with the following
property: there exists a (k—1, k—2)-cylinder &%, with (k—1)-partition
Viu --- UV,_, such that

| A (T = &'Pn*, (28)
but
|#(x) 0 A ((F) < (d—e'?) | A (F)]. (29)

We also define X" to be the set of all vertices x € V, satisfying (28) for
which we have

| (x) O A (F| = (d+e') | A ().
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Suppose that | X ~| > ¢!/?n and define a (k, k— 1)-cylinder ¢ by

G=KPW, Vv U {euf{x}ieez}

xeX ™

Observe that

H(9)| = |Hr (T 2 X | 20" > en,
| A -1

xeX ™

and, therefore, by the regularity of J#,

| 0 (D) = (d—e) |H(D)| = (d—e) Y, |Hh 1 (F)|.

xeX ™

On the other hand, from (29) we obtain

|# N (D)= Y |HX) A (F)<(@d—=e'?) Y | (R,

xeX ™ xeX ™

which is a contradiction.
Hence | X 7| < &'/*n. Similarly we obtain [X*| <&'’n. |

CLaM 4.2. Suppose 0<e<1/16, 2e'*<d, V=V, U --- UV, |V}|=

=|Vi|=n, and let # = (V, E) be an (&, d)-regular (k, k)-cylinder. Then,

H(x,y) is (% d*)-regular for all but at most 4e'/*n* pairs of vertices
X, yeV,.

Proof. From the previous claim we know that there are at most 2¢'/%n

vertices x in V, with (¢!/2 d)-irregular link 2 (x). These vertices form at
most 2¢'/%n? pairs and we shall exclude them from further considerations.
For a vertex x eV} denote by Y, the set of all vertices y eV, with

the following property: there exists a (k—1,k—2)-cylinder %, with
(k—1)-partition V; U --- U V,_, such that
|1 (F) | = &'/, (30)
but
| (x, p) O K (F)| < (@ —e'*) | A1 (F). (31

We also denote by Y} the set of all vertices y €V}, for which there is a
(k—1, k—2)-cylinder %, that satisfies (30), but

|#(x, p) 0 A ((F)| > (@2 +1) [ (F).
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Suppose there exists a vertex x €V, with (¢!, d)-regular link #(x) for
which |Y ;| > &'/*n. Define a (k, k— 1)-cylinder ¢ by

G=H(x)u |J {eu{y}:eecF}.
yey,
Then
[H(D) = 3, |H(x) Aoy (F)]-
yeyY,
Note that (30) together with the (¢'/2, d)-regularity of s (x) implies that
|#(x) O A1 (F)] = (d—€'?) | H_ 1 (F)]
for all ye Y. Hence
(D)= Y, (d—e'?) | A (F)]

ey,
> (d—e?) Y| e 1 = (d—e'?) '/%n* > en*. (32)

By the (¢, d)-regularity of 5# and (32), we have

|# O\ (D)) = (d—e) | (D) = (d—e)d—e'?) 3 |H(F) (33)

yeY

x

On the other hand, the size of # N #;(¥%) can be bounded from above
using (31) as follows:

|# N A (D) = Zf |#(x, ) 0 Hi(F)| < (@~ ZI; | A1 (F).
yer, yely, (34)
Comparing (33) and (34), we get
(d—e)(d—e'?) <d?—e'*,
which implies

e < (e+e'?)d<e+e'?

which is not true for e < 1/16.

Hence we have |Y | <e&'/*n. We also obtain Y| <e&!/*n in exactly the
same way. Consequently, the number of “bad” pairs is bounded by
2e2n? 42Vt x n < 4e'*n?. |
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4.2. Proof of C, = C,

The objective of this section is to prove the following theorem.

THEOREM 4.3. For every 0>0 and d >0 there exist ¢ >0 and n, e N
such that the following holds. If # is a (k+1,k+1)-cylinder with
(k+1)-partitionV, U --- UV, such that

W) Vil=n=nyforallielk+1],

(i) |#|=dn**,
(iii) A (x) is (e, d)-regular for all but at most en vertices x € V., and
(iv) H(x,y) is (e, d*)-regular for all but at most en” pairs x, y € Vy .1,

then # is (9, d)-regular.

Remark. Here, we work with (k+1, k+1)-cylinders to simplify the
notation. With this choice, we shall encounter (k+1)-, k-, and (k—1)-
uniform hypergraphs.

Proof. Let # be a (k+1, k+ 1)-cylinder satisfying assumptions (i)—(iv).
We shall assume that

e=(0/4)2<d<d<1. (35)

Suppose that # is not (J, d)-regular; i.e., Definition 2.5 fails. Without
loss of generality (by taking complements) we may assume that the second
inequality in (6) is not true; therefore, there exists a (k+1, k)-cylinder
4 = J**1 4, with (k+ 1)-partition V; U --- U V,,, such that

Ay (@) S0+ (36)
but
A Ay (@)
W OoRaIN 405, 37)
RG] (

We now work on this “witness” ¢ for the irregularity of .

FAacT 4.4. There exist subcylinders 4, <% (ie[k]) such that 4*=
GV - UYL VY, satisfies the following four conditions:
(1) (G (x)) = & or | H(F*(x))| > en” for all x € V.4,
(2) H(x) is (&, d)-regular for all x e Vi, with |#;(%*(x))| = en*,
(3) [ Her(F9)] = (6/2)
4) | A (9 = (d+0/2) |H 1 (G-
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Proof. For every vertex x €V, with |4 (%(x))| < en* or with (e, d)-
irregular link J#(x), delete all edges in % that contain x. Notice that this
operation does not remove any edge from %, and produces a subhy-
pergraph ¥* =% U --- U ¥, U %, that satisfies conditions (1) and (2).

Moreover, every removal reduces the size of %#;,,(¥%9) (and # N
Hr1(%9)) by at most en” if |4, (%(x))| < en® or by at most n* if #(x) is
(e, d)-irregular. Since there are at most en vertices x with (g, d)-irregular
link, we obtain that

|11 (89| 2 | Ay (%) = x e —em x ¥,
and
|# A (G = | H A Ay (D) —nx en*—enx nF,
The first inequality together with assumption (36) shows that
|1 (G = | Hpe 1 (D) —2en* ! = 00 1 —2(6/4)2 n**! > (6/2) n**1.
Similarly, the second inequality, (36), and (37) yield

| O A (G ZNH O A1 (9) | —2en* !

(d+0) | K1 (D) =2(0/4)* n*+!

(d+6/2) |H s (D) +(3/2) on*+'—2(5/4)* n**!
(

>
>
>
> (d+06/2) |Hpr (97,

and the proof is complete. ||

We have to work on ¢* further to obtain a witness with more structure.
We shall need the following definition.

DEerFINITION 4.5. For each ee€%,,, define two parameters g(e) and
h(e) by
gle)= |{x €Vigr: {x} vee ‘%/kﬂ(g*)}l,
he)=|{xeVi, :{x}vee X A (%)}
FACT 4.6. Put &' =06%/16. Then there exists a subcylinder 4}, = %,

such that ' =910 --- UG, VY, ., where the 4 (i € [k]) are taken from
Fact 4.4, satisfies the following five conditions:
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(1) H(G'(x) =D or |H(F'(x))| > en” for all x e V.4,

(2) H(x) is (e, d)-regular for all x € Vi, with |H(9'(x))| = en*,
(3) A (@) =,

4) he)/gle)=d+35/4 forallec ¥, ,,

5) gle)y=odnforallee Y,,,.

Proof. We decompose %, , into two subcylinders 45, , U 4 |, where
h(e) o
and

gk+1 - gk+1 \gk+1

Let 4* be as in Fact 4.4. Observe that

o, Fact440)
Y gle)=1H (@D = (6/2)n*!

e€Gpi1
and
Fact4.4 (4)
Y Me)=|# A (99 = (d+3/2) | A (D7)
eeGpy
Then for ¥ =% U --- UG, U %", we have

|Hea (G = ) gle)= Y he)= ) he)— Y he)

ok ok *
eeYy eeYr e€Yq1 eeYy i

> (a+3) i@l (d+37) T s6@

e€Gpi1

=< 5) | A (% )|—<d+6> | K1 (D)

2

1) o
1 | A7 1 (F7)] >§nk+l~

Note that at least (62/16) n* edges e of %%, must have g(e) > (5°/16) n,
otherwise we would have
2 52

9 )
| H11 (97| <—n -n+n* 16""% nk+l
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which would be a contradiction. Remove all edges e with g(e) < (62/16) n
from 4%, and obtain ¥}, ,. Then, %, satisfies condition (4) because of
the definition of 4%, > ¥}, . It satisfies condition (5) because all edges e
with g(e) < (6%/16) n have been removed, and %’ also satisfies condition (3)
because

2 2 52 52

, o)
| H s 1(9)] = |=7[k+1(g**)|—nk'ﬁn >§nk+l—ﬁ n*+! =Enk+l~

Finally, ¢’ must satisfy (1) and (2) because we did not change any of ¥;
(elkD- 1

Before we come back to the proof of Theorem 4.3, we state an auxiliary
lemma. Let 0 <a<1 and 0 <u<1 be given. Let G be a bipartite graph
with vertex classes X; U X, and let H be a subgraph of G. We call
an ordered pair of vertices (x, y) € X; x X, good if

|H(x) N G(y)| =a(1+0,(n)) |G(x, y)| (38)
and
[H(x, »)| = o*(14+0,(w)) |G(x, y)I. (39)

We also call a pair bad if it is not good.
The auxiliary lemma is as follows.

LemmA 4.7 (Dementieva, Haxell, Nagle, and R6dl [8]). Let 0<a<1
and 0 < u < 1 be given. Suppose the bipartite graphs G and H are such that

2
o .
. 4
bad(x’Y)ZE:X1><X1 |G(x’ y)l = (1—06)2+0C2 zez;(z lG(Z)l ( 0)
Then
Y (HG)| -2l <5 Y GG 41
zeXy zeX,

The following corollary of the above lemma holds.

COROLLARY 4.8. LetO0<a<1,0<u<1, andv>0 be given. Let G and

H be bipartite graphs as in Lemma 4.7. Denote by W the set of all vertices
z € X, such that |H(z)| = (a+V) |G(z)|. Then

Y, 1GI< (5u/v)'2 X, X, l. 42)

zeW
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Proof. Clearly, 5ua’®3. ., |G(2)|> < 5pa® | X, |* |X,| < 5u|X,1?|X,|. On
the other hand,

Y (H@I-o|G@D* > Y, (H(@)|-a|G())* =V ¥ 1G(2)

ze X, zeW zeW

|va2| (% 1oen) > |)vr22| (% loen).

Finally, using inequality (41), we get (42). ||
We now turn back to the proof of Theorem 4.3. We define two auxiliary
bipartite graphs G = (X, U X,, E(G)) and H=(X, U X,, E(H)) in the
following way:
X, =Vis1s
X, =Vix - xX,
E(G) = {(x, e): e € #(F'(x))},
E(H) = {(x, ¢): e € #(x) 0 H(F'(x))}.

(43)

Notice that |X,| = n and |X,| = n*. Then

Y 6= Y 1G> ) 1G(e) =4 (9] =n =6 |X)] |X,].

xe X eeX, esg;ﬁ,l (44)

Now we prove that the graphs G and H defined by (43) satisfy the
assumptions of Corollary 4.8 with a =d, u=¢'? and v=46/4. Indeed,
observe that

o if | (D (x, )| =en* and #(x) is (e, d)-regular, then |#(x)N
H(G'(x, )| = (d+0,(8) | H:(F'(x, ), ie.,
|H(x) 0 G(p)| =d(1+0,(¢')) |G(x, y),

and
o if | (9 (x, y))| = en* and H#(x, y) is (¢, d*)-regular, then | #(x, y) N
H(G'(x, )| = (d*+0,(2)) |(9'(x, )|, ie.,

|H(x, )| = d*(1+0,("?)) |G(x, y)|-

Denote by I; the set of all pairs (x, y) such that |G(x, y)| < ¢ |X,|, by I, the
set of all pairs (x, y) such that #(x, ) is (¢, d*)-irregular, and by I, the set
of all pairs (x, y) such that #(x) is (e, d)-irregular.
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Both observations above imply that every pair (x, y) € X; x X; such that
H(x) is (e, d)-regular, #(x,y) is (g, d*)-regular, and |G(x, y)| = ¢ |X,]| is
good. In other words, the set of bad pairs is a subset of I, U I, U I; and,
therefore,

Y 16 pI< Y G+ Y G I+ Y |GG, p)l.

bad(x, y) (x,y)el (x,y)eh (x,y)el
One can easily see that |I,| < | X% |L| <e|X,|% L] <e|X;| x|X,|, and

® Z(x,y)e]l |G(x5 y)l < & |X2| X |11| < & |‘X/1|2 |X2|’
* Y yeh IG(x, »)| < | X, % |L| < e | X,]? X,
* Ypen G VIS X XL <& X7 1X).

Consequently, Zbad(x, ¥) |G(x, y)| < 3e |X; |2 | X5
Suppose that condition (40) of Lemma 4.7 is not satisfied, i.e.,

2,.1/2

6 > —1 Y 6@
i, CNNZGgm 2 106

Since 3. . x, [G(2)|* > (X. c x, IG(D)?/|Xs|, we get

d281/2 2 5 s
T IG(Z)I> < 3e | X7 X[
(1-d)*+d’ <zxz ne

In other words,

Y, 1G@)I<

zeX;)

36((1—d)*+d?)\ 12
() i

On the other hand, we know (see (44)) that 3., |G(z)| > (6°/16)
|X:| |X,|, and, therefore, comparing both inequalities yields

52 <3s((1—d)2+d2)>1/2
== 77 "7 .
16> %7

This is a contradiction since 3ex((1—d)*+d?)/(d%"*) <e'?/d*=
(6/4)'%/d*< (6/4)" < §*/256. Thus, G and H also satisfy condition (40) of
Lemma 4.7.
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Set W =%/, . Then, because of property (3), clearly |W| > (6*/16) n**!/n
= (02/16) n* = (62/16) | X,|, and for every e € W we have |H(e)| = (d+6/4)
|G(e)|. We apply Corollary 4.8 and obtain that

80e'/2\ /2
> 16@1<(T5m ) i

zeW

On the other hand, since |G(e)| = (6%/16) |X,| for every e € W, we get

6’ o
= — X1 = = |X1]| |X,].
316G = W1 16 1Xil 2 5 1] 1K)

This is a contradiction because
80g!/2\1/2 s\’ o
—_— <4(- —.
< 5 ) <4> <356 I

5. PROOF OF C, < C, < C,

Sections 5.1, 5.2, and 5.3 are devoted to the proofs of C; = C,, C, = C;,
and C; = G, (note that implication C, = C; trivially holds).

In these sections, we shall be sketchy in places because the arguments are
standard or somewhat repetitive.

5.1. Proof of C; = C,
We start with a standard “cherry counting lemma” for bipartite graphs

(a cherry is a path of length 2).

CramM 5.1 Let G=(XVUY,E) be a bipartite graph with |X|=n,
|Y| =m, and assume that |E| = dmn. For x, x'€ X, put d, , = |G(x, x")|/m.
Then

d
YAd, yx,x' e X, x#x"} >< 2n>.

Proof. Observe first that

Y 160 =1El=} G(»)

xeX yeyY
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and

Y G XN =Y <|G(2y)|),

x#x yey

where we write ¥, . for the sum over all pairs {x, x'} of distinct vertices
from X. Then

X X
mY d. =Y |Gxx)

x#Xx' x#Xx

|G(y)| m71 Zer |G(y)| _ dn
_ng m 2 = 2 ’

where, naturally, we used the convexity of (3). ||

CLamm 52 Let # =,V --- UV, E) be a (k, k)-cylinder with |E|=
dn*, where |V;| = n for all i € [k]. Then the number of copies of K, (2) in 5 is
bounded from below by (1+o0(1))(n*/2%) d*.

Proof. We proceed by induction on k. For k = 2, the statement follows
from the previous claim and the Cauchy-Schwarz inequality. Indeed, let
G=(XuUY,E) be a bipartite graph with |X|=1|Y|=n, and assume that
|E| = dn®. For x, x'€ X, put d, , = |G(x, x")|/n. Here and below we use the
notation }'¥, . introduced in the proof of Claim 5.1. Then the number of
copies of K,(2) in G is given by

G S (16X & [dy
‘<K2(2)>‘_x§x’< 2 >_x;x’< 2 >

By the Cauchy-Schwarz inequality and Claim 5.1, we have

G X d
‘<K2(2)>‘=)§xr< 2 > (”"(1))( )EX"

> o) ( % o) = ko) (5 )

x#x

=(1+0(1))nzd4. (45)

We now proceed to the induction step. Suppose k = 3, suppose that the
claim is true for k—1, and let # =V, U --- UV, E) be a (k, k)-cylinder
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such that |E| = dn*. Consider an auxiliary bipartite graph with bipartition
X=V,and Y =V, x --- xV,_, and edge set

E={(x,y)eXxY:yeH(x)}.
Then |X|=n and |Y|=m=n*"". For x, x'€ X, put d, , =|G(x, x)|/m
Using the induction assumption, #(x, x') contains = n**~ 1)a’2 2k

copies of K,_;(2). Furthermore, from the previous claim we know that
Zx#x X, x > (dZn) Then

()= 2105
Kk(z) - x#x' Kk—l(z)
> (1+0(1)) Z n**=D E 1d2

e ()

2k

= (1+0(1)) 3¢ d*,

as required. ||
The proof of C; = C, is then straightforward.

Proof of C; = C,. The first part (i.e., the inequality) follows from the
previous claim. To obtain the asymptotic equality in the case in which the
joint links are almost all (¢, d%)-regular, we observe the following.

For k =2 we use the fact that (e, d*)-regularity of joint links means that
d, , ~d* for almost all pairs of vertices x, x’€V;. Then we have the
asymptotic equality at every step of Eq. (45), which is exactly what we need
to show.

For k > 2, since #(x, x') is (&, d*)-regular for almost all pairs of vertices
x, x' €V, by the induction assumption #(x, x’) contains (1+0(1)) n**~?

a’z)2 '/2%=1 copies of K,_,(2). Hence the number of copies of K,(2)
containing x, x’ is

2k1

(1+o(1)) P67 2= (d”)

and so, summing over all x, x' € X with x # x’, we have that the number of
copies of K, (2) in A is

(1+o(1) (’;) L@y = (o) e .

as required. ||
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5.2. Proof of C, = G,

The proof of this implication will be based on Claims 5.1 and 5.2 and on
a standard application of the Cauchy—Schwarz inequality.

Proof of C; = C;. For k =2, this implication follows from the follow-
ing. Let G=(XuUY,E) be a bipartite graph with |X|=1|Y|=n, and
|E| = dn?, and assume that G contains (1+o0(1)) n*d*/4 copies of K,(2),
ie., |(x3) = (1+0(1)) n*d*/4. But then we must have equality everywhere
in (45), which means that d, .- ~ d* for almost all pairs of vertices x, x" € X.
This shows, however, that G(x, x') is (e, d*)-regular for almost all pairs of
vertices x, x' € X.

Assume now we have k>2. Let =0, --- UV, E) be a (k, k)-
cylinder with |V;| = n for all i € [k] and |E| = dn*. Suppose that 5 contains
(1+0(1)) n%d?" | 2* copies of K,(2).

Consider an auxiliary bipartite graph with bipartition X =V, and
Y=V, x--- xV,_, and edge set

E={(x,y)eXxY:yeH(x)}.

Then |X|=n and |Y|=m=n*"'. For x, x' € X, put d, , =|G(x, x")|/m.

From Claim 5.1 we obtain
X
Z dx x > <dn>a
x#x ’ 2

2" 1 n\! X 2!
£ a5
) a0t

We apply Claim 5.2 to #(x, x) and obtain that it contains at least

and so

(1+0(1)) n26=Dg?" ) j2k=1

copies of K;_,(2). Consequently

% X

= |[{copies of K, (2) containing x, x'}|

()|~ 21 k }
5 2=1

= (140(1)) Z a’2

k-1
x#x' 2
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2k=1) 2

2k
2d

(1+0(1))
= (1+o(1))—d2" @7

On the other hand, by C, we have that

% 2
‘(Kk@))‘ (”"(U)_d (45)

From (47) and (48) we conclude that d, ,» ~d* for almost all palrs X,
x"e€ X =V,, and therefore that #(x, x) contains (1+o(1)) n*¢~D(g@*)2"'/
2¥=1 copies of K;_,(2). In view of the induction assumption this means that
H(x, x') is (g, d*)-regular for almost all pairs x, x’ eV, i.e., C; holds. ||

5.3. Proof of C; = C,

We start with the following claim.

CLamM 5.3. Let ¢>0 be a fixed constant. Let G=(X VY, E) be a
bipartite graph with |X|=n, |Y|=m, and assume that |G(x, x")| ~ ¢*m for
almost all pairs x, x' € X. Then |G(x)| ~ cm for almost all vertices x € X.

Proof. Indeed, suppose that |G(x)| = (c+¢&) m for all vertices x € X,
where X' < X is “big.” Let G’ be the subgraph of G induced on X’ U Y and
let |G'(y)|=c, |X'| for all y e Y. Note that |G'(x, x)| = |G(x, x")| for all x,
x" € X'. Then we have

v
Y GG, XN ~5’m X2,
x#Xx'

where we write ¥, , for the sum over all pairs {x, x'} of distinct vertices
from X’. On the other hand,

X' ’
' IG'(»)] ,
5 16630 = ¥ < N L5 s
x#X' yeyYy yeyYy

Hence Y.y cﬁ ~ ¢*m which implies, by the Cauchy-Schwarz inequality,
that ¢, ~ ¢ for almost all y € Y. But then,

em|X'|~ 3 ¢, |X=EG)= 3, |G(X)|>(c+e)m|X,

yeY xeX’
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which is a contradiction. The same applies to the set of all vertices x € X
for which |G(x)| < (c—e)m. |

Now we give a proof of the implication C; = C,.

Proof of C;=C,. We proceed by induction on k. For k=2, the
statement follows from Claim 5.3.

Let k> 2 be given. We shall prove that C; = C, holds for k. Thus,
assume that the link 5#(x, y) is (e, d*)-regular for almost all x, y € V. We
shall prove that for almost all x € ¥, the link #(x) is (¢, d)-regular, where
g —>0ase—0.

Consider an auxiliary bipartite graph G=(X U Y, E) with bipartition
X=V,andY =[V;]*x --- x[V;_,]* and edge set

E ={(x,y)€e X xY : yspansacopy of K;_(2) in #(x)}.

Then |X|=n and |[Y|=(})*'~n**"D/2%"1 Let x and x’ be such that
H(x,x') is (e, d*)-regular. Since #(x,x’) is a (k—1, k—1)-cylinder, we
may apply the implication C; = C, that we have already proved to deduce
that #(x,x) contains ~ n?*~D(g?)2"" j2k=1= n2("‘1)d2k/2"‘1 copies of
K, _{(2). This means that almost all pairs of Vertlces x, x' € X have their
common neighborhood of size |G(x, x)| ~ n**~Dd? /251, Setting m =
(*)*'and ¢ =d* ', one may apply Claim 5.3 to infer that

. 1nZ(k 1)

IG(x)| ~ d? ET=

(49)

for almost all xeX. For each xeX, set d, =|#(x)|/n*!. Using
Claim 5.2, we get that

o1 n2(k—1)

Gz a2 S
for all x and hence d = d, for almost all x € X. However,

dn*=|#|= 3 |#x)|=Y dn*",

xeX xeX

whence dn =3, .y d.. We may conclude that d, ~ d for almost all x € X.

This, in view of (49), means that J#(x) satisfies condition C, for (k—1)-
cylinders. Since C, = C; holds for (k—1)-cylinders (already proved),
C; = G, holds for (k—1)-cylinders (induction assumption), and C, = C,
holds for (k—1)-cylinders (already proved), we conclude that J#(x) is
(¢’, d)-regular for almost all x € X, as required. ||
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6. PROOF OF THE SUBHYPERGRAPH COUNTING FORMULA

The heart of the proof of P, => P is in proving a counting lemma, which
we now formulate. We shall need several definitions and further notation.

DrerFiNiTION 6.1. Let s and k, s>k >2, be two integers. An (s, k)-
complex  is a system {# ®}¥_, such that

i=1
(a) #DVisapartitionV, U --- UV,
(b)y #9is an (s, i)-cylinder with s-partition s for every 1 <i <k,
() #9  underlies #¢*Y  for every 1<i<k, ie,
HOD < A (HD).

Now we define the notion of regularity for a (k, k)-cylinder with respect
to an underlying (k, k— 1)-cylinder.

DEerFINITION 6.2. Let 4 be a (k, k—1)-cylinder underlying a (k, k)-
cylinder ##. We say that J# is (¢, d)-regular with respect to ¥ if the following
condition is satisfied: whenever ¥’ = ¢ is a (k, k— 1)-cylinder such that

| (") = e | A(9)],
we have
(d—e) | (G < |H O H(G)| < (d+e) |[#(F)] .

Note that this definition coincides with Definition 2.5 if k=2 or if ¢ is
the complete (k, k—1)-cylinder on V; U --- UV,. We extend the above
definition to the case of (s, k)-cylinders #.

DEerFINITION 6.3. Let % be an (s, k—1)-cylinder underlying an (s, k)-
cylinder »#. We say that 5 is (e, d)-regular with respect to ¥ if
H[U;er V;]is (e, d)-regular with respect to 4[| );., V;]forall I e [s]%

Now we are ready to introduce the concept of regularity for an
(s, k)-complex A .

DrerINiTION 6.4. Letd = (d,, ..., d;) be a vector of positive real numbers
such that 0 <d; <1 for alli =2, ..., k. We say that the (s, k)-complex # is
(9, d)-regular if # Y is (5, d,,,)-regular with respect to #® for every
I1<i<k.

Let #® be an (s, k)-cylinder with s-partition V; U --- U V,. We say that
a copy of a k-uniform hypergraph ¥ c #® is transversal in #® if
V(%) nV;| <1 forall 1 <i<s.Ourkey counting result is as follows.
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THEOREM 6.5. Fix 2<k<s. For any e>0 and any d,, ..., d, >0, there
exist 6, > 0 and n, € N for which the following assertion holds. If 6 < 6, and
A is a (0, d)-regular (s, k)-complex on Vi U --- OV, where d=(d,, ..., d,)
and |V;| =n=ny for all i, then the number of transversal K in #® is
(14+0,(e)) d¥ ---dPn.

In the proof of this theorem, we shall need the following notions of
“link” and “‘extended link™ for complexes.

DEerFINITION 6.6. Let # be an (s, k)-complex on V; U --- UV,, where
s>k, and x e V,. We define #(x) = {#(x)}5_, and, if s > k, we also set
H(x)={A#D)*_|, where #? (ie[k]) is the i-uniform hypergraph
defined by

FO

x

H D if 1<i<k,
{ (%) i i (50)

HOAL(#Ox) i i=k
In (50) above, # ©(x) is the usual link of the vertex x in the (s, i)-
cylinder #®, and #® n A (#®(x)) denotes the (s—1,k)-cylinder

formed by the edges of #® that are cliques in the link #®(x). Note that
H#(x) can be viewed as an extension of .#'(x) in a sense that

T (x) = H(x) U { A 0 A (HD(x)}

It is easy to see that #(x) is an (s—1, k—1)-complex and #(x) is an
(s—1, k)-complex. Indeed, since s is an (s, k)-complex, for 1 <i <k, we
have # Y < A, (#D) (cf. Definition 6.1). Hence, for every vertex
x eV, we have

HV(x) < Ay (HO(x)),
and, therefore,
HED € A (FD)
For i = k, we have
FO = H 0 A (HOx)) @ H(H P () = H ()

directly from Definition 6.6.
The proof of Theorem 6.5 is based on the following two propositions.

ProrosiTiON 6.7. For any 2<k<s, any é> 0, and any d,, ...,d, >0,
there are constants 0 >0 and n, € N for which the following assertion holds.
Let A be a (0, d)-regular (s, k)-complex on ViU --- UV,, where d=
(dy, ....d,) and |V;| =n>=n, for all i € [s], and let d = (dpd;, ..., d_,d,, d,).
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Then, for all but at most on vertices x € V,, the extended link #(x) is a
(4, d)-regular (s—1, k)-complex.

ProrosiTiON 6.8.  For any k> 2, any 6' >0, and any d,, ..., d, > 0, there
are constants 0 > 0 and n, € N for which the following assertion holds. Let A
bea (0, d)-regular (k+1, k)-complexonV; U --- UV, ,, whered = (d,, ..., d})
and [Vi|=n=n, for all i € [k+1], and let d' = (d,d,, ..., d,_,d}). Then, for
all but at most d'n vertices x €V, the link #(x) is a (&', d")-regular
(k, k—1)-complex.

For our induction to work, we shall prove Theorem 6.5 and
Propositions 6.7 and 6.8 simultaneously.

Proof of Theorem 6.5 and Propositions 6.7 and 6.8. For given s >k > 2,
we denote the statement of Theorem 6.5 by S(s, k) and for s >k >2, we
denote the statement of Proposition 6.7 by L(s, k). We shall prove (i)—(vi)
below.

(1) The statement S(2, 2) is true.
(i) The implication S(k, k—1) = S(k, k) holds for every k > 3.
(iii) The implication S(s, k), L(s+ 1, k) = S(s+1, k) holds for every
s=2k>=2.
(iv) The statement L(3, 2) is true.
(v) The implication L(k+1, k) = L(s, k) holds for every s > k = 2.
(vi) The implication S(k,k—1), L(k+1,k—1)= L(k+1,k) holds
for every k> 2.
From (i)—(vi), one may easily deduce by induction (see the diagram below)

that Theorem 6.5 holds for every s> k > 2 and Proposition 6.7 holds for
every s >k = 2.

S(2,2), L(3,2) =5 5(3,2), L(4,2) 2 5(4,2), L(5,2) —> -+
(i, iv) (ii, vi)
S(3,3), L(4,3) = 5(4,3), L(5,3) —> -+
(ii, vi)

S(4,4), L(5,4) = -
The purpose of Proposition 6.8 is to simplify the proof of (vi) (this is also
the reason why we prove this proposition for (k+ 1, k)-complexes only).
Indeed, if we denote by L'(k) the statement of Proposition 6.8, we shall

prove the following:
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(vi’) The implication S(k,k—1), L(k+1,k—1)= L'(k) holds for
every k > 2.

(vi") The implication S(k, k—1), L'(k) = L(k+1, k) holds for every
k>2.

Clearly (vi’) and (vi") imply (vi).

Moreover, from (i)—(vi) one can deduce that L'(k) holds for every k£ > 2,
that is, (1)—(vi) yields the proof of Proposition 6.8 as well.

Now we prove statements (i)—(v), (vi’), and (vi").

(1) (Proof of S(2,2)) Statement S(2,2) follows directly from the
definition of regularity: a (6, d,)-regular (2,2)-cylinder #® contains
(dy+0,(5)) n* edges.

Gi) (Proof of S(k, k—1) = S(k, k)) Suppose now that S(k, k—1) is
true for some k > 3 and let # be a (J, d)-regular (k, k)-complex. Observe
first that {#®}Z| forms a (J, (d,, ..., d,_,))-regular (k, k—1)-complex;
therefore, if § < &', the number of transversal K& Vin #*Vis (140,(€))
d(" D d(2) k. Furthermore, we know that #® is (4, d,)-regular with
respect to #% D, In particular, this means that

(dy—3) | A (A ) < |H#® ~ H (A )] < (dy+) | A (D).

Since |A#® n A (A#%D)| counts the number of transversal K/ ® in #®,
we conclude that this number is (14 0, (¢)) d(")d("_ll) d(Z) kFife <e and
0 < min{e, d, }.

(iii) (Proof of S(s, k), L(s+1,k) = S(s+1, k)) Assume that S(s, k)
and L(s+1, k) are true for some s>k >2 and consider a (J, d)-regular
(s+1,k)-complex # on Viu---uV,,, where |[V)|=n>n, for all
ie[s+1]and n, is a large positlve integer.

From L(s+1, k) we know that H(x) is a (5 d)-regular (s, k)-cylinder
for all but dn vertices x € V,, , as long as d << 8. From S(s, k) we immedi-
ately have that #® n 2, (# ®(x)) contains

(1+0,(&") dP(dpdi_ )0 - (dydy) D (dyn)’

transversal K® for any such “good” x if § < ¢'. Each such transversal K®
in #® ~ A (# P (x)) together with x span a transversal K¥, in #®.

Hence, the total number of transversal K®, in #® is bounded from
below by

(1—&")(1—8) ndP (didy_ )+ V- - (dsdy) @ (dyn)*
=(1-¢&)1=38) dP+GD ... g@P+Dps+!
S(l—g)d{®) - .a§sne, (51)
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For the upper bound we get

(1 +g’) nd}})(dkdk_l)(kil) . (d3d2)(§) (dzn)x+5~n “n
=(1+¢") dl(jc)+(ki1) .. _dg§)+(§)ns+1+5~ns+1
<) dD dS )

provided that max{e’, 6} << min{e, d,, ..., d;}.

(iv) (Proof of L(3,2)) Let #®@ be a (J,d,)-regular (3,2)-cylinder
and, for xeV; and i =1, 2, set V| = #?(x). It follows from Claim 4.1
that (d,—0) n< V)| <(d,+6) n, i =1,2, for all but 26'/*n vertices x e V5.
We shall show that # @[V UV, ] is (26'/2, d,)-regular.

Indeed, let U, =V, U, =V}, such that |;5(U, U U,)| =252 |[V| V5.
Note that 262 |V| V5| = 26V4(d, —6)*n* = on® = 6 |V;| |V,|, where we used
the fact that § << d,. The (J, d,)-regularity of s#® concludes the argument.

v) (Proof of L(k+1,k)= L(s,k)) This fact follows from the
simple observation that every (s, k)-complex S can be viewed as a union
of (*;") many (k+ 1, k)-complexes that contain V.

~i') (Proof of S(k,k—1),L(k+1,k—1)= L'(k)) Assume that
statements S(k, k—1) and L(k+1, k—1) are true and let # = {#P}}_| be
a (9, d)-regular (k+1, k)-complex on V; U --- UV,,,, where |V;|=n> n,
for all i e [k+ 1] and n, is a large positive integer.

To prove L'(k), it suffices to show that for all but at most 0'n vertices
x€Viy, the link #(x) is a (', d’)-regular (k, k—1)-complex, where
d'=(d,d,,...,d,_d,)and 6' >0 asd— 0.

Observe first that {#©}(Z| is a (6, (d,, d;, ..., d;_,))-regular (k+1,

—1)-complex.

Thus we can apply statement L(k+1,k—1) on {#®}_] and obtain

that (cf. (50))

(@ {#x))C)isa (S, (dyds, ..., di_rdi_y))-regular (k, k—2)-complex,
and

) AVt (#C (%) s b, d,_)- regular with respect to
o *=V(x) for all but at most on vertices x € ¥, ;,where 6 — 0 as  — 0.

Hence, the only thing remaining to prove statement L'(k) is the
regularity of s ®(x) with respect to #*~Y(x). We do this by showing that
for all but 4k8'/?n vertices x € V,,, satisfying (a) and (b), the link #®(x)
is (20", d,_,d,)-regular with respect to # % Y(x). Consequently, #(x)
is a (J',d)-regular for all but at most J'n vertices xeV,,,, where
0'=5+4k6'* > 0as 6 0.
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Suppose that there exist 7 > 26'/%n vertices x,, ..., x, satisfying (a) and (b)
for which #®(x,) is not (26", d,_,d, )-regular with respect to #*~(x,),
ie[t]. More precisely, suppose that for every ie[t¢], there exists a
(k—1, k—2)-cylinder 4, = #*~1(x,) such that

|He 1 ()] = 20172 | Ay (€ D(x)] (53a)
and
|# () O A1 (%)] < (di_1d—26'7) | H_1 (%) (53b)
Suppose further that these (k—1, k—2)-cylinders have (k— 1)-partition
Viv - uV,_,. We define a (k, k—1)-cylinder ¢ by
G=#* V10 - UV,_,Ju O {x;ve:ee9}.
i=1

It is easy to see that

(D) = T 1#D A A (%) (54a)

1

and

D 0 A(9) = X 1A Yx) O H (). (s4b)

i=

We combine Egs. (53b) and (54b) and obtain
|#® 0 H(D)] < (de_1d—26'7) Zt:l | A1 ().
On the other hand, we shall show that
| 0 A(D)] > (dy1d—25'") Ztl |He (D)), (55)

which will be a contradiction. Thus, ¢ <25"/?n. The same applies to the
cases in which all the (k—1, k—2)-complexes ¥, have the same (k—1)-
partition ¥V, U --- UV, \V, for some je[k], or when we consider the
opposite inequality in (53b).

Now we deduce (55). Using assumption (b), (53a), 4 < #* V(x,), and
262 > §, we obtain that for every i € [¢],

|#%D A A (D) = (dy =) |1H_1 (%)

(532) ~
> 20%(dy_y =) |He (AP (56)
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Consequently, combining (54a) and (56) yields
| (D) = 26" (di_1 =) Y, 1A (4O (%)), (57)
i=1

For k>3, by (a), the (k,k—2)-complex {#?(x)}Z} restricted on
ViU - UV, is a (8, (dyds, ..., d,_,d,_,))-regular (k—1, k—2)-complex,
and hence by S(k—1, k—2) we have

[ (D)) = (1401 (1 A)) gy 2) 6 - (dydy) = o)

= (1+0,(1/4) d=Pd3 - -dPn,
provided that § < min{d,, ..., d,_,, 1/4}. It follows from (4, d,)-regularity
of #@ that this equation holds also for k=3. We may assume that

S(k—1, k—2) is true since this has already been verified in our inductive
proof of S(k, k—1) (see the proof diagram above). Hence,

\H(D)] > 1 x 28" 2(d,_, —8) x (1—1/4) d¥PdE D - --d Pt
> 25dyPdED - dPn*. (58)

Since, {# OV, U --- UV, UV 1}52] is a (d,(d,, ..., dp_))-regular
(k, k—1)-complex, using S(k, k—1), we obtain

(DI - OV UV Dl = (14 0,(1/4)) d¥ - d P,

(59)
provided that d < min{d,, ..., d,_,, 1/4}.
Combining (58) and (59) yields
EAGEXIEAC A | FAVEITRV] AREV) 73y ) ) (60)
We apply (6, d,)-regularity of #® with respect to #*~" and obtain
|#© O A (D)] = (di —0) | H1(D). (61)

Putting equations (54a), (56), and (61) together yields
|#® A (%) = (de—0) X (di_y =) Y, |H4_1(%)]
i=1
t
> (didy_1 —20'%) Y | A1 (D)),
i=1

provided that 6 < 4.
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vi") (Proof of S(k,k—1),L'(k) = L(k+1,k)) Assume that state-
ments S(k, k—1) and L'(k) are true and let A4 be a (9, d)-regular (k+ 1, k)-
complex on V] U --- UV, where |V;|=n>n, for alli e [k+1] and n, is
a large positive integer.

To prove L(k+ 1, k), we need to show that for all but at most on vertices
x € Vi;1, the extended link #(x) is a (5, d)-regular (k, k)-complex, where

= (dyds, ...,d,_,d,,d,)and 6 - 0 as 6 — 0.

Our assumptlon that L'(k) is true means that {# O }i21 = {# O (x)}_,
=H(x)isa (', (dd,, ..., d,_,d;))-regular (k, k—1)-complex for all but at
most d'n vertices x € V;,,, where 8’ - 0 as § — 0.

Hence, the only thing remaining to prove L(k+1 k) is the regularity of
HP = #® A (A P(x)) with respect to # ¢V = #P(x) for almost all
vertices x € V;,,. We prove this by showmg that #® n A (A# P(x)) is
(26''72, d,)-regular with respect to # ®(x) for every x € V,,, for which the
link A#(x) is (9", (d,ds, ..., dy_,d}))-regular. Then, H(x) is a (3, d)-regular
for all but at most n vertices x € Vis1, where 6 = 26" - 0 as 6 — 0.

Suppose that % is a (k, k—1)-cylinder, ¥ = # ®(x), such that |£,(%)| >
25"V | A (A# ®(x))|. We need to show that

(d =26 | AU < AP 0 A (H P (%)) 0 H (D)

<
< (di+20"") |H (D). (62)
Since 4 = # ¥(x) and, therefore, #; (%) = A;(# ©(x)), we have
|# D A (H D)) 0 H(G)] = |HP A A (D). (63)
Consequently, (62) is simply
(d=20") | (DN S |HD 0 HU(D)| < (d +20"72) | H(D)]. (64)
Observe first that

e since {#O(x)}t_, is a (¢, (dyds, ..., di_ dy))-regular (k, k—1)-
complex (by our choice of x), by S(k, k—1) we have

(A D)) = (140, (1/9))(dd )4+ (dsdy)D (dyn),  (65)

provided that ¢’ < min{d,, ..., d;, 1/4};

e similarly, {#P[V, U --- UW]}iZ1 is a (6,(d,, ..., d,_,))-regular
(k, k—1)-complex; thus, using S(k, k—1) again,

| (A EDV O - VD= (1+0,(1/4)) dW"D -.dPnk,  (66)

provided that 6 << min{d,, ..., d;, 1/4}.
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Now we use Egs. (65) and (66) to derive £64). Ingeed, since we assume that
0 < <min{d,, ...,d,}, we have d{V.--dPds > 5" Consequently,

(D] > 20" 1A (A D))
(65)
> 28"2(1=1/4)(dydy )4 (dsd) ® (dyn)*

k (66)
> 0(1+1/4)dED - dPnt 3 5 |H (A IV, U - UV
(67)

Finally, the (J, d,)-regularity of #® with respect to # *~V gives (64). |]

In Definition 6.3, we assumed that for every I e [s]*, the restriction
H[Ujer Vi1 is (e, d)-regular with respect to 4[J;.,; V;]. In other words,
the density d; of the subgraph #°[{J;.; V;] is roughly the same for every
Ie[s]*. Now we allow different values of d, (I e[s]¥) and state a
straightforward extension of Theorem 6.5. We start with some definitions.

DEFINITION 6.9. Let % be an (s, k—1)-cylinder underlying an (s, k)-
cylinder 5 and let d= (dr)repsyx be a list of () positive real numbers d,,
where 0 <d; <1. We say that # is (g, d) regular with respect to 9 if
H[Ujer V;1is (e, d;)-regular with respect to 9[J;., V;] for all I € [s]".

DrerintTION 6.10.  For every integer i (2<i<k) let Ei,» =(d)resy be a
list of (x) positive real numbers d;, where 0<d, <1, and put d=
(dz, ...,d,). We say that the (s, k)-complex # is (0, d)-regular if #*V is
(6, d, +1) regular with respect to #© for every 1 <i <k.

Now we are ready to state an extension of Theorem 6.5.

COROLLARY 6.11. Fix 2<k<s. For any ¢>0 and any Jz, s 3,( as
described in Definition 6.10, there exist d,>0 and n, € N for which the
following assertion holds. If 6 <, and A is a (9, ?l)-regular (s, k)-complex
onViu --- UV, where V| =n=n, for all i, then the number of transversal
K® inA®is(1+0,() [Trzy ey dr xn'.

The proof of this corollary follows the lines of the proof of Theorem 6.5
and we omit it here. For us, the most interesting case occurs when all
underlying cylinders are complete, that is d; =1 for every I €[s]’ and
2<i<k.

In this case, the number of transversal K® in #® is (140,(¢))
[1;crs* d; xn’°. We restate this observation in the following corollary.
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COROLLARY 6.12. Fix 2<k<s. For any ¢ >0 and any list d = (d;); c (.1¢
of (;) positive real numbers d;, where 0 <d; <1, there exist d,>0 and
ny € N for which the following assertion holds. If 6 <&, and H# is a (0, Zf)-
regular (s, k)-cylinder on Vy U --- UV, where |V;|=n>=n, for all ie[s],
then the number of transversal K in # is (14 0,(€)) [T, e+ di X 1".

Let 4 be an arbitrary k-uniform hypergraph on s vertices vy, ..., v,. We
define an (s, k)-cylinder S in the following way. For every I € [s]¥, we set

- HIU, . Vs if ielleE(9),
%I:Ul/ii|={_[UlEI 1] {Ul‘ } ( )
iel H =[Tics VONHL Uie, Vi1 otherwise.

Observe that every transversal copy of ¢ in J# corresponds to exactly one
transversal copy of # (" in #. Consequently, applying the the previous
corollary on #, we deduce the following counting formula.

COROLLARY 6.13 (Subhypergraph Counting Formula). Fix 2<k<s.
For any ¢>0 and any 0<d<1, there exist 6,>0 and nyeN for
which the following assertion holds. If the hypergraph # is a (0, d)-regular
(s, k)-cylinder on Vi U --- OV, where |V;| =n=n, for allie[s] and 6 <,
and 9 is an arbitrary k-uniform hypergraph on s vertices, then the number of
transversal 9 in A is (1+0,(g)) d“P(1 —d) P~ p*,

Clearly, one may generalize Corollary 6.13 above to the case in which
the (s, k)-cylinder # has a non-constant density vector d = (d;);c -
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