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Haviland and Thomason and Chung and Graham were the first to investigate
systematically some properties of quasi-random hypergraphs. In particular, in a
series of articles, Chung and Graham considered several quite disparate properties
of random-like hypergraphs of density 1/2 and proved that they are in fact equiva-
lent. The central concept in their work turned out to be the so called deviation of a
hypergraph. They proved that having small deviation is equivalent to a variety of



other properties that describe quasi-randomness. In this paper, we consider the
concept of discrepancy for k-uniform hypergraphs with an arbitrary constant
density d (0 < d < 1) and prove that the condition of having asymptotically vanish-
ing discrepancy is equivalent to several other quasi-random properties of H, similar
to the ones introduced by Chung and Graham. In particular, we prove that the
correct ‘‘spectrum’’ of the s-vertex subhypergraphs is equivalent to quasi-random-
ness for any s \ 2k. Our work may be viewed as a continuation of the work of
Chung and Graham, although our proof techniques are different in certain
important parts. © 2002 Elsevier Science

1. INTRODUCTION AND THE MAIN RESULT

The rich interplay between the investigation of deterministic combina-
torial structures and random combinatorial structures has been an impor-
tant feature of modern combinatorics. One aspect of this interaction
focuses on the study of deterministic structures that ‘‘mimic’’ the behavior
of random ones, from certain specific points of view.

In this paper, we are interested in ‘‘quasi-random’’ hypergraphs, in the
sense of Chung and Graham [5, 6]. Haviland and Thomason [9, 10],
Chung [4], and Chung and Graham [5, 6] have already established the
fundamental results in this area. Babai et al. [3] have implicitly found a
connection between communication complexity and what is known as
‘‘hypergraph discrepancy,’’ a key concept, as we shall see, in the study of
quasi-random hypergraphs. This connection was explored further by
Chung and Tetali [7]. Here, we carry out our investigation very much
along the lines of Chung and Graham [5, 6], except that we focus
on hypergraphs of arbitrary constant density, making use of different
techniques in certain delicate parts.

In the remainder of this introduction, we carefully discuss a result of
Chung and Graham [5] and state our main result, Theorem 1.3 below.

1.1. The Result of Chung and Graham

We need to start with some definitions. For a set V and an integer k \ 2,
let [V]k denote the system of all k-element subsets of V. A subset G … [V]k

is called a k-uniform hypergraph. If k=2, we have a graph. We sometimes
use the notation G=(V(G), E(G)). If there is no danger of confusion, we
shall identify the hypergraphs with their edge sets. In particular, we write
|H| for the number of edges in H. Throughout this paper, the integer k is
assumed to be a fixed constant.

For any l-uniform hypergraph G and k \ l, let Kk(G) be the set of all
k-element sets that span a clique K (l)k on k vertices. We also denote by
Kk(2) the complete k-partite k-uniform hypergraph whose every partite set
contains precisely two vertices. We refer to Kk(2) as the generalized
octahedron, or, simply, the octahedron.
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We also consider a function mH: [V]kQ {−1, 1} such that, for all
e ¥ [V]k, we have

mH(e)=3
−1, if e ¥H

1, if e ¨H.

Let [k]={1, 2, ..., k} and let V2k denote the set of all 2k-tuples
(v1, v2, ..., v2k), where vi ¥ V (1 [ i [ 2k). Furthermore, let P (k)H : V

2kQ
{−1, 1} be given by

P (k)H (u1, ..., uk, v1, ..., vk)= D
e=(ei)

k
i=1

mH(e1, ..., ek),

where the product is over all vectors e=(ei)
k
i=1 with ei ¥ {ui, vi} for all i

and we understand mH to be 1 on arguments with repeated entries.
The deviation dev(H) of H is defined by

dev(H)=
1
m2k

C
ui, vi ¥ V, i ¥ [k]

P (k)H (u1, ..., uk, v1, ..., vk).

Note that the quantity m2k dev(H) is essentially the difference between the
number of 2k-tuples that induce an even number of edges and the number
of 2k-tuples that induce an odd number of edges.

For two hypergraphs G and H, we denote by (HG) the set of all induced
subhypergraphs of H that are isomorphic to G. We also write (HG)

w for the
number of weak (i.e., not necessarily induced) subhypergraphs of H that
are isomorphic to G. Furthermore, we need the notion of the link of a
vertex.

Definition 1.1. Let H be a k-uniform hypergraph and x ¥ V(H). We
shall call the (k−1)-uniform hypergraph

H(x)={e0{x}: e ¥H, x ¥ e}

the link of the vertex x in H. For a subsetW … V(H), we define H(W) by

H(W)=3
x ¥W

H(x).

For simplicity, ifW={x1, ..., xk}, we write H(x1, ..., xk).

Observe that if H is k-partite, then H(x) is (k−1)-partite for every
x ¥ V. Furthermore, if k=2, then H(x) may be identified with the
set of all vertices connected to x; i.e., H(x) is the neighborhood of x.
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Furthermore, H(x, x −) is the set of all vertices connected to both x and x −;
i.e., H(x, x −) is the ‘‘joint neighborhood’’ of x and x −.

In [5], Chung and Graham proved that if the density of an m-vertex
k-uniform hypergraph H is 1/2, i.e., |H|=(1/2+o(1))(mk), where o(1)Q 0
as mQ., then the following statements are equivalent:

Q1(s): for all k-uniform hypergraphs G on s \ 2k vertices and
automorphism group Aut(G),

:1H
G
2 :=(1+o(1)) 1m

s
2 2−( sk) s !

|Aut(G)|
,

Q2: for all k-uniform hypergraphs G on 2k vertices and auto-
morphism group Aut(G),

:1H
G
2 :=(1+o(1)) 1 m

2k
2 2−(2kk ) (2k)!

|Aut(G)|
,

Q3: dev(H)=o(1),
Q4: for almost all choices of x, y ¥ V, the (k−1)-uniform hypergraph

H(x)gH(y), that is, the complement [V]k−10(H(x)gH(y)) of the
symmetric difference of H(x) and H(y), satisfies Q2 with k replaced
by k−1,

Q 5: for k−1 [ r < 2k and almost all x, y ¥ V,

:1H(x, y)
K (k−1)r

2 :=(1+o(1)) 1m
r
2 2−( rk−1).

The equivalence of these properties is understood in the following sense.
For two properties involving o(1) terms P=P(o(1)) and P −=P −(o(1)), the
implication ‘‘P S P − ’’ means that for every e > 0 there is a d > 0 so that
any k-uniform hypergraph H on m vertices satisfying P(d) must also
satisfy P −(e), provided m >M0(e).

Chung and Graham [5] stated that ‘‘it would be profitable to explore
quasi-randomness extended to simulating random k-uniform hypergraphs
Gp(n) for p ] 1/2, or, more generally, for p=p(n), especially along the
lines carried out so fruitfully by Thomason [12, 13].’’ Our present aim is to
take the first steps in this direction. In this paper, we concentrate on the
case in which p is an arbitrary constant. In certain crucial parts, our
methods are different from the ones of Chung and Graham. In fact, it
seems to us that the fact that the density of H is 1/2 is essential in certain
proofs in [5] (especially those involving the concept of deviation).
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1.2. Discrepancy and the Subgraph Counting Formula

The following concept was proposed by Frankl and Rödl and was later
used by Chung [4] and Chung and Graham in [5, 6]. For an m-vertex
k-uniform hypergraph H with vertex set V, we define the density d(H) and
the discrepancy disc1/2(H) of H,

d(H)=|H| 1m
k
2−1

and

disc1/2(H)=
1
mk

max
G … [V]k−1

| |H 5Kk(G)|− |H̄ 5Kk(G)| |, (1)

where the maximum is taken over all (k−1)-uniform hypergraphs G with
vertex set V, and H̄ is the complement [V]k0H of H.

To accommodate arbitrary densities, we extend the latter concept as
follows.

Definition 1.2. Let H be a k-uniform hypergraph with vertex set V
with |V|=m. We define the discrepancy disc(H) of H as

disc(H)=
1
mk

max
G … [V]k−1

| |H 5Kk(G)|−d(H) |Kk(G)| | , (2)

where the maximum is taken over all (k−1)-uniform hypergraphs G with
vertex set V.

Observe that if d(H)=1/2, then disc(H)=(1/2) disc1/2(H), so both
notions are equivalent. Following some initial considerations by Frankl
and Rödl, Chung and Graham investigated the relation between discrep-
ancy and deviation. In fact, Chung [4] succeeded in proving the following
inequalities closely connecting these quantities:

(i) dev(H) < 4k(disc1/2(H))1/2
k
,

(ii) disc1/2(H) < (dev(H))1/2
k
.

For simplicity, we state the inequalities for the density 1/2 case. For the
general case, see Section 5 of [4].

Before we proceed, we need to introduce a new concept. If the vertex set
of a hypergraph is totally ordered, we say that we have an ordered
hypergraph. Given two ordered hypergraphs GO and HO Œ, where O and
O Œ denote the orderings on the vertex sets of G=GO and H=HO Œ, we
say that a function f: V(G)Q V(H) is an embedding of ordered hypergraphs
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if (i) it is an injection, (ii) it respects the orderings, i.e., f(x)O Œf(y)
whenever xO y, and (iii) f(g) ¥H if and only if g ¥ G, where f(g) is the
set formed by the images of all the vertices in g.

Furthermore, if G=GO and H=HO Œ, we write

1H
G
2

O

=1HO Œ

GO

2

for the number of such embeddings. We use the same symbol ‘‘O’’ for the
orders involved in case this causes no confusion.

As our main result, we shall prove the following extension of Chung and
Graham’s result (in the sense that the density of H is allowed to be
different from 1/2).

Theorem 1.3. Let H=(V, E) be a k-uniform hypergraph of density d
on m vertices. Then the following statements are equivalent:

P1: disc(H)=o(1),
P2: disc(H(x))=o(1) and d(H(x))=(1+o(1)) d for all but o(m)

vertices x ¥ V and disc(H(x, y))=o(1) and d(H(x, y))=(1+o(1)) d2 for
all but o(m2) pairs x, y ¥ V,

P3: disc(H(x, y))=o(1) and d(H(x, y))=(1+o(1)) d2 for all but
o(m2) pairs x, y ¥ V,

P4: the number of non-induced copies of Kk(2) in H is asymptotically
minimized among all k-uniform hypergraphs of density d; indeed,

: 1 H

Kk(2)
2w :=(1+o(1)) m

2k

2kk!
d2
k
, (3)

P5: for every s \ 2k and all k-uniform hypergraphs G on s vertices with
e(G) edges and automorphism group Aut(G),

:1H
G
2 :=(1+o(1)) 1m

s
2 de(G)(1−d) ( sk)−e(G) s !

|Aut(G)|
,

P −5: for every ordering HO Œ of H and for every fixed integer s \ 2k,
every ordered k-uniform hypergraph GO on s vertices with e(G) edges is such
that

: 1H
G
2

O

:=(1+o(1)) 1m
s
2 de(G)(1−d) ( sk)−e(G),
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P6: for all k-uniform hypergraphs G on 2k vertices with e(G) edges and
automorphism group Aut(G),

:1H
G
2 :=(1+o(1)) 1 m

2k
2 de(G)(1−d) (2kk )−e(G) (2k)!

|Aut(G)|
.

P −6: for every orderingHO Œ ofH, every ordered k-uniform hypergraph
GO on 2k vertices with e(G) edges is such that

: 1H
G
2

O

:=(1+o(1)) 1 m
2k
2 de(G)(1−d) (2kk )−e(G).

The equivalence between properties is understood in the sense of Chung
and Graham’s approach.

Note that, similarly to the case where k=2 (see, e.g., [1, 2]), the equiva-
lence among the above properties may be used to develop a fast algorithm
for checking whether a given hypergraph is quasi-random. While it is hard
to check whether disc(H) [ d directly from the definition of disc(H), one
may check property P4 in O(m2k) time. This may be further improved using
techniques from [1, 11].

Some of the implications in Theorem 1.3 are fairly easy or are by now
quite standard. There are, however, two implications that appear to be
quite difficult.

The proof of Chung and Graham that dev1/2(H)=o(1) implies P5 (the
‘‘subgraph counting formula’’) is based on an approach that has its roots in
a seminal paper of Wilson [14]. This beautiful proof seems to make non-
trivial use of the fact that d(H)=1/2. Our proof of the implication that
small discrepancy implies the subgraph counting formula (P1 S P

−

5) is
based on a different technique, which works well in the arbitrary constant
density case (see Section 6).

The second implication with a rather technical proof is P2 S P1. This
proof is based on the observation that in k-uniform k-partite hypergraphs
the regularity of links and pair-links implies the regularity of the whole
hypergraph. For details, we refer the reader to Sections 3.1 and 4.

Remark. Let us make some remarks on the asymptotic notation that
we shall use.

Unless otherwise stated, we understand by o(1) a function approaching
zero as the number of vertices of a given hypergraph goes to infinity.

We also use x ’ y if x=(1+o(1)) y and x N y if x \ (1+o(1)) y.
Finally, we write O1(x) for a term y such that |y| [ x.
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2. DEFINITIONS

Besides introducing some definitions and notation, our aim in this
section is to argue that, for most of the purposes of this paper, we may
restrict ourselves to the case of k-partite k-uniform hypergraphs. To this
end, we first set up a few facts concerning k-partite hypergraphs.

2.1. Definitions for Partite Hypergraphs

For simplicity, we first introduce the term cylinder to mean partite
hypergraphs.

Definition 2.1. Let k \ l \ 2 be two integers. We shall refer to any
k-partite l-uniform hypergraph H=(V1 2 · · · 2 Vk, E) as a k-partite
l-cylinder or (k, l)-cylinder. If l=k−1, we shall often write Hi for the
subhypergraph of H induced on 1j ] i Vj. Clearly, H=1k

i=1 Hi. We shall
also denote by K (l)k (V1, ..., Vk) the complete (k, l)-cylinder with vertex
partition V1 2 · · · 2 Vk.

Definition 2.2. For a (k, l)-cylinder H, we shall denote by Kj(H),
l [ j [ k, the (k, j)-cylinder whose edges are precisely those j-element
subsets of V(H) that span cliques of order j in H.

Clearly, the quantity |Kj(H)| counts the total number of cliques of order
j in H. In the case in which l=1, the (k, j)-cylinder Kj(H) is the complete
k-partite j-uniform hypergraph on 1H=1h ¥H h.

When we deal with cylinders, we have to measure density according to
their natural vertex partitions.

Definition 2.3. Let H be a (k, k)-cylinder with k-partition V=V1 2
· · · 2 Vk. We define the k-partite density or simply the density d(H) of
H by

d(H)=
|H|

|V1 | · · · |Vk |
.

To be precise, we should have a distinguished piece of notation for the
notion of k-partite density. However, the context will always make it clear
which notion we mean when we talk about the density of a (k, k)-cylinder.

We should also be careful when we talk about the discrepancy of a
cylinder.
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Definition 2.4. Let H be a (k, k)-cylinder with vertex set V=
V1 2 · · · 2 Vk. We define the discrepancy disc(H) of H as follows:

disc(H)=
1

|V1 | · · · |Vk |
max

G … [V]k−1
| |H 5Kk(G)|−d(H) |Kk(G)| | , (4)

where the maximum is taken over all (k, k−1)-cylinders G with vertex set
V=V1 2 · · · 2 Vk.

We now introduce a simple but important concept concerning the
‘‘regularity’’ of a (k, k)-cylinder.

Definition 2.5. Let H be a (k, k)-cylinder with k-partition V=
V1 2 · · · 2 Vk and let d < a be two positive real numbers. We say that H is
(d, a)-regular if the following condition is satisfied: if G is any (k, k−1)-
cylinder such that

|Kk(G)| \ d |V1 | · · · |Vk |, (5)

then

(a−d) |Kk(G)| [ |H 5Kk(G)| [ (a+d) |Kk(G)|. (6)

One should observe that the (d, a)-regularity of a hypergraph H does
not imply that H has density a; we may only conclude that the density of a
(d, a)-regular hypergraph is between a−d and a+d. Moreover, the follow-
ing simple facts hold.

Fact 2.6. LetH be a (d, a)-regular (k, k)-cylinder. Then disc(H) [ 2d.

Fact 2.7. SupposeH is a (k, k)-cylinder with k-partitionV=V1 2 · · · 2
Vk. Put a=d(H) and assume that disc(H) [ d. ThenH is (d1/2, a)-regular.

2.2. The k-Partite Reduction

Suppose H is a k-uniform hypergraph and let HŒ be one of its k-partite
spanning subhypergraphs. In this section, we try to relate the deviation and
the discrepancy of HŒ to those of H.

Definition 2.8. Let H=(V, E) be a k-uniform hypergraph with m
vertices and let P=(Vi)

k
1 be a partition of the vertex set V. We denote by

HP the (k, k)-cylinder consisting of the edges h ¥H satisfying |h 5 Vi |=1
for all i ¥ [k].

The following proposition holds.
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Proposition 2.9. For any partition P=(Vi)
k
1 of V, we have

(i) disc(H) \ |d(HP)−d(H)| |V1 | · · · |Vk |/mk, and
(ii) disc(HP) [ 2 disc(H) mk/|V1 | · · · |Vk |.

Proof. Let P=(Vi)
k
1 be any partition of V. Observe that HP consists

precisely of the vertex sets of those copies of K (k−1)k in K=K(k−1)k

(V1, ..., Vk) which are also edges in H; that is, HP=H 5Kk(K). Since
|Kk(K)|=|Kk(K

(k−1)
k (V1, ..., Vk))|=|V1 | · · · |Vk |, this implies the first part of

the proposition by taking G=K in (2).
On the other hand, let G0 … [V]k−1 be a (k, k−1)-cylinder for which the

maximum is attained in (4), the definition of disc(HP). Observe that
HP 5Kk(G0)=H 5Kk(G0). Then

disc(HP)=
1

|V1 | · · · |Vk |
| |HP 5Kk(G0)|−d(HP) |Kk(G0)| |

[
1

|V1 | · · · |Vk |
| |H 5Kk(G0)|−d(H) |Kk(G0)| |

+
1

|V1 | · · · |Vk |
|d(H) |Kk(G0)|−d(HP) |Kk(G0)| |

[
mk

|V1 | · · · |Vk |
disc(H)+

1
|V1 | · · · |Vk |

|Kk(G0)| |d(H)−d(HP)|

[
mk

|V1 | · · · |Vk |
disc(H)+|d(H)−d(HP)|

[
2mk

|V1 | · · · |Vk |
disc(H),

where in the last inequality we used (i). L

We shall also need the following fact, which follows easily from, say,
Chebyshev’s inequality.

Fact 2.10. LetH=(V, E) be an m-vertex k-uniform hypergraph. Then
(1−o(1)) km partitions P=(Vi)

k
1 of V satisfy

(i) |Vi |=(1+o(1)) m/k for all i ¥ [k],
(ii) |HP |=(1+o(1))(k!/kk)|H|, and

(iii) d(HP)=(1+o(1)) d(H),

where o(1)Q 0 as |H|/mk−1Q..

An immediate consequence of the previous proposition and Fact 2.10 is
the following.
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Claim 2.11. If disc(H)=o(1), then disc(HP)=o(1) for (1−o(1)) km

partitions P=(Vi)
k
1 of V.

With some more effort, one may prove a converse to Claim 2.11.

Claim 2.12. Suppose there exists a positive real number c > 0 such that
disc(HP)=o(1) for ckm partitions P=(Vi)

k
1 of V. Then disc(H)=o(1).

Proof. Let S be a set of partitions P for which disc(HP)=o(1) and
|S| \ ckm. Suppose disc(H) \ d for some fixed d > 0, and let G0 be a
(k−1)-uniform hypergraph for which the maximum is attained in (2), the
definition of disc(H). Let P=(Vi)

k
1 ¥S be a partition satisfying the

conclusion of Fact 2.10 with respect to H, H 5Kk(G0), and Kk(G0). Such
a partition must exist since ckm+(1−o(1)) km > km. Observe that, then,

|HP 5Kk(G0)|=|(H 5Kk(G0))P |=(1+o(1))
k!
kk
|H 5Kk(G0)|,

and

|Kk(G0 5K (k−1)k (V1, ..., Vk))|=|(Kk(G0))P |=(1+o(1))
k!
kk
|Kk(G0)|,

and, from (iii) of Fact 2.10,

d(HP)=(1+o(1)) d(H).

For convenience, put K=K(k−1)k (V1, ..., Vk). We use an approach similar to
the one in Proposition 2.9 to get

disc(H)=
1
mk
| |H 5Kk(G0)|−d(H) |Kk(G0)| |

=
1
mk
: (1+o(1)) k

k

k!
|HP 5Kk(G0)|

−(1+o(1)) d(HP)
kk

k!
|Kk(G0 5K)| :

[
1
mk
kk

k!
| |HP 5Kk(K 5 G0)|−d(HP) |Kk(G0 5K)| |

+
1
mk
kk

k!
o(1)(|HP 5Kk(K 5 G0)|+d(HP) |Kk(G0 5K)|)

[ (1+o(1))
1
k!

disc(HP)+
1
mk
kk

k!
o(1) 2 1m

k
2

[
2
k!

disc(HP)+
2kk

(k!)2
o(1).
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Since by our assumptions disc(HP)=o(1), we immediately obtain that
disc(H) < d for large enough m, which is a contradiction. L

We now state the k-partite version of a part of our main result,
Theorem 1.3.

Theorem 2.13. Suppose V=V1 2 · · · 2 Vk, |V1 |=· · ·=|Vk |=n, and let
H=(V, E) be a (k, k)-cylinder with |H|=dnk. Then the following four
conditions are equivalent:

C1: H is (o(1), d)-regular;
C2: H(x) is (o(1), d)-regular for all but o(n) vertices x ¥ Vk and

H(x, y) is (o(1), d2)-regular for all but o(n2) pairs x, y ¥ Vk;
C3: H(x, y) is (o(1), d2)-regular for all but o(n2) pairs x, y ¥ Vk;
C4: the number of copies of Kk(2) in H is asymptotically minimized

among all such (k, k)-cylinders of density d, and equals (1+o(1)) n2kd2
k
/2k.

Remark. The simplifying condition |V1 |=· · ·=|Vk |=n has the sole
purpose of making the proof more readable and transparent. The immedi-
ate generalization of Theorem 2.13 for V1, ..., Vk of arbitrary sizes holds.

The proof of Theorem 2.13 will be given in Sections 4 and 5.

3. THE DERIVATION OF THE GENERAL CASE

In this part, we prove Theorem 1.3. We divide this proof into five
sections. In Section 3.1, we show the equivalence of properties P1, P2, and
P3. The proof of P4 S P1 is in Section 3.2. Both sections use Theorem 2.13
as the main tool. In Section 3.3, we prove P1 S P

−

5 using the ‘‘subhy-
pergraph counting formula’’ from Section 6. Then we show that P −5 S
P5 S P6 and P −5 S P

−

6 S P6 (see Section 3.4). Finally, we prove P6 S
P4 in Section 3.5. The flow of the whole proof is described in the following
diagram:

P2 S P3 S P1
d e

P1 P −6 R P −5
d e e

P4 R P6 R P5

3.1. Proof of P1 Z P2 Z P3

We are now ready to show that, in the first part of the proof of
Theorem 1.3, we may assume the hypergraph H to be k-partite. To be
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more precise, we show that the equivalence P1 Z P2 Z P3 in Theorem 1.3
follows from Theorem 2.13. We shall illustrate this on P1 S P2; the other
implications are handled similarly. In fact, we shall be somewhat sketchy;
we shall only indicate the double counting argument that gives this result.

Suppose that we have a k-uniform hypergraph H with density d such
that disc(H)=o(1). From Fact 2.10 and Claim 2.11 we know that for all
but o(1) km partitions P of V we have disc(HP)=o(1) and d(HP)=
(1+o(1)) d. For every partition P, denote by X(P) the set of all vertices
x ¥ V such that either disc(HP(x)) ] o(1) or disc(HP) ] o(1). From
Theorem 2.13 and Facts 2.6 and 2.7, we know that for all but o(1) km par-
titions P, we have |X(P)|=o(m). For the remaining o(1) km partitions P,
we use |X(P)| [ m. For a vertex x ¥ V, we define P(x) to be the collection
of all partitions P for which x ¥X(P). One can easily see that

C
P

|X(P)|=C
x ¥ V
|P(x)|.

Let S be the set of vertices x ¥ V for which |P(x)| > (1/2) km. Then

o(1) kmm+o(m) km \C
P

|X(P)|=C
x ¥ V
|P(x)| > 12 |S| k

m,

hence |S|=o(m). This means that, for almost all vertices x ¥ V, we have
disc(H(x)P)=disc(HP(x))=o(1) for at least (1/2) km partitions P. By
Claim 2.12, it follows that disc(H(x))=o(1) for all but o(m) vertices
x ¥ V. We proceed similarly in order to show that disc(H(x, y))=o(1) for
all but o(m2) pairs x, y ¥ V.

3.2. The Minimization of the Number of Octahedra

The aim of this section is to show that property P1 can be derived from
property P4 using the equivalence of the k-partite properties C1 and C4. We
start with the following lemma.

Lemma 3.1. Suppose a k-uniform hypergraph H on m vertices with
density d=d(H) is such that

: 1 H

Kk(2)
2w : ’ m

2k

2kk!
d2
k
. (7)

Then, for almost all partitions P of V=V(H),

: 1 HP

Kk(2)
2w : ’ n

2k

2k
d2
k

(8)

holds for n=m/k.
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Proof. Put

X(P)=: 1 HP

Kk(2)
2w : .

We consider X as a r.v. on the uniform probability space of all partitions P
of the vertex set V of H. Clearly, we may write X as a sum of 0–1 indicator
random variables as

X=C
K

XK,

where the sum is over all K …H with K 5Kk(2) and XK(P)=1 if and
only if K …HP. Note that P(XK=1)=P(K …HP)=k! km−2k/km.
Therefore, using (7), we have

E(X)=C
K

E(XK)=C
K

P(XK=1) ’
m2k

2kk!
d2
k k! km−2k

km
’
n2k

2k
d2
k
. (9)

We now invoke a lemma that will be proved in Section 5.1. Indeed,
Claim 5.2 states that

: 1 G

Kk(2)
2w : N n

2k

2k
d2
k

(10)

for all (k, k)-cylinders G of density d with n vertices in each of its vertex
classes. Comparing (9) and (10), we deduce that the expectation of X is
asymptotically equal to min X, and hence

P 1X \ (1+g)
n2k

2k
d2
k2=o(1)

for any fixed g > 0. This completes the proof of Lemma 3.1. L

We turn to the proof of the implication P4 S P1.

Proof of P4 S P1. Let H be a k-uniform hypergraph on m vertices such
that

: 1 H

Kk(2)
2w : ’ m

2k

2kk!
d2
k
, (11)
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where d is the density d(H) of H. Lemma 3.1 then implies that almost all
vertex partitions P=(Vi)

k
1 are such that

: 1 HP

Kk(2)
2w : ’ n

2k

2k
d2
k
,

where n=m/k. The implication C4 S C1 of Theorem 2.13 gives that, then,
the (k, k)-cylinder HP is (o(1), d(HP))-regular for almost all P. We now
use Fact 2.6 to conclude that HP satisfies disc(HP)=o(1) for a.a. P.
We may then apply Claim 2.12 with, say, c=1/2, to deduce that
disc(H)=o(1); in other words, property P1 holds for H. L

3.3. Proof of P1 S P −5

In this section, we prove that any k-uniform hypergraph H with
disc(H)=o(1) must be such that any k-uniform hypergraph G on s
vertices must occur as an induced subhypergraph of H as many times as
one would expect if H were a truly random hypergraph with density d.
Our proof will be based on a certain technical result, the ‘‘subhypergraph
counting formula,’’ which will be proved in Section 6.

Proof of P1 S P
−

5. We need to show that for every given integer s \ 2k,
real number e > 0, and density d ¥ (0, 1), there exists a real number d > 0
such that property P1(d) (i.e., property P1 with o(1) replaced by d) implies
property P −5(e, s) (i.e., property P −5 with given s and o(1) replaced by
O1(e)).

Let d0=d0(d, e) be the positive real number determined by
Corollary 6.13 and d0=min{d, 1−d}. Choose d > 0 of the form 1/t2k,
where t ¥N, satisfying

d=
1
t2k

[ 1d0
2
24, (12a)

and

d1/2k=
1
t
[
ed (

s
k)
0

100s2
[
1
s
. (12b)

Let m \ m(d, e) be an integer divisible by t and set n=m/t.
Suppose that H=HO Œ and G=GO are two ordered k-uniform

hypergraphs such that V(H)={v1 O Œ v2 O Œ · · · O Œvm}, V(G)={w1 O w2 O
· · · O ws}, d(H)=d, and disc(H) [ d.

For every i ¥ [t] set Vi={vj+n(i−1) : j ¥ [n]} and note that
V(H)=1 t

i=1 Vi is a partition of V(H). An s-tuple {u1, ..., us} is crossing,
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or transversal, if |{u1, ..., us} 5 Vi | [ 1 for all i ¥ [t]. Note that the number
of non-crossing s-tuples is bounded from above by

t 1n
2
21m−2
s−2
2=1
2
m 1m
t
−121m−2

s−2
2 (s)2
(s)2

=
m(m−t)
t(m)2
1 s
2
21m−2
s−2
2 (m)2
(s)2

[
1
t
1 s
2
21m
s
2 .

Since the number of crossing s-tuples is (ts) n
s, we have the following fact.

Fact 3.2. (ms)−(
t
s) n

s [ (s2)(
m
s)/t.

For I … [t], put HI=H[1i ¥ I Vi] and observe that HI is an (|I|, k)-
cylinder. One can mimic the proof of Proposition 2.9 and obtain the
following fact.

Fact 3.3. For every I ¥ [t]k, we have d(HI)=d+O1(d1/2) and

disc(HI) [ 2d×tk=2d1/2.

Consequently, owing to Fact 2.7, the cylinderHI is (2d1/4, d)-regular.

Thus, the (s, k)-cylinder HI satisfies the assumptions of Corollary 6.13
for every I ¥ [t] s. Therefore, there exist (1+O1(e)) de(G)(1−d) (

s
k)−e(G) n s

transversal copies of G in each HI (I ¥ [t] s).
Let I={i1 < i2 < · · · < is} ¥ [t] s and consider one transversal copy of G

in H on vertices u1 O u2 O · · · O us, where uj ¥ Vij for every j ¥ [s]. Then
the mapping j: V(G)Q V(H) defined by j(wi)=ui (i ¥ [s]) is an injection
preserving order, and preserving edges and non-edges of G; thus, j ¥ (HG)O .
In view of the previous paragraph, we have

(1+O1(e)) de(G)(1−d) (
s
k)−e(G) n s×1 t

s
2 (13)

such mappings.
On the other hand, let j ¥ (HG)O . The s-tuple {j(w1)O Œ j(w2)O Œ
· · · O Œ j(ws)} is either crossing or not.

In the first case, this s-tuple induces a transversal copy of G in H, and,
therefore, equation (13) yields the number of mappings j for which this
case occurs. In the second case, {j(w1)O Œ j(w2)O Œ · · · O Œ j(ws)} is not
crossing. By Fact 3.2, there are at most (s2)(

m
s)/t mappings j yielding this

case.
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Combining these two cases together implies that

: 1H
G
2

O

:=(1+O1(e)) de(G)(1−d) (
s
k)−e(G)n s×1 t

s
2+O11

1
t
1 s
2
21m
s
22 .

To complete the proof, it suffices to show that

(1+O1(e)) de(G)(1−d) (
s
k)−e(G) n s×1 t

s
2+O11

1
t
1 s
2
21m
s
22

=(1+O1(2e)) 1
m
s
2 de(G)(1−d) ( sk)−e(G). (14)

Owing to (12b), we have

1
t
1 s
2
21m
s
2 < e

100
1m
s
2 de(G)(1−d) ( sk)−e(G), (15a)

and

t s−1 s
2
2 t s−1 > t s− e

100
t s. (15b)

Since (15a) holds, (14) follows from the following inequality

(1− e/2) 1m
s
2 [ n s 1 t

s
2 [ (1+e/2) 1m

s
2 .

While the right-hand side of this inequality is immediate, the left-hand side
is a consequence of (15b). L

3.4. Proof of P −5 S P −6 S P6 and P −5 S P5 S P6

Implications P5 S P6 and P −5 S P
−

6 are trivial since P6 (respectively, P −6)
is a special case of P5 (respectively, P −5). Moreover, P −6 S P6 is a special
case of P −5 S P5, therefore, it suffices to prove that P −5 S P5.

Proof of P −5 S P5. Given two hypergraphs G and H, let us denote by
(HG)inj the set of injections j: V(G)Q V(H) such that j(g) ¥H if and only
if g ¥ G. Moreover, we write (HG)

w
inj for the set of such injections such that

j(g) ¥H whenever g ¥ G. Thus, (HG)inj is the set of embeddings j of G into
H such that j(V(G)) induces an isomorphic copy of G in H, whereas
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(HG)
w
inj is the set of embeddings j such that j(V(G)) induces a superhy-

pergraph of G in H. If G has automorphism group Aut(G), it is easy to
verify that we have

: 1H
G
2
inj

:=: 1H
G
2 : |Aut(G)| , (16)

and similarly for (HG)
w
inj and (HG)

w.
Suppose now that H is an ordered hypergraph with ordering O Œ. Then

1H
G
2
inj
=0

O

1HO Œ

GO

2 , (17)

where the union ranges over the set of all total orderings O of V(G).
Furthermore, a moment’s thought shows that the union in (17) is a disjoint
union. Hence

:1H
G
2
inj

:=C
O

: 1HO Œ

GO

2 : . (18)

Since P −5 holds, we have

: 1HO Œ

GO

2 :=(1+o(1)) 1m
s
2 de(G)(1−d) ( sk)−e(G)

for every total ordering O of V(G). Since there exist s ! total orderings of
V(G), combining (16) and (18) yields P5. L

3.5. Minimization of Octahedra from Subhypergraph Counting

We now prove that property P6 (which concerns a certain ‘‘subhy-
pergraph counting formula’’ for induced subhypergraphs) implies property
P4 (which concerns the number of (weak) subhypergraphs isomorphic to
octahedra). The proof will have two parts. In the first part we shall show
that, for every hypergraph H with density d, the number of copies of
Kk(2) in H is bounded from below by

(1+o(1))
m2k

2kk!
d2
k

(see Lemma 3.5). In the second part, we shall prove that P6 implies the
asymptotic equality (3) given in property P4 of Theorem 1.3. We start with
the following lemma.
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Lemma 3.4. Suppose the k-uniform hypergraph H with m vertices and
with density d=d(H) is such thatHP satisfies

: 1 HP

Kk(2)
2w : N n

2k

2k
d2
k

(19)

for almost all partitions P=(Vi)
k
1 of the vertex set V=V(H), where

n=m/k. Then

: 1 H

Kk(2)
2w : N m2k

2kk!
d2
k
. (20)

Proof. This lemma follows easily from a double counting argument.
Let us consider the family of pairs (K, P) such that

(i) Kk(2) 5K …H,
(ii) P=(Vi)

k
1 is such that (19) holds and |Vi | ’ n=m/k (1 [ i [ k),

and, finally,

(iii) K …HP.

On the one hand, the number N of such pairs (K, P) is

C
P

|{K: (i) and (iii) hold}| , (21)

where the sum is over all P for which (ii) holds. Thus, because of our
assumption on H and Fact 2.10, we have that

N N km
n2k

2k
d2
k
. (22)

On the other hand, we have that

N=C
K

|{P: (ii) and (iii) hold}| ’ : 1 H

Kk(2)
2w : k! km−2k, (23)

where the sum is over all K that satisfy (i). Above, we again made use of
Fact 2.10 to estimate the number of relevant partitions P for each fixed K.
Comparing (22) and (23), we deduce (20). L

The proof of the lower bound on the number of Kk(2) in H is straight-
forward now.
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Lemma 3.5. For any m-vertex k-uniform hypergraph H with density
d=d(H),

: 1 H

Kk(2)
2w : N m2k

2kk!
d2
k
. (24)

Proof. We know that all but o(1) km partitions P satisfies |Vi |=
n ’ m/k and d(HP) ’ d (see Fact 2.10). By Claim 5.2 we know that

: 1 HP

Kk(2)
2 : N n

2k

2k
d2
k
,

and, therefore, by Lemma 3.4, (24) holds. L

Proof of P6 S P4. Let H be a k-uniform hypergraph on m vertices such
that, for any k-uniform hypergraph G on 2k vertices, we have

: 1H
G
2 : ’ 1 m

2k
2 de(G)(1−d) (2kk )−e(G) (2k)!

|Aut(G)|
, (25)

where d=d(H) is the density of H and Aut(G) is the automorphism
group of G. From (16) it follows that, for any such G, we have

: 1H
G
2
inj

: ’ (m)2k de(G)(1−d) (
2k
k )−e(G), (26)

where, as usual, (a)b=a(a−1) · · · (a−b+1). We are interested in estimat-
ing |(HG)

w
inj |. Clearly,

1H
G
2w
inj
=0

GŒ

1H
GŒ
2
inj
, (27)

where the union ranges over all k-uniform hypergraphs GŒ with the same
vertex set as G and GŒ ‡ G. Furthermore, a moment’s thought shows that
the union in (27) is a disjoint union. Hence

: 1H
G
2w
inj

:=C
GŒ

: 1H
GŒ
2
inj

:

’C
GŒ

(m)2k de(GŒ)(1−d) (
2k
k )−e(GŒ)

=C
t \ 0

C
e(GŒ)=e(G)+t

(m)2k de(G)+t(1−d) (
2k
k )−e(G)−t
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=C
t \ 0

R12kk 2−e(G)
t

S (m)2k de(G)+t(1−d) (2kk )−e(G)−t

=(m)2k de(G) C
t \ 0

R12kk 2−e(G)
t

S d t(1−d) (2kk )−e(G)− t
=(m)2k de(G).

Thus,

: 1 H

Kk(2)
2w
inj

: ’ (m)2k d2
k
.

It now suffices to recall the analogue of (16) for weak subhypergraphs to
conclude the proof of P4, since |Aut(Kk(2))|=k!2k. L

4. PROOF OF C1 Z C2

In this section, we shall prove the equivalence of conditions C1 and C2 in
Theorem 2.13. We start with a fairly standard proof of C1 S C2 (see
Section 4.1), and then, in Section 4.2, we prove the converse C2 S C1.

4.1. Proof of C1 S C2

The proof follows from the two claims below.

Claim 4.1. Suppose 0 < e1/2 < d, V=V1 2 · · · 2 Vk, |V1 |=· · ·=|Vk |=n,
and let H=(V, E) be an (e, d)-regular (k, k)-cylinder. Then for all but at
most 2e1/2n vertices x ¥ Vk, the linkH(x) is (e1/2, d)-regular.

Proof. Let X− be the set of all vertices x ¥ Vk with the following
property: there exists a (k−1, k−2)-cylinder Fx with (k−1)-partition
V1 2 · · · 2 Vk−1 such that

|Kk−1(Fx)| \ e1/2nk−1, (28)

but

|H(x) 5Kk−1(Fx)| < (d− e1/2) |Kk−1(Fx)|. (29)

We also define X+ to be the set of all vertices x ¥ Vk satisfying (28) for
which we have

|H(x) 5Kk−1(Fx)| \ (d+e1/2) |Kk−1(Fx)|.
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Suppose that |X−| > e1/2n and define a (k, k−1)-cylinder G by

G=K(k−1)k−1 (V1, ..., Vk−1) 2 0
x ¥X−

{e 2 {x} : e ¥Fx}

Observe that

|Kk(G)|= C
x ¥X−

|Kk−1(Fx)| \ |X−| e1/2nk−1 \ enk,

and, therefore, by the regularity of H,

|H 5Kk(G)| \ (d− e) |Kk(G)|=(d− e) C
x ¥X−

|Kk−1(Fx)|.

On the other hand, from (29) we obtain

|H 5Kk(G)|= C
x ¥X−

|H(x) 5Kk−1(Fx)| < (d− e1/2) C
x ¥X−

|Kk−1(Fx)|,

which is a contradiction.
Hence |X−| [ e1/2n. Similarly we obtain |X+| [ e1/2n. L

Claim 4.2. Suppose 0 < e < 1/16, 2e1/2 < d, V=V1 2 · · · 2 Vk, |V1 |=
· · ·=|Vk |=n, and let H=(V, E) be an (e, d)-regular (k, k)-cylinder. Then,
H(x, y) is (e1/4, d2)-regular for all but at most 4e1/4n2 pairs of vertices
x, y ¥ Vk.

Proof. From the previous claim we know that there are at most 2e1/2n
vertices x in Vk with (e1/2, d)-irregular link H(x). These vertices form at
most 2e1/2n2 pairs and we shall exclude them from further considerations.

For a vertex x ¥ Vk denote by Y−x the set of all vertices y ¥ Vk with
the following property: there exists a (k−1, k−2)-cylinder Fy with
(k−1)-partition V1 2 · · · 2 Vk−1 such that

|Kk−1(Fy) | \ e1/4nk−1, (30)

but

|H(x, y) 5Kk−1(Fy)| < (d2− e1/4) |Kk−1(Fy)|. (31)

We also denote by Y+x the set of all vertices y ¥ Vk for which there is a
(k−1, k−2)-cylinder Fy that satisfies (30), but

|H(x, y) 5Kk−1(Fy)| > (d2+e1/4) |Kk−1(Fy)|.
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Suppose there exists a vertex x ¥ Vk with (e1/2, d)-regular link H(x) for
which |Y−x | \ e

1/4n. Define a (k, k−1)-cylinder G by

G=H(x) 2 0
y ¥ Y−x

{e 2 {y} : e ¥Fy}.

Then

|Kk(G)|= C
y ¥ Y−x

|H(x) 5Kk−1(Fy)|.

Note that (30) together with the (e1/2, d)-regularity of H(x) implies that

|H(x) 5Kk−1(Fy)| \ (d− e1/2) |Kk−1(Fy)|

for all y ¥ Y−x . Hence

|Kk(G)| \ C
y ¥ Y−x

(d− e1/2) |Kk−1(Fy)|

\ (d− e1/2) |Y−x | e
1/4nk−1 \ (d− e1/2) e1/2nk \ enk. (32)

By the (e, d)-regularity of H and (32), we have

|H 5Kk(G)| \ (d− e) |Kk(G)| \ (d− e)(d− e1/2) C
y ¥ Y−x

|Kk−1(Fy)|. (33)

On the other hand, the size of H 5Kk(G) can be bounded from above
using (31) as follows:

|H 5Kk(G)|= C
y ¥ Y−x

|H(x, y) 5Kk−1(Fy)| < (d2− e1/4) C
y ¥ Y−x

|Kk−1(Fy)|.

(34)

Comparing (33) and (34), we get

(d− e)(d− e1/2) < d2− e1/4,

which implies

e1/4 < (e+e1/2) d < e+e1/2,

which is not true for e < 1/16.
Hence we have |Y−x | [ e

1/4n. We also obtain |Y+x | [ e
1/4n in exactly the

same way. Consequently, the number of ‘‘bad’’ pairs is bounded by
2e1/2n2+2e1/4n×n [ 4e1/4n2. L
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4.2. Proof of C2 S C1

The objective of this section is to prove the following theorem.

Theorem 4.3. For every d > 0 and d > 0 there exist e > 0 and n0 ¥N
such that the following holds. If H is a (k+1, k+1)-cylinder with
(k+1)-partition V1 2 · · · 2 Vk+1 such that

(i) |Vi |=n \ n0 for all i ¥ [k+1],
(ii) |H|=dnk+1,

(iii) H(x) is (e, d)-regular for all but at most en vertices x ¥ Vk+1, and
(iv) H(x, y) is (e, d2)-regular for all but at most en2 pairs x, y ¥ Vk+1,

thenH is (d, d)-regular.

Remark. Here, we work with (k+1, k+1)-cylinders to simplify the
notation. With this choice, we shall encounter (k+1)-, k-, and (k−1)-
uniform hypergraphs.

Proof. Let H be a (k+1, k+1)-cylinder satisfying assumptions (i)–(iv).
We shall assume that

e=(d/4)32 < d < d [ 1. (35)

Suppose that H is not (d, d)-regular; i.e., Definition 2.5 fails. Without
loss of generality (by taking complements) we may assume that the second
inequality in (6) is not true; therefore, there exists a (k+1, k)-cylinder
G=1k+1

i=1 Gi with (k+1)-partition V1 2 · · · 2 Vk+1 such that

|Kk+1(G)| \ dnk+1 (36)

but

|H 5Kk+1(G)|
|Kk+1(G)|

> d+d. (37)

We now work on this ‘‘witness’’ G for the irregularity of H.

Fact 4.4. There exist subcylinders G −i … Gi (i ¥ [k]) such that Gg=
G −1 2 · · · 2 G −k 2 Gk+1 satisfies the following four conditions:

(1) Kk(Gg(x))=” or |Kk(Gg(x))| \ enk for all x ¥ Vk+1,
(2) H(x) is (e, d)-regular for all x ¥ Vk+1 with |Kk(Gg(x))| \ enk,
(3) |Kk+1(Gg)| \ (d/2) nk+1,
(4) |H 5Kk+1(Gg)| \ (d+d/2) |Kk+1(Gg)|.

330 KOHAYAKAWA, RÖDL, AND SKOKAN



Proof. For every vertex x ¥ Vk+1 with |Kk(G(x))| < enk or with (e, d)-
irregular link H(x), delete all edges in G that contain x. Notice that this
operation does not remove any edge from Gk+1 and produces a subhy-
pergraph Gg=G −1 2 · · · 2 G −k 2 Gk+1 that satisfies conditions (1) and (2).

Moreover, every removal reduces the size of Kk+1(G) (and H 5
Kk+1(G)) by at most enk if |Kk(G(x))| < enk or by at most nk if H(x) is
(e, d)-irregular. Since there are at most en vertices x with (e, d)-irregular
link, we obtain that

|Kk+1(Gg)| \ |Kk+1(G)|−n× enk− en×nk,

and

|H 5Kk+1(Gg)| \ |H 5Kk+1(G)|−n× enk− en×nk,

The first inequality together with assumption (36) shows that

|Kk+1(Gg)| \ |Kk+1(G)|−2enk+1 \ dnk+1−2(d/4)32 nk+1 \ (d/2) nk+1.

Similarly, the second inequality, (36), and (37) yield

|H 5Kk+1(Gg)| \ |H 5Kk+1(G) |−2enk+1

\ (d+d) |Kk+1(G)|−2(d/4)32 nk+1

\ (d+d/2) |Kk+1(G)|+(d/2) dnk+1−2(d/4)32 nk+1

\ (d+d/2) |Kk+1(Gg)|,

and the proof is complete. L

We have to work on Gg further to obtain a witness with more structure.
We shall need the following definition.

Definition 4.5. For each e ¥ Gk+1 define two parameters g(e) and
h(e) by

g(e)=|{x ¥ Vk+1 : {x} 2 e ¥Kk+1(Gg)}| ,

h(e)=|{x ¥ Vk+1 : {x} 2 e ¥H 5Kk+1(Gg)}| .

Fact 4.6. Put d −=d2/16. Then there exists a subcylinder G −k+1 … Gk+1
such that G −=G −1 2 · · · 2 G −k 2 G −k+1, where the G

−

i (i ¥ [k]) are taken from
Fact 4.4, satisfies the following five conditions:
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(1) Kk(G −(x))=” or |Kk(G −(x))| \ enk for all x ¥ Vk+1,
(2) H(x) is (e, d)-regular for all x ¥ Vk+1 with |Kk(G −(x))| \ enk,
(3) |Kk+1(G −)| \ d −nk+1,
(4) h(e)/g(e) \ d+d/4 for all e ¥ G −k+1,

(5) g(e) \ d −n for all e ¥ G −k+1.

Proof. We decompose Gk+1 into two subcylinders Gg
k+1 2 Ggg

k+1, where

Ggg
k+1=3e ¥ Gk+1 :

h(e)
g(e)

\ d+
d

4
4

and

Gg
k+1=Gk+1 0G

gg
k+1.

Let Gg be as in Fact 4.4. Observe that

C
e ¥ Gk+1

g(e)=|Kk+1(Gg)| \
Fact 4.4 (3)

(d/2) nk+1

and

C
e ¥ Gk+1

h(e)=|H 5Kk+1(Gg)| \
Fact 4.4 (4)

(d+d/2) |Kk+1(Gg)|.

Then for Ggg=G −1 2 · · · 2 G −k 2 Ggg
k+1 we have

|Kk+1(Ggg)|= C
e ¥ G

gg
k+1

g(e) \ C
e ¥ G

gg
k+1

h(e)= C
e ¥ Gk+1

h(e)− C
e ¥ G

g
k+1

h(e)

> 1d+d
2
2 |Kk+1(Gg)|−1d+d

4
2 C
e ¥ Gk+1

g(e)

=1d+d
2
2 |Kk+1(Gg)|−1d+d

4
2 |Kk+1(Gg)|

=
d

4
|Kk+1(Gg)| \

d2

8
nk+1.

Note that at least (d2/16) nk edges e of Ggg
k+1 must have g(e) \ (d2/16) n,

otherwise we would have

|Kk+1(Gg)| <
d2

16
nk · n+nk ·

d2

16
n=
d2

8
nk+1,
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which would be a contradiction. Remove all edges e with g(e) < (d2/16) n
from Ggg

k+1 and obtain G −k+1. Then, G −k+1 satisfies condition (4) because of
the definition of Ggg

k+1 ‡ G −k+1. It satisfies condition (5) because all edges e
with g(e) < (d2/16) n have been removed, and G − also satisfies condition (3)
because

|Kk+1(G −)| \ |Kk+1(Ggg)|−nk ·
d2

16
n \
d2

8
nk+1−

d2

16
nk+1=

d2

16
nk+1.

Finally, G − must satisfy (1) and (2) because we did not change any of G −i
(i ¥ [k]). L

Before we come back to the proof of Theorem 4.3, we state an auxiliary
lemma. Let 0 < a [ 1 and 0 < m < 1 be given. Let G be a bipartite graph
with vertex classes X1 2X2 and let H be a subgraph of G. We call
an ordered pair of vertices (x, y) ¥X1×X1 good if

|H(x) 5 G(y)|=a(1+O1(m)) |G(x, y)| (38)

and

|H(x, y)|=a2(1+O1(m)) |G(x, y)|. (39)

We also call a pair bad if it is not good.
The auxiliary lemma is as follows.

Lemma 4.7 (Dementieva, Haxell, Nagle, and Rödl [8]). Let 0 < a [ 1
and 0 < m < 1 be given. Suppose the bipartite graphs G and H are such that

C
bad(x, y) ¥X1 ×X1

|G(x, y)| <
ma2

(1−a)2+a2
C
z ¥X2

|G(z)|2. (40)

Then

C
z ¥X2

(|H(z)|−a |G(z)|)2 [ 5ma2 C
z ¥X2

|G(z)|2. (41)

The following corollary of the above lemma holds.

Corollary 4.8. Let 0 < a [ 1, 0 < m [ 1, and n > 0 be given. Let G and
H be bipartite graphs as in Lemma 4.7. Denote by W the set of all vertices
z ¥X2 such that |H(z)| \ (a+n) |G(z)|. Then

C
z ¥W
|G(z)| [ (5m/n2)1/2 |X1 | |X2 |. (42)
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Proof. Clearly, 5ma2;z ¥X2 |G(z)|
2 [ 5ma2 |X1 |2 |X2 | [ 5m |X1 |2 |X2 |. On

the other hand,

C
z ¥X2

(|H(z)|−a |G(z)|)2 \ C
z ¥W
(|H(z)|−a |G(z)|)2 \ n2 C

z ¥W
|G(z)|2

\
n2

|W|
1 C
z ¥W
|G(z)|2

2

\
n2

|X2 |
1 C
z ¥W
|G(z)|2

2

.

Finally, using inequality (41), we get (42). L

We now turn back to the proof of Theorem 4.3. We define two auxiliary
bipartite graphs G=(X1 2X2, E(G)) and H=(X1 2X2, E(H)) in the
following way:

X1=Vk+1,

X2=V1× · · · ×Xk,

E(G)={(x, e): e ¥Kk(G −(x))},

E(H)={(x, e): e ¥H(x) 5Kk(G −(x))}.

(43)

Notice that |X1 |=n and |X2 |=nk. Then

C
x ¥X1

|G(x)|= C
e ¥X2

|G(e)| \ C
e ¥ G

−

k+1

|G(e)|=|Kk+1(G −)| \ dŒnk+1=dŒ |X1 | |X2 |.

(44)

Now we prove that the graphs G and H defined by (43) satisfy the
assumptions of Corollary 4.8 with a=d, m=e1/2 and n=d/4. Indeed,
observe that

• if |Kk(G −(x, y))| \ enk and H(x) is (e, d)-regular, then |H(x) 5
Kk(G −(x, y))|=(d+O1(e)) |Kk(G −(x, y))|, i.e.,

|H(x) 5 G(y)|=d(1+O1(e1/2)) |G(x, y)|,

and
• if |Kk(G −(x, y))| \ enk and H(x, y) is (e, d2)-regular, then |H(x, y) 5

Kk(G −(x, y))|=(d2+O1(e)) |Kk(G −(x, y))|, i.e.,

|H(x, y)|=d2(1+O1(e1/2)) |G(x, y)|.

Denote by I1 the set of all pairs (x, y) such that |G(x, y)| < e |X2 |, by I2 the
set of all pairs (x, y) such that H(x, y) is (e, d2)-irregular, and by I3 the set
of all pairs (x, y) such that H(x) is (e, d)-irregular.
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Both observations above imply that every pair (x, y) ¥X1×X1 such that
H(x) is (e, d)-regular, H(x, y) is (e, d2)-regular, and |G(x, y)| \ e |X2 | is
good. In other words, the set of bad pairs is a subset of I1 2 I2 2 I3 and,
therefore,

C
bad(x, y)

|G(x, y)| [ C
(x, y) ¥ I1

|G(x, y)|+ C
(x, y) ¥ I2

|G(x, y)|+ C
(x, y) ¥ I3

|G(x, y)|.

One can easily see that |I1 | [ |X1 |2, |I2 | [ e |X1 |2, |I3 | [ e |X1 |× |X1 |, and

• ;(x, y) ¥ I1 |G(x, y)| [ e |X2 |× |I1 | [ e |X1 |
2 |X2 |,

• ;(x, y) ¥ I2 |G(x, y)| [ |X2 |× |I2 | [ e |X1 |
2 |X2 |,

• ;(x, y) ¥ I3 |G(x, y)| [ |X2 |× |I3 | [ e |X1 |
2 |X2 |.

Consequently, ;bad(x, y) |G(x, y)| [ 3e |X1 |2 |X2 |.
Suppose that condition (40) of Lemma 4.7 is not satisfied, i.e.,

C
bad(x, y)

|G(x, y)| \
d2e1/2

(1−d)2+d2
C
z ¥X2

|G(z)|2.

Since ;z ¥X2 |G(z)|
2 \ (;z ¥X2 |G(z)|)

2/|X2 |, we get

d2e1/2

(1−d)2+d2
1 C
z ¥X2

|G(z)|2
2

[ 3e |X1 |2 |X2 |2.

In other words,

C
z ¥X2

|G(z)| [ 13e((1−d)
2+d2)

d2e1/2
21/2 |X1 | |X2 |.

On the other hand, we know (see (44)) that ;z ¥X2 |G(z)| \ (d
2/16)

|X1 | |X2 |, and, therefore, comparing both inequalities yields

d2

16
[ 13e((1−d)

2+d2)
d2e1/2
21/2.

This is a contradiction since 3e×((1−d)2+d2)/(d2e1/2) [ e1/2/d2=
(d/4)16/d2 [ (d/4)14 < d4/256. Thus, G and H also satisfy condition (40) of
Lemma 4.7.
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SetW=G −k+1. Then, because of property (3), clearly |W| \ (d2/16) nk+1/n
=(d2/16) nk=(d2/16) |X2 |, and for every e ¥W we have |H(e)| \ (d+d/4)
|G(e)|. We apply Corollary 4.8 and obtain that

C
z ¥W
|G(z)| [ 180e

1/2

d2
21/2 |X1 | |X2 |.

On the other hand, since |G(e)| \ (d2/16) |X1 | for every e ¥W, we get

C
z ¥W
|G(z)| \ |W|×

d2

16
|X1 | \

d4

256
|X1 | |X2 |.

This is a contradiction because

180e1/2
d2
21/2 [ 4 1d

4
27 < d

4

256
. L

5. PROOF OF C2 Z C 3 Z C4

Sections 5.1, 5.2, and 5.3 are devoted to the proofs of C3 S C4, C4 S C3,
and C3 S C2 (note that implication C2 S C3 trivially holds).

In these sections, we shall be sketchy in places because the arguments are
standard or somewhat repetitive.

5.1. Proof of C3 S C4

We start with a standard ‘‘cherry counting lemma’’ for bipartite graphs
(a cherry is a path of length 2).

Claim 5.1 Let G=(X 2 Y, E) be a bipartite graph with |X|=n,
|Y|=m, and assume that |E|=dmn. For x, x − ¥X, put dx, x −=|G(x, x −)|/m.
Then

C {dx, x −:x, xŒ ¥X, x ] xŒ} \ 1
dn
2
2 .

Proof. Observe first that

C
x ¥X
|G(x)|=|E|=C

y ¥ Y
|G(y)|
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and

C
X

x ] xŒ
|G(x, x −)|=C

y ¥ Y

1 |G(y)|
2
2 ,

where we write ;X
x ] xŒ for the sum over all pairs {x, xŒ} of distinct vertices

from X. Then

m C
X

x ] xŒ
dx, x −= C

X

x ] xŒ
|G(x, x −)|

=C
y ¥ Y

1 |G(y)|
2
2 \ m 1m

−1;y ¥ Y |G(y)|
2
2=m 1dn

2
2 ,

where, naturally, we used the convexity of (x2). L

Claim 5.2 Let H=(V1 2 · · · 2 Vk, E) be a (k, k)-cylinder with |E|=
dnk, where |Vi |=n for all i ¥ [k]. Then the number of copies of Kk(2) inH is
bounded from below by (1+o(1))(n2k/2k) d2

k
.

Proof. We proceed by induction on k. For k=2, the statement follows
from the previous claim and the Cauchy–Schwarz inequality. Indeed, let
G=(X 2 Y, E) be a bipartite graph with |X|=|Y|=n, and assume that
|E|=dn2. For x, x − ¥X, put dx, x −=|G(x, x −)|/n. Here and below we use the
notation ;X

x ] xŒ introduced in the proof of Claim 5.1. Then the number of
copies of K2(2) in G is given by

: 1 G
K2(2)
2 := C

X

x ] xŒ

1 |G(x, x −)|
2
2= C

X

x ] xŒ

1dx, x −n
2
2 .

By the Cauchy–Schwarz inequality and Claim 5.1, we have

: 1 G
K2(2)
2 := C

X

x ] xŒ

1dx, x −n
2
2=(1+o(1)) 1n

2
2 C

X

x ] xŒ
d2x, x −

\ (1+o(1)) 1 C
X

x ] xŒ
dx, x − 2

2

\ (1+o(1)) 1dn
2
22

=(1+o(1))
n4

4
d4. (45)

We now proceed to the induction step. Suppose k \ 3, suppose that the
claim is true for k−1, and let H=(V1 2 · · · 2 Vk, E) be a (k, k)-cylinder
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such that |E|=dnk. Consider an auxiliary bipartite graph with bipartition
X=Vk and Y=V1× · · · ×Vk−1 and edge set

E={(x, y) ¥X×Y : y ¥H(x)}.

Then |X|=n and |Y|=m=nk−1. For x, x − ¥X, put dx, x −=|G(x, x −)|/m.
Using the induction assumption, H(x, x −) contains N n2(k−1)d2

k−1

x, x − /2
k−1

copies of Kk−1(2). Furthermore, from the previous claim we know that
;X
x ] xŒ dx, x − \ (

dn
2 ). Then

: 1 H

Kk(2)
2 := C

X

x ] xŒ

: 1H(x, xŒ)
Kk−1(2)
2 :

\ (1+o(1)) C
X

x ] xŒ
n2(k−1)

1
2k−1

d2
k−1

x, x −

\ (1+o(1))
n2(k−1)

2k−1
1n
2
211dn

2
2;1n
2
222

k−1

=(1+o(1))
n2k

2k
d2
k
,

as required. L

The proof of C3 S C4 is then straightforward.

Proof of C3 S C4. The first part (i.e., the inequality) follows from the
previous claim. To obtain the asymptotic equality in the case in which the
joint links are almost all (e, d2)-regular, we observe the following.

For k=2 we use the fact that (e, d2)-regularity of joint links means that
dx, x − ’ d2 for almost all pairs of vertices x, x − ¥ Vk. Then we have the
asymptotic equality at every step of Eq. (45), which is exactly what we need
to show.

For k > 2, since H(x, x −) is (e, d2)-regular for almost all pairs of vertices
x, x − ¥ Vk, by the induction assumption H(x, x −) contains (1+o(1)) n2(k−1)

(d2)2
k−1
/2k−1 copies of Kk−1(2). Hence the number of copies of Kk(2)

containing x, x − is

(1+o(1)) n2(k−1)
1
2k−1

(d2)2
k−1
,

and so, summing over all x, xŒ ¥X with x ] xŒ, we have that the number of
copies of Kk(2) in H is

(1+o(1)) 1n
2
2n2(k−1) 1

2k−1
(d2)2

k−1
=(1+o(1))

n2k

2k
d2
k
,

as required. L
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5.2. Proof of C4 S C3

The proof of this implication will be based on Claims 5.1 and 5.2 and on
a standard application of the Cauchy–Schwarz inequality.

Proof of C4 S C3. For k=2, this implication follows from the follow-
ing. Let G=(X 2 Y, E) be a bipartite graph with |X|=|Y|=n, and
|E|=dn2, and assume that G contains (1+o(1)) n4d4/4 copies of K2(2),
i.e., |( GK2(2))|=(1+o(1)) n

4d4/4. But then we must have equality everywhere
in (45), which means that dx, x − ’ d2 for almost all pairs of vertices x, x − ¥X.
This shows, however, that G(x, x −) is (e, d2)-regular for almost all pairs of
vertices x, x − ¥X.

Assume now we have k > 2. Let H=(V1 2 · · · 2 Vk, E) be a (k, k)-
cylinder with |Vi |=n for all i ¥ [k] and |E|=dnk. Suppose that H contains
(1+o(1)) n2kd2

k
/2k copies of Kk(2).

Consider an auxiliary bipartite graph with bipartition X=Vk and
Y=V1× · · · ×Vk−1 and edge set

E={(x, y) ¥X×Y : y ¥H(x)}.

Then |X|=n and |Y|=m=nk−1. For x, x − ¥X, put dx, x −=|G(x, x −)|/m.
From Claim 5.1 we obtain

C
X

x ] xŒ
dx, x − \ 1

dn
2
2 ,

and so

C
X

x ] xŒ
d2
k−1

x, x − \ 1
n
2
211n
2
2−1 C

X

x ] xŒ
dx, x − 2

2k−1

\ 1n
2
211dn

2
2;1n
2
222

k−1

\ (1+o(1))
n2

2
d2
k
. (46)

We apply Claim 5.2 to H(x, x −) and obtain that it contains at least

(1+o(1)) n2(k−1)d2
k−1

x, x − /2
k−1

copies of Kk−1(2). Consequently

: 1 H

Kk(2)
2 := C

X

x ] xŒ
|{copies of Kk(2) containing x, x −}|

\ (1+o(1)) C
X

x ] xŒ

n2(k−1)

2k−1
d2
k−1

x, x −
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\
(46)
(1+o(1))

n2(k−1)

2k−1
n2

2
d2
k

=(1+o(1))
n2k

2k
d2
k
. (47)

On the other hand, by C4 we have that

: 1 H

Kk(2)
2 :=(1+o(1)) n

2k

2k
d2
k
. (48)

From (47) and (48) we conclude that dx, x − ’ d2 for almost all pairs x,
x − ¥X=Vk, and therefore that H(x, x −) contains (1+o(1)) n2(k−1)(d2)2

k−1
/

2k−1 copies of Kk−1(2). In view of the induction assumption this means that
H(x, x −) is (e, d2)-regular for almost all pairs x, x − ¥ Vk, i.e., C3 holds. L

5.3. Proof of C3 S C2

We start with the following claim.

Claim 5.3. Let c > 0 be a fixed constant. Let G=(X 2 Y, E) be a
bipartite graph with |X|=n, |Y|=m, and assume that |G(x, x −)| ’ c2m for
almost all pairs x, x − ¥X. Then |G(x)| ’ cm for almost all vertices x ¥X.

Proof. Indeed, suppose that |G(x)| \ (c+e) m for all vertices x ¥X −,
where X − …X is ‘‘big.’’ Let G − be the subgraph of G induced on X − 2 Y and
let |G −(y)|=cy |X −| for all y ¥ Y. Note that |G −(x, x −)|=|G(x, x −)| for all x,
xŒ ¥XŒ. Then we have

C
XŒ

x ] xŒ
|G(x, x −)| ’ 1

2 c
2m |X −|2,

where we write ;XŒ
x ] xŒ for the sum over all pairs {x, xŒ} of distinct vertices

from XŒ. On the other hand,

C
XŒ

x ] xŒ
|G(x, x −)|=C

y ¥ Y

1 |G −(y)|
2
2 ’ C

y ¥ Y

1
2 c
2
y |X

−|2.

Hence ;y ¥ Y c
2
y ’ c

2m which implies, by the Cauchy–Schwarz inequality,
that cy ’ c for almost all y ¥ Y. But then,

cm |X −| ’ C
y ¥ Y
cy |X −|=E(G −)= C

x ¥X −
|G −(x)| \ (c+e) m |X −|,
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which is a contradiction. The same applies to the set of all vertices x ¥X
for which |G(x)| [ (c− e) m. L

Now we give a proof of the implication C3 S C2.

Proof of C3 S C2. We proceed by induction on k. For k=2, the
statement follows from Claim 5.3.

Let k > 2 be given. We shall prove that C3 S C2 holds for k. Thus,
assume that the link H(x, y) is (e, d2)-regular for almost all x, y ¥ Vk. We
shall prove that for almost all x ¥ Vk the link H(x) is (e −, d)-regular, where
eŒQ 0 as eQ 0.

Consider an auxiliary bipartite graph G=(X 2 Y, E) with bipartition
X=Vk and Y=[V1]2× · · · ×[Vk−1]2 and edge set

E={(x, y) ¥X×Y : y spans a copy of Kk−1(2) in H(x)}.

Then |X|=n and |Y|=(n2)
k−1 ’ n2(k−1)/2k−1. Let x and x − be such that

H(x, x −) is (e, d2)-regular. Since H(x, x −) is a (k−1, k−1)-cylinder, we
may apply the implication C3 S C4 that we have already proved to deduce
that H(x, x −) contains ’ n2(k−1)(d2)2

k−1
/2k−1=n2(k−1)d2

k
/2k−1 copies of

Kk−1(2). This means that almost all pairs of vertices x, x − ¥X have their
common neighborhood of size |G(x, x −)| ’ n2(k−1)d2

k
/2k−1. Setting m=

(n2)
k−1 and c=d2

k−1
, one may apply Claim 5.3 to infer that

|G(x)| ’ d2
k−1 n2(k−1)

2k−1
(49)

for almost all x ¥X. For each x ¥X, set dx=|H(x)|/nk−1. Using
Claim 5.2, we get that

|G(x)| N d2
k−1

x

n2(k−1)

2k−1

for all x and hence d N dx for almost all x ¥X. However,

dnk=|H|= C
x ¥X
|H(x)|= C

x ¥X
dxnk−1,

whence dn=;x ¥X dx. We may conclude that dx ’ d for almost all x ¥X.
This, in view of (49), means that H(x) satisfies condition C4 for (k−1)-

cylinders. Since C4 S C3 holds for (k−1)-cylinders (already proved),
C3 S C2 holds for (k−1)-cylinders (induction assumption), and C2 S C1

holds for (k−1)-cylinders (already proved), we conclude that H(x) is
(e −, d)-regular for almost all x ¥X, as required. L
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6. PROOF OF THE SUBHYPERGRAPH COUNTING FORMULA

The heart of the proof of P1 S P
−

5 is in proving a counting lemma, which
we now formulate. We shall need several definitions and further notation.

Definition 6.1. Let s and k, s \ k \ 2, be two integers. An (s, k)-
complexH is a system {H (i)}ki=1 such that

(a) H(1) is a partition V1 2 · · · 2 Vs,
(b) H(i) is an (s, i)-cylinder with s-partition H (1) for every 1 < i [ k,
(c) H(i) underlies H (i+1) for every 1 [ i < k, i.e.,

H (i+1) …Ki+1(H (i)).

Now we define the notion of regularity for a (k, k)-cylinder with respect
to an underlying (k, k−1)-cylinder.

Definition 6.2. Let G be a (k, k−1)-cylinder underlying a (k, k)-
cylinder H. We say that H is (e, d)-regular with respect to G if the following
condition is satisfied: whenever GŒ … G is a (k, k−1)-cylinder such that

|Kk(GŒ)| \ e |Kk(G)| ,

we have

(d− e) |Kk(GŒ)| [ |H 5Kk(GŒ)| [ (d+e) |Kk(GŒ)| .

Note that this definition coincides with Definition 2.5 if k=2 or if G is
the complete (k, k−1)-cylinder on V1 2 · · · 2 Vk. We extend the above
definition to the case of (s, k)-cylinders H.

Definition 6.3. Let G be an (s, k−1)-cylinder underlying an (s, k)-
cylinder H. We say that H is (e, d)-regular with respect to G if
H[1j ¥ I Vj] is (e, d)-regular with respect to G[1j ¥ I Vj] for all I ¥ [s]k.

Now we are ready to introduce the concept of regularity for an
(s, k)-complexH.

Definition 6.4. Let d=(d2, ..., dk) be a vector of positive real numbers
such that 0 < di [ 1 for all i=2, ..., k. We say that the (s, k)-complexH is
(d, d)-regular if H (i+1) is (d, di+1)-regular with respect to H (i) for every
1 [ i < k.

Let H (k) be an (s, k)-cylinder with s-partition V1 2 · · · 2 Vs. We say that
a copy of a k-uniform hypergraph G …H (k) is transversal in H (k) if
|V(G) 5 Vi | [ 1 for all 1 [ i [ s. Our key counting result is as follows.
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Theorem 6.5. Fix 2 [ k [ s. For any e > 0 and any d2, ..., dk > 0, there
exist d0 > 0 and n0 ¥N for which the following assertion holds. If d < d0 and
H is a (d, d)-regular (s, k)-complex on V1 2 · · · 2 Vs, where d=(d2, ..., dk)
and |Vi |=n \ n0 for all i, then the number of transversal K

(k)
s in H (k) is

(1+O1(e)) d
( sk)
k · · · d

( s2)
2 n

s.

In the proof of this theorem, we shall need the following notions of
‘‘link’’ and ‘‘extended link’’ for complexes.

Definition 6.6. Let H be an (s, k)-complex on V1 2 · · · 2 Vs, where
s \ k, and x ¥ Vs. We define H(x)={H (i)(x)}ki=2 and, if s > k, we also set
H2 (x)={H̃ (i)

x }
k
i=1, where H̃(i)

x (i ¥ [k]) is the i-uniform hypergraph
defined by

H̃(i)
x =3

H(i+1)(x) if 1 [ i < k,
H (k) 5Kk(H (k)(x)) if i=k.

(50)

In (50) above, H (i)(x) is the usual link of the vertex x in the (s, i)-
cylinder H(i), and H(k) 5Kk(H (k)(x)) denotes the (s−1, k)-cylinder
formed by the edges of H(k) that are cliques in the link H(k)(x). Note that
H2 (x) can be viewed as an extension ofH(x) in a sense that

H2 (x)=H(x) 2 {H(k) 5Kk(H (k)(x))}.

It is easy to see that H(x) is an (s−1, k−1)-complex and H2 (x) is an
(s−1, k)-complex. Indeed, since H is an (s, k)-complex, for 1 [ i < k, we
have H (i+1) …Ki+1(H (i)) (cf. Definition 6.1). Hence, for every vertex
x ¥ Vs, we have

H(i+1)(x) …Ki+1(H(i)(x)),

and, therefore,

H̃ (i+1)
x …Ki+1(H̃

(i)
x ).

For i=k, we have

H̃ (k)
x =H (k) 5Kk(H (k)(x)) …Kk(H (k)(x))=Kk(H̃

(k−1)
x )

directly from Definition 6.6.
The proof of Theorem 6.5 is based on the following two propositions.

Proposition 6.7. For any 2 [ k < s, any d̃ > 0, and any d2, ..., dk > 0,
there are constants d > 0 and n0 ¥N for which the following assertion holds.
Let H be a (d, d)-regular (s, k)-complex on V1 2 · · · 2 Vs, where d=
(d2, ..., dk) and |Vi |=n \ n0 for all i ¥ [s], and let d̃=(d2d3, ..., dk−1dk, dk).
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Then, for all but at most d̃n vertices x ¥ Vs, the extended link H2 (x) is a
(d̃, d̃)-regular (s−1, k)-complex.

Proposition 6.8. For any k > 2, any dŒ > 0, and any d2, ..., dk > 0, there
are constants d > 0 and n0 ¥N for which the following assertion holds. LetH
be a (d, d)-regular (k+1, k)-complex onV1 2 · · · 2 Vk+1, where d=(d2, ..., dk)
and |Vi |=n \ n0 for all i ¥ [k+1], and let dŒ=(d2d3, ..., dk−1dk). Then, for
all but at most dŒn vertices x ¥ Vk+1, the link H(x) is a (dŒ, dŒ)-regular
(k, k−1)-complex.

For our induction to work, we shall prove Theorem 6.5 and
Propositions 6.7 and 6.8 simultaneously.

Proof of Theorem 6.5 and Propositions 6.7 and 6.8. For given s \ k \ 2,
we denote the statement of Theorem 6.5 by S(s, k) and for s > k \ 2, we
denote the statement of Proposition 6.7 by L(s, k). We shall prove (i)–(vi)
below.

(i) The statement S(2, 2) is true.
(ii) The implication S(k, k−1)S S(k, k) holds for every k \ 3.

(iii) The implication S(s, k), L(s+1, k)S S(s+1, k) holds for every
s \ k \ 2.

(iv) The statement L(3, 2) is true.
(v) The implication L(k+1, k)S L(s, k) holds for every s > k \ 2.

(vi) The implication S(k, k−1), L(k+1, k−1)S L(k+1, k) holds
for every k > 2.

From (i)–(vi), one may easily deduce by induction (see the diagram below)
that Theorem 6.5 holds for every s \ k \ 2 and Proposition 6.7 holds for
every s > k \ 2.

S(2, 2), L(3, 2)
z

(i, iv)

Ł
(iii, v)

S(3, 2), L(4, 2)Ł
(iii, v)

S(4, 2), L(5, 2)Ł
(iii, v)

· · ·

‡ (ii, vi)

S(3, 3), L(4, 3)Ł
(iii, v)

S(4, 3), L(5, 3)Ł
(iii, v)

· · ·

‡ (ii, vi)

S(4, 4), L(5, 4)Ł
(iii, v)

· · ·

The purpose of Proposition 6.8 is to simplify the proof of (vi) (this is also
the reason why we prove this proposition for (k+1, k)-complexes only).
Indeed, if we denote by LŒ(k) the statement of Proposition 6.8, we shall
prove the following:
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(viŒ) The implication S(k, k−1), L(k+1, k−1)S LŒ(k) holds for
every k > 2.

(viœ) The implication S(k, k−1), LŒ(k)S L(k+1, k) holds for every
k > 2.

Clearly (viŒ) and (viœ) imply (vi).
Moreover, from (i)–(vi) one can deduce that LŒ(k) holds for every k > 2,

that is, (i)–(vi) yields the proof of Proposition 6.8 as well.
Now we prove statements (i)–(v), (viŒ), and (viœ).

(i) (Proof of S(2, 2)) Statement S(2, 2) follows directly from the
definition of regularity: a (d, d2)-regular (2, 2)-cylinder H(2) contains
(d2+O1(d)) n2 edges.

(ii) (Proof of S(k, k−1)S S(k, k)) Suppose now that S(k, k−1) is
true for some k \ 3 and let H be a (d, d)-regular (k, k)-complex. Observe
first that {H(i)}k−1i=1 forms a (d, (d2, ..., dk−1))-regular (k, k−1)-complex;
therefore, if d° eŒ, the number of transversalK (k−1)k in H(k−1) is (1+O1(eŒ))
d (

k
k−1)
k−1 · · · d

(k2)
2 n

k. Furthermore, we know that H (k) is (d, dk)-regular with
respect to H (k−1). In particular, this means that

(dk−d) |Kk(H (k−1))| [ |H (k) 5Kk(H (k−1))| [ (dk+d) |Kk(H (k−1))|.

Since |H (k) 5Kk(H (k−1))| counts the number of transversal K (k)k in H(k),
we conclude that this number is (1+O1(e)) d

(kk)
k d

( kk−1)
k−1 · · · d

(k2)
2 n

k, if eŒ° e and
d° min{e, dk}.

(iii) (Proof of S(s, k), L(s+1, k)S S(s+1, k)) Assume that S(s, k)
and L(s+1, k) are true for some s \ k \ 2 and consider a (d, d)-regular
(s+1, k)-complex H on V1 2 · · · 2 Vs+1, where |Vi |=n± n0 for all
i ¥ [s+1] and n0 is a large positive integer.

From L(s+1, k) we know that H2 (x) is a (d̃, d̃)-regular (s, k)-cylinder
for all but d̃n vertices x ¥ Vs+1, as long as d° d̃. From S(s, k) we immedi-
ately have that H (k) 5Kk(H(k)(x)) contains

(1+O1(eŒ)) d
( sk)
k (dkdk−1)

( sk−1) · · · (d3d2) (
s
2) (d2n) s

transversal K (k)s for any such ‘‘good’’ x if d̃° eŒ. Each such transversal K (k)s
in H(k) 5Kk(H(k)(x)) together with x span a transversal K (k)s+1 in H (k).

Hence, the total number of transversal K (k)s+1 in H (k) is bounded from
below by

(1− eŒ)(1− d̃) nd (
s
k)
k (dkdk−1)

( sk−1) · · · (d3d2) (
s
2) (d2n) s

=(1− eŒ)(1− d̃) d (
s
k)+(

s
k−1)

k · · · d (
s
2)+(

s
1)

2 n s+1

[ (1− e) d (
s+1
k )

k · · · d (
s+1
2 )

2 n s+1. (51)
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For the upper bound we get

(1+eŒ) nd (
s
k)
k (dkdk−1)

( sk−1) · · · (d3d2) (
s
2) (d2n) s+d̃n×n s

=(1+eŒ) d (
s
k)+(

s
k−1)

k · · · d (
s
2)+(

s
1)

2 n s+1+d̃n s+1

[ (1+e) d (
s+1
k )

k · · · d (
s+1
2 )

2 n s+1, (52)

provided that max{eŒ, d̃}° min{e, d2, ..., dk}.
(iv) (Proof of L(3, 2)) Let H (2) be a (d, d2)-regular (3, 2)-cylinder

and, for x ¥ V3 and i=1, 2, set V −i=H (2)
i (x). It follows from Claim 4.1

that (d2−d) n [ |V
−

i | [ (d2+d) n, i=1, 2, for all but 2d1/2n vertices x ¥ V3.
We shall show that H (2)[V −1 2 V −2] is (2d1/2, d2)-regular.

Indeed, let U1 … V
−

1, U2 … V
−

2, such that |K2(U1 2 U2)| \ 2d1/2 |V −1 | |V −2 |.
Note that 2d1/2 |V −1 | |V

−

2 | \ 2d
1/2(d2−d)2n2 \ dn2=d |V1 | |V2 |, where we used

the fact that d° d2. The (d, d2)-regularity of H (2) concludes the argument.
(v) (Proof of L(k+1, k)S L(s, k)) This fact follows from the

simple observation that every (s, k)-complex H can be viewed as a union
of (s−1k ) many (k+1, k)-complexes that contain Vs.

(viŒ) (Proof of S(k, k−1), L(k+1, k−1)S LŒ(k)) Assume that
statements S(k, k−1) and L(k+1, k−1) are true and letH={H(i)}ki=1 be
a (d, d)-regular (k+1, k)-complex on V1 2 · · · 2 Vk+1, where |Vi |=n± n0
for all i ¥ [k+1] and n0 is a large positive integer.

To prove LŒ(k), it suffices to show that for all but at most dŒn vertices
x ¥ Vk+1, the link H(x) is a (dŒ, dŒ)-regular (k, k−1)-complex, where
dŒ=(d2d3, ..., dk−1dk) and dŒQ 0 as dQ 0.

Observe first that {H (i)}k−1i=1 is a (d, (d2, d3, ..., dk−1))-regular (k+1,
k−1)-complex.

Thus, we can apply statement L(k+1, k−1) on {H (i)}k−1i=1 and obtain
that (cf. (50))

(a) {H(i)(x)}k−1i=2 is a (d̃, (d2d3, ..., dk−2dk−1))-regular (k, k−2)-complex,
and

(b) H(k−1) 5Kk−1(H (k−1)(x)) is (d̃, dk−1)-regular with respect to
H (k−1)(x) for all but at most d̃n vertices x ¥ Vk+1,where d̃Q 0 as dQ 0.

Hence, the only thing remaining to prove statement LŒ(k) is the
regularity of H (k)(x) with respect to H (k−1)(x). We do this by showing that
for all but 4kd̃1/2n vertices x ¥ Vk+1 satisfying (a) and (b), the link H(k)(x)
is (2d̃1/2, dk−1dk)-regular with respect to H (k−1)(x). Consequently, H(x)
is a (dŒ, dŒ)-regular for all but at most dŒn vertices x ¥ Vk+1, where
dŒ=d̃+4kd̃1/2Q 0 as dQ 0.
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Suppose that there exist t \ 2d̃1/2n vertices x1, ..., xt satisfying (a) and (b)
for which H (k)(xi) is not (2d̃1/2, dk−1dk)-regular with respect to H(k−1)(xi),
i ¥ [t]. More precisely, suppose that for every i ¥ [t], there exists a
(k−1, k−2)-cylinder Gi …H (k−1)(xi) such that

|Kk−1(Gi)| \ 2d̃1/2 |Kk−1(H (k−1)(xi))| (53a)

and

|H (k)(xi) 5Kk−1(Gi)| < (dk−1dk−2d̃1/2) |Kk−1(Gi)|. (53b)

Suppose further that these (k−1, k−2)-cylinders have (k−1)-partition
V1 2 · · · 2 Vk−1. We define a (k, k−1)-cylinder G by

G=H (k−1)[V1 2 · · · 2 Vk−1] 2 0
t

i=1
{xi 2 e : e ¥ Gi}.

It is easy to see that

|Kk(G)|=C
t

i=1
|H (k−1) 5Kk−1(Gi)| (54a)

and

|H (k) 5Kk(G)|=C
t

i=1
|H (k)(xi) 5Kk−1(Gi)|. (54b)

We combine Eqs. (53b) and (54b) and obtain

|H(k) 5Kk(G)| < (dk−1dk−2d̃1/2) C
t

i=1
|Kk−1(Gi)|.

On the other hand, we shall show that

|H(k) 5Kk(G)| \ (dk−1dk−2d̃1/2) C
t

i=1
|Kk−1(Gi)|, (55)

which will be a contradiction. Thus, t < 2d̃1/2n. The same applies to the
cases in which all the (k−1, k−2)-complexes Gi have the same (k−1)-
partition V1 2 · · · 2 Vk 0Vj for some j ¥ [k], or when we consider the
opposite inequality in (53b).

Now we deduce (55). Using assumption (b), (53a), Gi …H (k−1)(xi), and
2d̃1/2 \ d̃, we obtain that for every i ¥ [t],

|H(k−1) 5Kk−1(Gi)| \ (dk−1− d̃) |Kk−1(Gi)|

\
(53a)
2d̃1/2(dk−1− d̃) |Kk−1(H (k−1)(xi))|. (56)
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Consequently, combining (54a) and (56) yields

|Kk(G)| \ 2d̃1/2(dk−1− d̃) C
t

i=1
|Kk−1(H(k−1)(xi))|. (57)

For k > 3, by (a), the (k, k−2)-complex {H (i)(x)}k−1i=2 restricted on
V1 2 · · · 2 Vk−1 is a (d̃, (d2d3, ..., dk−2dk−1))-regular (k−1, k−2)-complex,
and hence by S(k−1, k−2) we have

|Kk−1(H (k−1)(xi))|=(1+O1(1/4))(dk−1dk−2) (
k−1
k−2) · · · (d3d2) (

k−1
2 )(d2n)k−1

=(1+O1(1/4)) d
(k−1k−2)
k−1 d

( kk−2)
k−2 · · · d

(k2)
2 n

k−1,

provided that d̃° min{d2, ..., dk−1, 1/4}. It follows from (d, d2)-regularity
of H(2) that this equation holds also for k=3. We may assume that
S(k−1, k−2) is true since this has already been verified in our inductive
proof of S(k, k−1) (see the proof diagram above). Hence,

|Kk(G)| \ t×2d̃1/2(dk−1− d̃)×(1−1/4) d
(k−1k−2)
k−1 d

( kk−2)
k−2 · · · d

(k2)
2 n

k−1

\ 2d̃d (
k
k−1)
k−1 d

( kk−2)
k−2 · · · d

(k2)
2 n

k. (58)

Since, {H(i)[V1 2 · · · 2 Vk−1 2 Vk+1]}k−1i=1 is a (d, (d2, ..., dk−1))-regular
(k, k−1)-complex, using S(k, k−1), we obtain

|Kk(H (k−1)[V1 2 · · · 2 Vk−1 2 Vk+1])|=(1+O1(1/4)) d
( kk−1)
k−1 · · · d

(k2)
2 n

k,
(59)

provided that d° min{d2, ..., dk−1, 1/4}.
Combining (58) and (59) yields

|Kk(G)| \ d̃ |Kk(H (k−1)[V1 2 · · · 2 Vk−1 2 Vk+1])|. (60)

We apply (d, dk)-regularity of H (k) with respect to H(k−1) and obtain

|H(k) 5Kk(G)| \ (dk−d) |Kk(G)|. (61)

Putting equations (54a), (56), and (61) together yields

|H (k) 5Kk(G)| \ (dk−d)×(dk−1− d̃) C
t

i=1
|Kk−1(Gi)|

\ (dkdk−1−2d̃1/2) C
t

i=1
|Kk−1(Gi)|,

provided that d° d̃.
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(viœ) (Proof of S(k, k−1), LŒ(k)S L(k+1, k)) Assume that state-
ments S(k, k−1) and LŒ(k) are true and letH be a (d, d)-regular (k+1, k)-
complex on V1 2 · · · 2 Vk+1, where |Vi |=n± n0 for all i ¥ [k+1] and n0 is
a large positive integer.

To prove L(k+1, k), we need to show that for all but at most d̃n vertices
x ¥ Vk+1, the extended link H2 (x) is a (d̃, d̃)-regular (k, k)-complex, where
d̃=(d2d3, ..., dk−1dk, dk) and d̃Q 0 as dQ 0.

Our assumption that LŒ(k) is true means that {H̃ (i)
x }

k−1
i=1={H

(i)(x)}ki=2
=H(x) is a (dŒ, (d2d3, ..., dk−1dk))-regular (k, k−1)-complex for all but at
most dŒn vertices x ¥ Vk+1, where dŒQ 0 as dQ 0.

Hence, the only thing remaining to prove L(k+1, k) is the regularity of
H̃ (k)
x =H (k) 5Kk(H(k)(x)) with respect to H̃ (k−1)

x =H (k)(x) for almost all
vertices x ¥ Vk+1. We prove this by showing that H (k) 5Kk(H (k)(x)) is
(2dŒ1/2, dk)-regular with respect to H (k)(x) for every x ¥ Vk+1 for which the
link H(x) is (dŒ, (d2d3, ..., dk−1dk))-regular. Then, H2 (x) is a (d̃, d̃)-regular
for all but at most d̃n vertices x ¥ Vk+1, where d̃=2dŒ1/2Q 0 as dQ 0.

Suppose that G is a (k, k−1)-cylinder, G …H (k)(x), such that |Kk(G)| \
2dŒ1/2 |Kk(H (k)(x))|. We need to show that

(dk−2dŒ1/2) |Kk(G)| [ |H (k) 5Kk(H (k)(x)) 5Kk(G)|

[ (dk+2dŒ1/2) |Kk(G)|. (62)

Since G …H (k)(x) and, therefore, Kk(G) …Kk(H(k)(x)), we have

|H (k) 5Kk(H (k)(x)) 5Kk(G)|=|H(k) 5Kk(G)|. (63)

Consequently, (62) is simply

(dk−2dŒ1/2) |Kk(G)| [ |H (k) 5Kk(G)| [ (dk+2dŒ1/2) |Kk(G)|. (64)

Observe first that

• since {H(i)(x)}ki=2 is a (dŒ, (d2d3, ..., dk−1dk))-regular (k, k−1)-
complex (by our choice of x), by S(k, k−1) we have

|Kk(H(k)(x))|=(1+O1(1/4))(dkdk−1) (
k
k−1) · · · (d3d2) (

k
2) (d2n)k, (65)

provided that dŒ° min{d2, ..., dk, 1/4};
• similarly, {H (i)[V1 2 · · · 2 Vk]}k−1i=1 is a (d, (d2, ..., dk−1))-regular

(k, k−1)-complex; thus, using S(k, k−1) again,

|Kk(H (k−1)[V1 2 · · · 2 Vk])|=(1+O1(1/4)) d (
k
k−1)
k−1 · · · d

(k2)
2 n

k, (66)

provided that d° min{d2, ..., dk, 1/4}.
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Now we use Eqs. (65) and (66) to derive (64). Indeed, since we assume that
d° dŒ° min{d2, ..., dk}, we have d (

k
k−1)
k · · · d (

k
2)
3 d

k
2 \ d

1/2. Consequently,

|Kk(G)| \ 2dŒ1/2 |Kk(H (k)(x))|

\
(65)
2d1/2(1−1/4)(dkdk−1) (

k
k−1) · · · (d3d2) (

k
2) (d2n)k

\ d(1+1/4) d (
k
k−1)
k−1 · · · d

(k2)
2 n

k \
(66)
d |Kk(H(k−1)[V1 2 · · · 2 Vk])|.

(67)

Finally, the (d, dk)-regularity of H (k) with respect to H (k−1) gives (64). L

In Definition 6.3, we assumed that for every I ¥ [s]k, the restriction
H[1j ¥ I Vj] is (e, d)-regular with respect to G[1j ¥ I Vj]. In other words,
the density dI of the subgraph H[1j ¥ I Vj] is roughly the same for every
I ¥ [s]k. Now we allow different values of dI (I ¥ [s]k) and state a
straightforward extension of Theorem 6.5. We start with some definitions.

Definition 6.9. Let G be an (s, k−1)-cylinder underlying an (s, k)-
cylinder H and let dF=(dI)I ¥ [s]k be a list of (sk) positive real numbers dI,
where 0 < dI [ 1. We say that H is (e, dF)-regular with respect to G if
H[1j ¥ I Vj] is (e, dI)-regular with respect to G[1j ¥ I Vj] for all I ¥ [s]k.

Definition 6.10. For every integer i (2 [ i [ k) let dFi=(dI)I ¥ [s]i be a
list of (si) positive real numbers dI, where 0 < dI [ 1, and put d]=
(dF2, ..., dFk). We say that the (s, k)-complex H is (d, d])-regular if H (i+1) is
(d, dFi+1)-regular with respect to H(i) for every 1 [ i < k.

Now we are ready to state an extension of Theorem 6.5.

Corollary 6.11. Fix 2 [ k [ s. For any e > 0 and any dF2, ..., dFk as
described in Definition 6.10, there exist d0 > 0 and n0 ¥N for which the
following assertion holds. If d < d0 and H is a (d, d])-regular (s, k)-complex
on V1 2 · · · 2 Vs, where |Vi |=n \ n0 for all i, then the number of transversal
K (k)s inH

(k) is (1+O1(e))<k
i=2 <I ¥ [s]i dI×n s.

The proof of this corollary follows the lines of the proof of Theorem 6.5
and we omit it here. For us, the most interesting case occurs when all
underlying cylinders are complete, that is dI=1 for every I ¥ [s] i and
2 [ i < k.

In this case, the number of transversal K (k)s in H (k) is (1+O1(e))
<I ¥ [s]k dI×n s. We restate this observation in the following corollary.
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Corollary 6.12. Fix 2 [ k [ s. For any e > 0 and any list dF=(dI)I ¥ [s]k
of (sk) positive real numbers dI, where 0 < dI [ 1, there exist d0 > 0 and
n0 ¥N for which the following assertion holds. If d < d0 and H is a (d, dF)-
regular (s, k)-cylinder on V1 2 · · · 2 Vs, where |Vi |=n \ n0 for all i ¥ [s],
then the number of transversal K (k)s inH is (1+O1(e))<I ¥ [s]k dI×n s.

Let G be an arbitrary k-uniform hypergraph on s vertices v1, ..., vs. We
define an (s, k)-cylinder H̃ in the following way. For every I ¥ [s]k, we set

H̃ 50
i ¥ I
Vi6=3

H[1i ¥ I Vi] if {vi: i ¥ I} ¥ E(G),
H̄=(<i ¥ I Vi)0H[ 1i ¥ I Vi] otherwise.

Observe that every transversal copy of G in H corresponds to exactly one
transversal copy of K (k)

s in H̃. Consequently, applying the the previous
corollary on H̃, we deduce the following counting formula.

Corollary 6.13 (Subhypergraph Counting Formula). Fix 2 [ k [ s.
For any e > 0 and any 0 < d [ 1, there exist d0 > 0 and n0 ¥N for
which the following assertion holds. If the hypergraph H is a (d, d)-regular
(s, k)-cylinder on V1 2 · · · 2 Vs, where |Vi |=n \ n0 for all i ¥ [s] and d < d0,
and G is an arbitrary k-uniform hypergraph on s vertices, then the number of
transversal G inH is (1+O1(e)) de(G)(1−d) (

s
k)−e(G) n s.

Clearly, one may generalize Corollary 6.13 above to the case in which
the (s, k)-cylinder H has a non-constant density vector dF=(dI)I ¥ [s]k.
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