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ARTICLE INFO ABSTRACT
Keywords: Agricultural activities cause changes in land use and affect the ecological integrity of streams and rivers, with
Nitrate some of the main impacts being related to increased nutrient and fine sediment inputs. Agricultural water
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diversion and prolonged droughts due to climate change can also cause alterations in these ecosystems, such as
modifications in flow dynamics. However, the interactions between stressors related to agricultural production
and climate change are still poorly understood. Therefore, the singular and combined effects of three agricultural
and climate change stressors were tested: i. nitrate enrichment (ambient/80 %,/140 %/220 %), ii. fine sediment
deposition (ambient and 80 % increase), and iii.- flow reduction (ambient and 66 % reduction) on the benthic
macroinvertebrate community of a subtropical stream. For this purpose, we used a streamside mesocosm setup
consisting of 64 experimental mesocosms. These were continuously supplied with stream water, allowing for
comparable physicochemical and climatic characteristics to the adjacent stream. We investigated the individual
and combined effects of the stressors on invertebrate community richness, abundance, Shannon diversity,
equitability (species dominance), community composition and community size structure (size spectra). Our
findings revealed that the macroinvertebrate community was affected by all three stressors, with each one
influencing different structural aspects of the community. Nitrate addition had a positive effect on community
evenness up to moderate enrichment levels. Sedimentation primarily decreased richness and the abundance of
larger individuals, notably impacting chironomid communities that are closely tied to sediment characteristics.
Flow reduction altered diversity and equitability, benefiting species such as ostracods that thrive in slow-flow
environments. When combined, sedimentation and reduced flow decreased the occurrence of several rarer
taxa. These findings suggest that agricultural intensification and climate change may negatively impact mac-
roinvertebrate communities in subtropical streams through single and combined stressor mechanisms.

Introduction biodiverse aquatic ecosystems in the world, yet they are also among the
most understudied and threatened due to anthropogenic activities such
Streams in tropical and subtropical regions are among the most as agricultural production and climate change (Dudgeon et al., 2006;
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Lambin et al., 2003; Taniwaki et al., 2017; Valente-Neto et al., 2024).
Intensification of agricultural practices substantially contributes to the
deterioration of the functions and biological structure of stream eco-
systems (Martinelli et al., 2010; Schiesari and Correa, 2015; Schiesari
and Grillitsch, 2011). Streams located in agricultural regions are often
impacted by sediment accumulation and high nutrient concentrations,
stressors that affect stream ecosystems worldwide (Dudgeon, 2010;
Foley et al., 2005; Vorosmarty et al., 2000). As the intensity of agri-
cultural activities increases, the impact of multiple stressors on fresh-
water communities is correspondingly amplified (Beermann et al., 2018;
Elbrecht et al., 2016). Nutrient enrichment of streams, primarily from
surface runoff and contaminated groundwater inputs, accelerates the
eutrophication process and accumulation of heavy metals in sediment
beds, leading to negative impacts on stream communities and shifts in
community structure (Camargo et al., 2005; Schwantes et al., 2021;
Wagenhoff et al., 2012). Such changes include the bioaccumulation of
heavy metals, the exclusion of sensitive species or functional processes
and disruption of freshwater food webs (Arnold et al., 2021; Espino-
za-Toledo et al., 2021; Lima et al., 2022). Moreover, agricultural ac-
tivities increase the input of fine sediment into streams, for example
through deforestation associated with monocultures and the use of
heavy machinery (Martinelli et al., 2010), thus increasing streambed
sedimentation and altering the habitat of the benthic community
(Francga et al., 2023; Pedersen, 2009).

Degradation of running-water ecosystems can be effectively moni-
tored using benthic macroinvertebrates, which are widely recognized as
reliable bioindicators of aquatic ecosystem health due to their abun-
dance, ease of collection, and wide distribution (de Mello et al., 2023;
Rosenberg and Resh, 1993). These organisms have long life cycles that
include larval, juvenile and adult stages, with the duration of each stage
varying according to species and environmental conditions. Further,
their relatively sedentary nature enables them to provide a localized
representation of the environment (Rosenberg and Resh, 1993). The
worldwide popularity of benthic macroinvertebrates as bioindicators is
due to their high taxonomic diversity and their sensitivity to different
stressors (Beermann et al., 2018; Blocher et al., 2020; Juvigny-Khenafou
etal., 2021; Piggott et al., 2015). Moreover, benthic macroinvertebrates
span a wide range of body sizes, and larger taxa with smaller populations
are usually expected to be more sensitive to environmental degradation.
This can be described by a size-based assessment tool such as the size
spectrum which depicts the negative relationship between abundan-
ce/biomass and density in a community, where a steeper slope indicates
that less biomass of large organisms is maintained in the community
(Collyer et al., 2023; Petchey and Belgrano, 2010). All these properties
make benthic macroinvertebrates highly suitable bioindicators in
running waters for detecting changes in environmental quality at
different time scales.

Alongside agricultural stressors, the consequences of climate change
may further impact aquatic environments (Gesualdo et al., 2019; Tani-
waki et al., 2017). According to reports from the Intergovernmental
Panel on Climate Change (IPCC), higher and more variable temperatures
are forecasted in subtropical regions, as well as prolonged drought pe-
riods, causing significant changes in streamflow dynamics in subtropical
streams (IPCC, 2019). Drought-related reductions in stream flow and/or
current velocity can cause changes in the hydrological patterns of
streams and water quality, as well as affecting the composition of the
benthic macroinvertebrate community (Blocher et al., 2020; Dewson
et al., 2007). These changes can include increased nutrient loading
during drought periods, reduced oxygen availability which excludes
sensitive species, as well as increased sediment loads during the rainy
season, causing habitat changes and the loss of macrofaunal diversity
(Fan and Shibata, 2015).

Given that most present-day ecosystems are affected by multiple
stressors, understanding how they act alone and interact with each other
is crucial for mitigating their negative impacts on aquatic ecosystems
(Ormerod et al., 2010). In Brazil, a number of studies have investigated
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the individual effects of agricultural stressors on lotic ecosystems (e.g
Hepp and Santos, 2009; Mello et al., 2018; Tanaka et al., 2015; Taniwaki
et al., 2017). However, studies on the interactions between multiple
stressors in Brazilian streams are rare, due to the difficulties in sepa-
rating the effects of individual stressors in the environment and due to
the challenges in conducting multiple-stressor experiments in the field.
This is an important knowledge gap, as there is a global consensus that
simultaneously acting stressors can alter structure and functioning of
these ecosystems more profoundly than individual stressors (Ormerod
et al., 2010; Piggott et al., 2015; Taniwaki et al., 2017).

To address the challenge to understand the interactions of multiple
stressors (Schafer and Piggott, 2018), the present study investigated the
individual and combined effects of three key agricultural and climate
change stressors (nutrient enrichment, sedimentation, and flow reduc-
tion) on the benthic macroinvertebrate community in stream meso-
cosms fed by a subtropical stream. We tested five hypotheses: (H1) Flow
reduction will have predominantly negative effects on the invertebrates,
due to the interplay of decreased oxygen availability, limitation in
dispersal capacity, and reduced feeding opportunities (Elbrecht et al.,
2016; Matthaei et al., 2010); (H2) Nutrient enrichment effects will be
positive at moderate but negative at high levels where reduced dissolved
oxygen concentrations impact the invertebrates (Townsend et al., 2008;
Wagenhoff et al., 2012); (H3) Added sediment and reduced flow will
interact synergistically. This is due to exacerbated competition for
limited resources under reduced flow (which also increases sedimenta-
tion), the possibility of suffocation and habitat loss due to sedimenta-
tion, changes in food availability, restrictions on migration and dispersal
of aquatic organisms, and physiological stress caused by the combina-
tion of these stressors (Beermann et al., 2018; Blocher et al., 2020); (H4)
The positive effects of nutrient enrichment alone may become negative
when combined with sediment addition, as the two combined stressors
can cause habitat structure degradation and exacerbated algal growth,
triggering adverse responses in the benthic community. (H5) The
stressor effects described above should also result in changes in the size
structure of the invertebrate communities. Because larger organisms
require more energy flowing through the food chain, the three stressors
should synergistically cause a decrease in the abundance of larger or-
ganisms due to higher metabolic costs associated with dealing with
suffocation and physiological stress. This should result in steeper
negative relationships between abundance and body size under these
conditions (Petchey and Belgrano, 2010).

Methods
Study area

The study was conducted in the Experimental Station of Forest Sci-
ences (Itatinga- ESALQ/USP- EECFI) of the University of Sao Paulo,
situated in the Itatinga municipality, Sao Paulo State (latitude 23°10’S,
longitude 48°40" W, average altitude 850 meters a.s.l., and average
terrain slope 10 %). The station covers a total area of 2119 hectares,
characterized by gently undulating topography and a predominance of
latosol and podzolic soils. The vegetation cover is mainly composed of
Eucalyptus and Pinus, used for both experimental and commercial pur-
poses, with some areas of preserved native vegetation (Goncalves et al.,
2012). According to the Koppen classification (Alvares et al., 2013), the
climate of the region is characterized as Cwa (humid subtropical
climate), with dry winters and hot summers. Average annual tempera-
ture is 20 °C, and average annual precipitation is 1350 mm. The stream
feeding our mesocosm setup was a 2"%-order stream draining Eucalyptus
plantations mixed with native forest. The stream has 30+ m of riparian
vegetation buffer along both banks, with background concentrations of
nitrate being around 3 mg/L and an annual mean discharge of 67 L/s
(Estagao Experimental de Ciéncias Florestais — USP, unpublished data).
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Experimental design

The study was conducted using the ExStream System, an outdoor
flow-through mesocosm system used in several countries, resulting in
more than 30 peer-reviewed journal articles to date. This system offers
precise control of experimental variables, excellent statistical power,
and a high degree of field realism (Elbrecht et al., 2016; Hunn et al.,
2024; Piggott et al., 2015). The system used in this study, ExStream
Brazil, was installed 100 m from the stream and consisted of a structure
4.1 m high and 20 m long, divided into two levels (Fig. 1). The upper
level supported four polyethylene tanks with a capacity of 135 L each,
while the lower level was composed of a wooden support measuring 1
meter high by 1.2 meters wide, designed to accommodate the 64 mes-
ocosms. These had an external diameter of 25 cm, a height of 9 cm, and a
capacity of 3.5 liters. Each mesocosm was equipped with a flow control
valve to regulate water flow. A centrifugal pump (Schneider
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Monoestagio BC-92S 1B 3 CV with maximum capacity of 11.4 m®/h) was
installed on the stream to maintain the continuous flow of water and
organisms through the system (Fig. 1a). The pump inlet was protected
by a 4.5-mm metal mesh to prevent the pump from clogging with
branches and leaves, with an additional enclosure with an overlay
screen (mesh opening 3 cm). Both meshes were cleaned daily in the
morning and afternoon using a brush and a shovel.

The stream water flowing through the pump was transported to a
central collector via a 38-mm diameter pipe. This central collector
distributed water to the four header tanks (each controlled by a manual
ball valve) along 19-mm diameter polyethylene pipes, with each tank
gravity-feeding water to 16 mesocosms through 12.7-mm internal
diameter hoses. The pump was powered by the three-phase electrical
grid, and although there were a few power outages during the experi-
ment, these never exceeded 2 hours in duration.

The experiment began on January 12, 2022 and lasted for 6 weeks.

Nitrate pumps Nitrate pumps

@ Stream
Water pump

Water distributor

Nitrate pumps

Nitrate 0%

Fig. 1. Experimental setup of the ExStream Brazil system used in our study. (a) Schematic representation of the treatments of stressors used. (b) Photo of the system.

(c) Photo of the mesocosms. (d) Photo of the nitrate pumps.
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Minimum and maximum temperature during the study period in the
station were 13.9 °C and 32.5 °C, respectively. The accumulated pre-
cipitation for January 2022 was 399.7 mm and 198.9 mm for February
2022. We applied four concentrations of nitrate (ambient stream con-
centration / 80 %, 140 %, and 220 % more), two levels of sediment
(none added / 80 % cover of the bed surface of the mesocosm), and two
flow velocity levels (no alteration / 66 % reduction) in 64 mesocosms,
using a full-factorial design. Nutrient blocks were assigned randomly at
the header-tank level, with all 16 mesocosms in each block receiving the
same nutrient concentrations. Within each nutrient block, sediment and
flow velocity treatment combinations were randomly assigned to indi-
vidual mesocosms, resulting in four replicates of each treatment com-
bination (Fig. 1a).

On the first day of the experiment, the mesocosms were filled with
dry substrate (500 mL of gravel ranging from 2 to 20 mm, plus sixteen
20-mm surface stones), simulating the bed of small streams in the Ita-
tinga region. The natural colonization period occurred over 3 weeks,
from day -21 to day -1, during which the flow rate through the system
remained constant at 1.5 L/min per mesocosm. On day -4, to supplement
the natural colonization process with taxa rare in the drift and organisms
bigger that 4mm (Elbrecht et al., 2016; Piggott et al., 2015), all meso-
cosms received a standard load of benthic invertebrates. These organ-
isms were collected from the same stream through kick sampling using D
nets with 500 um mesh and sampling approximately 3,4m? for 5 minutes
each, totaling around 40 m?. Each mesocosm received the amount of
organisms from around 1.5x the area of each mesocosm. The organisms
were transported to the experimental site in polyethylene buckets con-
taining stream water and were distributed evenly into the mesocosms
using a 200-mL plastic container, mixing the bucket before each
distribution.

Stressors were applied from day 0 to day 21, where treatments were
added to the corresponding mesocosms. From day 2 to day 21, to
conduct a simultaneous study on the effects of stressors on decomposi-
tion, 3 leaf litter bags (height 8 cm, width 7 cm) made of coarse mesh (6
mm) were added to all mesocosms, each containing 10 leaf discs (15 mm
in diameter) from the species Heliconia tarsais, native to the Atlantic
Forest in South America and commonly found and collected near
streams in the experimental station.

For the nitrate enrichment, water-soluble KNO3 (YaraTera™ Krista™
K-13 %N, 43 % K30, 1 % Mg) was used. The KNO3 was dissolved in a
polyethylene container, at a ratio of 50 g of nitrate per 100 L of water
(Fig. 1d). The resulting solution was introduced into the mesocosms
through 3 pressure-compensating drippers (Seko model Kompact AML
200 with 0.52 ml per injection and 160 pulses per minute), connected to
each corresponding upper tank, and individually adjusted to different
drip rates to achieve the desired nitrate conditions. Nitrate concentra-
tions were measured twice daily (morning and afternoon) according to
the APHA 4500 NO3-B method, in a randomly selected mesocosm from
each experimental block, using a UV spectrophotometer (Model AJX-
6100P6 double-beam spectrophotometer) with wavelengths of 220
and 270 nm (APHA, 2005).

The nitrate enrichment treatment was based on findings by Taniwaki
et al. (2017), which observed that nitrate concentrations in streams
influenced by sugarcane are up to five times higher than in streams
draining pasture regions and up to eight times higher when compared to
forested headwaters. Therefore, the nitrate enrichment treatments were
ambient concentration (no nitrate addition - median 3.8 mg/L), low
increase (median 8.5 mg/L), medium increase (median 11.9 mg/L), and
high increase (median 14.9 mg/L).

The added sediment consisted of fine sand (average grain size 0.2
mm), which was collected in the region and commercialized by a local
business (Sao Caetano Materiais para Construcao - Itatinga, SP, Brazil).
The influence of fine sediment was evaluated at two levels: the natural
stream condition (no added load) and 80 % sediment cover of each
mesocosm. To achieve the latter, 400 g of fine sand was added to each
mesocosm designated for sediment treatment. The choice of grain size
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was based on a study conducted by Blocher et al. (Blocher et al., 2020),
which analyzed the effects of sediment grain size on the benthic com-
munity and identified greater negative impacts when particle size was <
0.2 mm. The decision to increase sediment cover to 80 % of the meso-
cosms was based on a study that encompassed 86 streams draining
various watersheds with different land uses in the state of Sao Paulo
(Molina et al., 2017).

Flow treatments comprised two categories: ambient (1.5 L/min) and
reduced (0.5 L/min), representing a 66 % discharge reduction. This
reduction was based on a study conducted in the state of Sao Paulo that
projected a 35-50 % decrease in stream flow under climate change
scenarios (Gesualdo et al., 2019). The discharge in the system was
measured twice daily (morning and afternoon) in all mesocosms using a
digital flow meter (Model: SEA1245/ Brand: SEA, Sea Zhongjiang,
China), and manually regulated through the flow control valve attached
to each mesocosm.

On the last day of the experiment, we measured pH, electrical con-
ductivity (uS/cm), temperature (°C), and dissolved oxygen (mg/L and
%) in the stream and in four mesocosms from each block (representing
one randomly chosen mesocosm of each treatment combination). Mea-
surements were taken using a multiparameter meter from Hanna (model
HI 9828, Hanna Instruments, Brazil).

Sampling of benthic macroinvertebrates

On day 21, after the system was turned off, all mesocosms and litter
bags were elutriated through a 250 pm sieve. Subsequently, the samples
were transferred to plastic containers and stored in 70 % ethanol. All
invertebrate samples were sorted, counted, and identified in the labo-
ratory. To identify the genera of Chironomidae (Diptera), permanent
glass slides containing Hoyer’s Liquid were prepared, and all midge
larvae were analyzed under a binocular biological microscope with
magnifications of 40x to 400x (Model: TNB-41B-PL/ Brand: Option). For
the other organisms, a DI150B binocular stereoscopic microscope
equipped with an auxiliary objective lens of 0.7x (Model: New light/
Brand: Digilab, Brazil) was used. All organisms were identified to genus,
family or class (for Ostracoda). Identification was based on taxonomic
keys (Hamada et al., 2014; Mugnai et al., 2010; Segura et al., 2011;
Shepard et al., 2020; Trivinho-Strixino, 2023). We calculated the body
mass of every individual from the experiment by measuring body di-
mensions and applying allometric size-mass equations (Collyer et al.,
2023).

Four community-level indices were calculated: Richness - Total
number of taxa in each sample, Abundance - Total number of in-
dividuals, Shannon- Wiener Index — Community diversity and Pielou’s
Equitability Index — Species dominance.

Statistical analyses

All analyses were conducted using the software R (version 3.5.3) (R
Core Team, 2018). To compare the physical and chemical characteristics
of water among different blocks and the stream source, we applied
Kruskal-Wallis and Mann-Whitney tests. To determine stressor effects on
macroinvertebrate community composition, we used a permutational
multivariate analysis of variance (PERMANOVA) with the Bray-Curtis
dissimilarity index as response matrix and all stressors and their in-
teractions as explanatory variables. We complemented this analysis by
exploring the effects on individual taxa using a SIMPER analysis when
PERMANOVA effects were significant. Because these data were also used
for the size spectra analyses, we only evaluated the communities outside
of the litter bags. This was done to avoid mixing ‘brown’ and ‘green’
food-web channels, one based on algae and other based on litter
biomass, which would confound interpretations of size spectra changes.

We applied generalized linear models to analyze the singular and
combined (interactive) effects of nitrate, sediment, and flow on benthic
macroinvertebrate richness, abundance, Shannon diversity and
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evenness, mixing the communities inside and outside of the litterbags.
All predictor variables were classified as fixed categorical predictors,
and the four specific benthic invertebrate variables as responses. We
used Poisson-regression for abundance and species richness data, Quasi-
Binomial regression for equitability (which is bounded between 0 and
1), and simple linear regression for Shannon diversity. Applying data
transformations or using non-linear link-functions changes the inter-
pretation of the interaction term (Spake et al.,, 2023), therefore we
specified the identity-link for all regression models to evaluate in-
teractions on the arithmetic scale. This corresponds to the simple
addition null model for multiple-stressor effects (Schafer and Piggott,
2018). Model validation and statistical evaluation was done with the car
package (version 3.1-2) (Fox and Weisberg, 2019). Residual plots were
used to check compliance with model assumptions. We used ANOVA
type II sum of squares for statistical inference, applying either the F-test
(quasibinomial and simple regression model) or the LRT-Test (poisson
regression models). If nitrate had a significant effect on the response
variable, we applied post-hoc tests with the emmeans package (version
1.10.3) (Lenth, 2024). All nitrate levels were compared pairwise, and
p-values were corrected with Tukey’s method.

We applied a biomass-size-spectrum approach named LBNBiom
(Edwards et al., 2017) to the communities outside of the litter bags. This
method is an a-taxonomic approach, meaning that taxonomic identities
are ignored and individual body masses are grouped in size classes (bins)
defined by different methods (White et al., 2007). In our case, we
separated bins of equal sizes comprising a range of body masses and
assigned each individual to the mean of their bin. We then plotted these
bins against their summed biomasses on double-log axes. This method
can identify the decrease or increase in the biomass of large organisms in
proportion to smaller organisms and has already been used to test the
effects of stressors on benthic communities (Collyer et al., 2023). In our
study, the effects of stressors on size spectra were investigated by
applying a mixed-effect model with mesocosms as random intercepts
using R package Size Spectra (version 3.5.3) (Edwards et al., 2017). The
summed biomasses were treated as response variables while binned size
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classes and treatments were used as fixed factors with interactions. A
significant interaction between binned size classes with treatments
would indicate that the slope of size spectra changes with the stressor
treatments.

Results
Physical and chemical characteristics in the stream and in the mesocosms

Water physicochemistry in the mesocosms varied significantly across
the nitrate treatments and differed marginally from the source stream
(see Supplement 1 and 2 for comparison results and post-hoc tests). In
general, the mesocosms were significantly acidic (stream pH = 6.02 +
0.11, mesocosms = 6.01 + 0.10), with higher concentrations of dis-
solved oxygen (stream = 6.6 + 0.20 mg/L, mesocosms = 7.34 £+ 0.27
mg/L), and slightly higher water temperatures (stream = 23.1 + 0.1 °C,
mesocosms = 23.5 + 0.1 °C) (Supplement 1). Water conductivity
increased as nitrate concentrations increased (stream = 53 + 0 pS/cm,
enriched mesocosms = 66 + 6 uS/cm) (Supplement 1).

Taxonomic composition and stressor effects on individual taxa

A total of 7531 individuals belonging to 113 taxa were collected and
identified. The five taxa with the highest abundances were Ostracoda,
representing 33.3 % of all individuals, Oligochaeta (Clitellata, Hap-
lotaxida) with 11 %, Tanytarsini (Chironomidae, Diptera) with 10.3 %,
Tanypodinae (Chironomidae, Diptera) with 7 %, and Pentaneura spp.
(Chironomidae, Diptera) with 5.3 % (Fig. 2). At the family level, there
was a predominance of Chironomidae, which represented 39.2 % of all
individuals. Within Chironomidae, Tanytarsini represented 26.2 %,
Tanypodinae 17.8 %, Pentaneura 13.5 %, Chironominae 8.4 % and
Orthocladiinae 6.7 %.

The PERMANOVA detected a significant influence of flow reduction
(F = 2.85, R? = 0.020, p = 0.03) and the interaction between flow and
sedimentation (F = 2.98, R* = 0.021, p = 0.02) on community
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Fig. 2. Factor main effects of sediment addition, flow reduction and nitrate enrichment on the taxonomical groups of benthic macroinvertebrates.
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composition, though with low explanatory power. The SIMPER analyses
were applied according to the significant results of PERMANOVA, thus
testing only which taxa were affected by flow reduction and the inter-
action between flow and sedimentation. The genera Cryptochironomus
and Labrundinia were more common for normal flow, whereas the genus
Chironomus was more abundant at reduced flow (Table 1). Despite these
significant effects, the absolute differences were fairly small.

We found no differences in abundances across the two sediment
levels in the SIMPER analysis for normal water flow. However, such
differences were observed for 23 taxa for reduced water flow (Table 2).
All these taxa were more common at reduced flow in treatments without
added sediment, suggesting a synergistic significant interaction between
reduced flow and fine sediment. Further, 19 rare taxa (singletons) were
found only in treatments without increased sedimentation.

Stressor effects on community-level invertebrate metrics

We observed only significant stressor main effects on the four
community-level response variables (Table 3). Flow reduction affected
abundance and diversity, sedimentation changed species richness and
abundance, and nitrate enrichment affected equitability. None of the
stressor interactions were significant (Table 3).

Under reduced flow, macroinvertebrate diversity and equitability
were both lower, indicating that the community shifted towards a less
diverse one with more dominant species (Fig. 3). Sediment addition
reduced both the number of taxa and the number of individuals (Fig. 3).
Nitrate enrichment significantly increased community equitability only
at medium enrichment conditions (Fig. 3, Supplement 3).

Biomass size spectra

The LME model identified the expected negative linear decrease in
biomass with increasing individual (binned) body sizes. Generally, or-
ganisms of smaller sizes contributed more to the community biomass
(Table 4). However, this relationship was mostly unrelated to our
experimental manipulations. We only found a marginally significant
effect of the interaction between size classes, nitrate concentration and
sediment addition (Table 4). With increased sedimentation, there was a
tendency for less biomass of large size classes in two nitrate concen-
trations, meaning a loss of large organisms with added sediment in these
cases (Fig. 4). The estimated marginal means comparison indicated that
these changes occurred with nitrate 80 % (t ratio = -1.75, P = 0.08) and
140 % (t ratio = -1.70, P = 0.09) (Fig. 4).

Discussion

This experiment evaluated the individual and combined effects of
sedimentation, flow reduction and nitrate enrichment on benthic
invertebrate communities in streamside mesocosms fed by a subtropical
stream. Our primary aim was to investigate whether these combined
stressors could lead to unexpected outcomes, considering that these
stressors are widely spread through agricultural regions in Brazil. Our
results revealed that flow reduction negatively impacted macro-
invertebrate diversity and equitability (species dominance), while high
nitrate concentrations adversely affected community equitability. The
combination of sedimentation and flow reduction resulted in the loss of
rare species and the combination of nitrate and sedimentation slightly

Table 1
Taxa that differed in their abundance in relation to flow velocity in the SIMPER
analysis. Normal (1.5 L/m) and reduced (0.5 L/m).

Taxa p value Normal flow Reduced flow
Cryptochironomus 0.017 44 34
Chironomus 0.044 9 13
Labrundinia 0.014 5 2
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Table 2
Taxa that differed in their abundance in relation to sediment addition under
reduced flow velocity (0.5 L/s) in the SIMPER analysis.

Taxa p value Without sediment With sediment
Pentaneura 0.009 104 69
Polypedilum 0.007 12 1
Larsia 0.046 11 3
Coelotanypus 0.012 8 1
Parapentaneura 0.007 6 0
Corynoneura 0.007 2 0
Zygoptera 0.005 1 0
Endotribelos 0.009 2 0
Paracladius 0.017 2 0
Thienemanniella 0.017 2 0
Coleoptera 0.004 1 0
Tanypus 0.010 1 0
Clinotanypus 0.015 1 0
Paramerina 0.015 1 0
Tanytarsini 0.015 1 0
Demicryptochironomus 0.007 1 0
Metriocnemus 0.010 1 0
Pseudochironomus 0.017 1 0
Chironomini 0.018 1 0
Dicrotendipes 0.018 1 0
Orthocladinae 0.016 1 0
Procladius 0.001 2 0
Tanytarsus (Caladomyi) 0.001 6 0

reduced the abundance of larger taxa. These findings underscore the
varied impacts of agricultural and climate-related stressors on macro-
invertebrate communities, highlighting the need for refined assessments
of taxonomical, size-based, and community structures. Below, we
discuss the main findings related to the stated hypotheses of this study.

Hypothesis i. predicted that a reduction in flow velocity would
adversely affect benthic macroinvertebrates. Our results corroborate
this hypothesis, with flow reduction negatively impacting community
diversity and equitability, as observed in previous related studies
(Blocher et al., 2020; Elbrecht et al., 2016; Matthaei et al., 2010). While
some of these studies employed more drastic flow reductions, our study
applied moderate reductions based on forecasts for the Sao Paulo
Metropolitan Region (Gesualdo et al., 2019), yet significant effects were
still observed. Besides flow reduction negatively affecting diversity in-
dexes, it increased the presence of ostracods and oligochaetes in the
mesocosms, thereby negatively impacting diversity and dominance in-
dexes. Ostracods, which generally avoid fast flows (Ruiz et al., 2013),
were expected to benefit from flow reduction. Similarly, the presence of
oligochaetes is often associated with higher organic matter availability,
which is positively influenced by reduced flow due to accumulation
processes (Cortelezzi et al., 2011). Consequently, reduced flows favour
tolerant taxa and diminish biodiversity and equitability in macro-
invertebrate communities. Additionally, it is important to note that
chironomids, which rely on drift for colonization, may experience
reduced drift and colonization due to flow reduction. Therefore, with
projections of prolonged droughts in the Sao Paulo region due to climate
change (Gesualdo et al., 2019), and stream water abstraction due to
agricultural irrigation, our results indicate that stream macro-
invertebrate communities are likely to lose diversity.

Our second hypothesis predicted that low concentrations of nitrate
enrichment positively affect the invertebrate community, whereas high
concentrations have negative effects. Our results support this hypothe-
sis, showing increased community equitability at low and intermediate
nitrate levels, but a reduction at high nitrate levels. These findings align
with other experiments conducted in New Zealand, which demonstrated
positive effects at low to moderate nutrient concentrations, turning
negative at high concentrations (Matthaei et al., 2010; Townsend et al.,
2008; Wagenhoff et al., 2012). Nutrient effects on benthic macro-
invertebrates typically occur indirectly by influencing food supply in the
short term and causing long-term impacts such as eutrophication, which
can lead to oxygen depletion (“Multiple-stressor effects of sediment,



G.S.S. Almeida et al.

Table 3
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Results of the generalized linear models evaluating the individual and combined effects of sedimentation, nitrate enrichment and flow reduction on the community-

based variables evaluated in this study. n.s = non-significant.

Dependent Model Independent SumSq F_value Chi square Df p_value
Species richness Poisson Sediment 7,86 1 0.01
Flow 0,63 1 n.s
Nitrate 1,63 3 n.s
Sediment:Flow 3,61 1 n.s
Sediment:Nitrate 6,76 3 n.s
Flow:Nitrate 2,30 3 n.s
Sediment:Flow:Nitrate 4,73 3 n.s
Shannon Diversity Gaussian Sediment 0,24 3,59 1 n.s
Flow 0,47 7,04 1 0.01
Nitrato 0,23 1,16 3 n.s
Sediment:Flow 0,00 0,02 1 n.s
Sediment:Nitrate 0,34 1,68 3 n.s
Flow:Nitrate 0,24 1,17 3 n.s
Sediment:Flow:Nitrate 0,09 0,43 3 n.s
Equitability (J) Quasibinomial Sediment 0,00 0,08 1 n.s
Flow 0,24 6,14 1 0.02
Nitrate 0,34 2,91 3 0.04
Sediment:Flow 0,08 2,03 1 n.s
Sediment:Nitrate 0,03 0,30 3 n.s
Flow:Nitrate 0,08 0,67 3 n.s
Sediment:Flow:Nitrate 0,07 0,58 3 n.s
Total abundance Quasipoisson Sediment 60,47 4,62 1 0.04
Flow 38,15 2,91 1 n.s
Nitrate 62,75 1,60 3 n.s
Sediment:Flow 41,80 3,19 1 n.s
Sediment:Nitrate 16,87 0,43 3 n.s
Flow:Nitrate 38,20 0,97 3 n.s
Sediment:Flow:Nitrate 26,08 0,66 3 n.s

phosphorus and nitrogen on stream macroinvertebrate communities,”
2018). Additionally, we observed a systematic reduction in ostracods
with increased nutrient levels, which favoured equitability in the
invertebrate community. Some species of Ostracods can respond highly
sensitively to nutrient increases (Ruiz et al., 2013), which would explain
our results. In scenarios of agricultural intensification, higher concen-
trations of nitrate in streams are expected, especially because of the use
of fertilizers (R.H. Taniwaki et al., 2017). This increase in nitrate levels
is likely to lead to reductions in the equitability and increase the
dominance of resistant taxa in the agricultural streams.

Our third and fourth hypotheses predicted synergistic effects of
sedimentation and reduced flow (H3), and sedimentation and nitrate
enrichment (H4). Our results partially support these hypotheses, as
interactive effects were observed among the studied stressors in the
taxonomic composition of benthic invertebrates, but not in the four
studied community-level metrics. The combination of sedimentation
and flow reduction caused the loss of rare taxa and reduced the abun-
dances of certain common taxa. However, the same stressor interaction
did not cause any significant effects on the community-level metrics.
These results align with previous ExStream studies conducted in other
countries (Germany and New Zealand), which found that the combined
effects of sedimentation and reduced flow impacted specific taxa,
especially members of the pollution-sensitive EPT groups (mayflies,
stoneflies and caddisflies) (Beermann et al., 2018; Blocher et al., 2020).
By contrast, the main effects of these stressors influenced the overall
community structure (Beermann et al., 2018; Blocher et al., 2020).

In our experiment, sedimentation and flow reduction impacted
invertebrate community structure in different ways. Sedimentation
primarily affected abundance and richness, reducing the number of in-
dividuals and taxa, particularly chironomid communities that are
closely tied to sediment characteristics (Suren and Jowett, 2001). Flow
reduction reduced diversity and equitability, favouring already abun-
dant groups such as ostracods that thrive in low-flow conditions (Ruiz
et al., 2013). Nitrate addition impacted community equitability posi-
tively up to moderate enrichment levels. Therefore, the findings of our
study indicate that agricultural and climate-related stressors affect

macroinvertebrate communities in distinct ways. Flow reduction due to
climate change leads to the creation of uniform habitats, favouring a
limited number of taxa associated with slow-flow conditions, while
increased sedimentation generally has detrimental effects on the com-
munity as a whole. The combined impact of low flow and sedimentation
exacerbates these negative effects. However, local actions, such as
reducing sediment inputs to streams, can mitigate some of the harmful
consequences of reduced flow caused by climate change. This highlights
the need for refined assessments of both taxonomical and community
structures.

Our fifth hypothesis predicted that the effects of the studied stressors
would result in changes in the size structure of the invertebrate com-
munities. As expected by metabolic scaling theory, the biomass of larger
invertebrate size classes was systematically smaller than that of small
organisms in all conditions (Brown et al., 2004). This means that ener-
getic constraints on the abundance and biomass of large taxa are likely
operating in our system (White et al., 2007). However, our hypothesis
was only partially supported, considering that only a marginally sig-
nificant effect of the interaction between size classes, nitrate and sedi-
mentation were observed. With increased sedimentation, there was a
tendency for less biomass of large size classes in two nitrate concen-
trations, indicating a loss of large organisms with sedimentation. In
accordance with our previous explanation, the changes in size spectra
are likely to reflect impacts of suffocation and loss of habitats leading to
a loss of diversity. In our study, this was especially evident for larger
taxa, which in many cases tend to be predators with smaller populations
(e.g. damselflies were significantly affected by sedimentation in the
SIMPER analysis). The consequences of having fewer large-sized in-
vertebrates in a community are not only a loss of biodiversity, but also
potential changes in the functioning of the ecosystem, as changes in
specific trophic groups may impact patterns and rates of energy transfer.

Implications for conservation

Our study demonstrates that the evaluated agricultural stressors and
flow reduction (as a predicted consequence of climate change) have the
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Fig. 3. Factor main effects of flow reduction, nitrate enrichment and sediment addition on community-level invertebrate metrics. Solid lines indicate significant
effects (p < 0.05). Dashed lines indicate marginally significant effects (0.05 < p < 0.10).

Table 4

Linear mixed-effect (LME) associating normalized biomass from different size
classes and the experimental treatments. Individual mesocosms were treated as
random intercepts. Significance of the model parameters was assessed by
ANOVA type II Wald Chi-Square tests. A significant association between size
classes and treatments indicates a change in the biomass size spectrum slope.

potential to change the structure of macroinvertebrate communities.
Macroinvertebrates play a crucial role in many streams, due to their
importance for organic matter processing as the primary source of en-
ergy and their subsequent contribution to food webs (Rosenberg and
Resh, 1993). Sedimentation, which is exacerbated during rainy periods
in agricultural streams, affected community abundance and richness,

reducing the numbers of individuals and taxa. Flow reduction, which is
intensified during dry periods and by climate change, influenced com-

Dependent Chi square Degrees of pvalue
statistic freedom
Size classes 16.37 1 <0.01
Nitrate 4.45 3 0.22
Sediment 2.37 1 0.12
Flow 1.73 1 0.19
Nitrate:Sediment 5.25 3 0.15
Nitrate:Flow 0.52 3 0.92
Sediment:Flow 0.15 1 0.70
Size classes:Nitrate 5.75 3 0.12
Size classes:Sediment 1.56 1 0.21
Size classes:Flow 0.51 1 0.48
Nitrate:Sediment:Flow 6.23 3 0.10
Size classes:Nitrate: 7.51 3 0.06
Sediment

Size classes:Nitrate:Flow 1.8 3 0.61
Size classes:Sediment:Flow 0.31 1 0.58
Size classes:Nitrate:Sediment: 0.26 3 0.97

Flow

munity diversity and equitability, favouring species that are character-
istic for slow-flow conditions. Nitrate concentrations, which are
typically elevated in agricultural streams, especially during fertilization
periods (usually during dry seasons to reduce N loss), negatively
impacted community equitability at high levels. Considering all these
effects in combination, we can expect lower macroinvertebrate abun-
dance and richness during wet seasons and lower diversity during dry
seasons in subtropical streams in Brazil. To avoid the intensification of
these stressors, we speculate that the implementation of riparian vege-
tation buffers to minimize sedimentation during the wet season could
reduce the negative impacts on the macroinvertebrate community, as
seen in other studies (Espinoza-Toledo et al., 2021; Lorion and Kennedy,
2009). Moreover, thoughtful design of roads (by following contour lines
and reducing the length of the roads) (Rodrigues et al., 2019) and the
identification of hydrologically sensitive areas (Siefert and Santos,

2015) may also reduce sedimentation in streams. In addition, the
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Fig. 4. Biomass size spectra from the experimental mesocosms using the LBNBiom method (see Methods), which estimates the linear association between organisms
from different binned size classes and their normalized summed biomasses in double-log axes. Left: The negative association depicting less biomass from larger size
classes. Right: Marginal differences (see Table 4 for details) between mesocosms with added sediment (red) and without added sediment (green) in the four different

levels of nitrate concentration.

controlled use of fertilizers and the use of low-impact fertilization, such
as biological nitrogen fixation, slow-release fertilizers and precision
agriculture would likely reduce the negative impacts in the macro-
invertebrate community during dry seasons (Austin et al., 2013; Filoso
et al., 2015; Martinelli et al., 2010). Without such mitigation measures,
there is the possibility of losing rare species and reduced abundances of
stress-sensitive common species, given that the combination of sedi-
mentation and flow reduction affected these community characteristics
in our experiment.

Conclusions

Our study evaluated the individual and combined effects of three
stressors—nutrient enrichment, flow reduction, and sedimentation—on
the benthic macroinvertebrate community in mesocosms fed by a sub-
tropical stream. Our results indicated that invertebrate taxonomic
composition was influenced by the combination of sedimentation and
reduced flow, affecting rare taxa in particular. Community structure was
influenced by the singular effects of each stressor, with each impacting
different structural characteristics. Sedimentation mainly reduced
abundance and richness, particularly organisms that depend on sedi-
ment layers as their primary habitat. Flow reduction influenced diversity
and equitability, favouring species that thrive in slow-flow conditions.
Nitrate addition positively impacted community equitability up to
moderate enrichment levels. Our findings suggest that agricultural
intensification and climate change will affect macroinvertebrate com-
munities in subtropical streams through distinct mechanisms, with sin-
gle stressors affecting community structure and combined stressors
disproportionally reducing rare taxa as well as changing community size
structure and metabolic characteristics.
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