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Quaaitilted algebras admit a preprojective component 

FLAVIO U. COELBO1 AND DIETER HAPPEt2 

Let k be an algebraically closed field and A be a finite-dimensional k-algebra. We 
denote by mod A the category of finitely generated left A-modules. By r A we denote 
the Auslander-Reiten quiver of A. Recall that the vertice1J of r A correspond to the 
isomorphism classes of indecomposable finitely generated A-modules. The number of 
arrows from an indecomposable A-module X to an indecomposable A-module Y is the 
dimension of the k-vector space rad(X, Y)/rad2(X, Y), where rad{-,-) denotes the 
Jacobson radical of mod A. We denote by TX = DTr X the Auslander-Reiten translate 
of the indecomposable A-module X. This is defined for each indecomposable module and 
in case X is non-projective the translate TX will be indecomposable and non-injective. 
Dually there is defined T-x = TrDX. A connected component -P of rA is called a 
preprojective component if -P does not contain an oriented cycle and each X e -P is of the 
form ,,.-r P for some r E N and an indecomposable projective A-module P. For details 
see [ARS]. The existence of preprojective components has been established for vari0118 
classes of algebras such as tilted algebras [St] or algebras satisfying the separation 
condition [BJ. One of the important features of an indecomposable module X lying in 
11, prcprojective component ie that X ie homologically trivial, i.e. Exti(X,X) = 0 for 
i > 0 and EndAX = k and that its isomorphism class is uniquely determined by the 
composition factors. 

Quasitilted algebras have been introduced and investigated in [HRS2]. Recall that 
a finite-dimensional k-algebra A is called a qutuitilted a.lgebra if there exists a hereditary 
abelian k-category 1t and a tilting object TE 1-{ such that A= End?(T, In this article 
we will not work with this definition but rather with the homological characterization 
established in [HRS2]. We will use the following notation. For XE mod A we denote 
by pdAX (resp. idAX) the projective dime,uion (resp. the injective dimen.,ion) of X 
and we denote by gl.dimA the global dime,uian of A. The algebra. A is quasitilted if and 
only if gl.dimA = 2 and for each indecomposable A-module X we have either pdAX 5 1 
or idAX :$1. 

Aa a main result we will show tha.t the Auslander-Reiten quiver of a quasitilted 
algebra always has a. preprojective component. We should point out that in general 
there may be more than one such component. In section three we will give some easy 
examples. Also we should mention that our proof is different from the one given for tilted 
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algebras. Also note that in [CS] other upects of the structure of the Auslander-Reiten 
quiver of a quasitilted algebra are considered. 

The key idea of the proof is to investigate in detail conditions on a module M 
over a quasitilted algebra A such that the one-point extension algebra A[M] is again 
quasitilted. This will extend results obtained in [HRS2]. The results obtained here will 
then allow us to make use of a result in [DP]. 

In the first section we start by recalling some preliminary facts. The second section 
contains the proof of the theorem, while in section 3 we will present some examples. 
We denote the composition of morphisms / : X --+ Y and g : Y -+ Z in a given 
category K, by Jg. The following notation will be useful. Let M,N,X be A-modules 
and f : M --+ X a map. Then we will denote by j : M EB N --+ X the map whose 
restriction to M is / and whose restriction to N is zero. For unexplained terminology 
and for some representation-theoretic background we refer to [ARS] and [R]. 

1. Preliminaries. 

In this section we will recall some basic facts on quasitilted algebras from [HRS2]. 
Moreover we will study one-point extensions of quasitilted algebras. 

Let A be a finite-dimensional k-algebra. A path in mod A is a sequence (Xo, ... ,Xe) 
of indecomposable A-modules Xi for 0 :5 i :5 t, such that there is a map 0 ::/: Ii E 
rad(Xi,Xi+i) for 0 :5 i < t. In this case we write Xo =;< X, and say that Xo is a 
predecessor of X, and that X, is a successor of Xo. If t ~ 1 and Xo :::::: X, we say that 
the path is a cycle. If t = 1 and Xo :::::: X 1 we say that the path is a ,hon cycle. We say 
that the path (Xo, ... ,X,) is ,ectionalifXi-l ¢ rX;+i for0 < i < t. If(Xo, ... ,X,) isa 
path, we say that a path (Yo, ... , Y.) is a refinement of (Xo, ... , X,) if there is an order-
preserving function 71" : {0, ... , t} --+ {0, ... ,.,} such that Xi = Y,r(i), 7r(0) = 0, 7r(t) = "· 
A refinement (Yo, ... , Y.) ofa path (X0 , ... ,Xt) is said to be a refinement of irreducible 
map., if there is an irreducible map from Y; to Y;+l for all 0 :5 i < .,, or equivalently 
rad(Y;, Y.+i)/rad2(Y;, Y.+1) ::/: 0 for all 0 :5 i < .,, 

Following (HR) we say that a module M is directing provided there do not exist 
indecomposable summands M1 and M2 of M, and an indecomposable non-projective 
module W such that M1 =;< rW and W =;< M2. We refer to [HR) for a further study of 
directing modules. 

The following subcategories of modA are useful. We denote by indA the full 
subcategory of mod A containing a chosen set of representatives of the isomorphism 
classes of indecomposable A-modules. We denote by£ = £(A) the full subcategory 
of ind A containing those indecomposable modules X such that every predecessor Y of 
X aatisfies pdAY :5 1. Dually, we denote by 'R, = 'R,(A) the full subcategory of indA 
containing those indecomposable modules X such that every successor Y of X satisfies 
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idAY :5 1. Using this we have the following characterization of quasitilted algebras 
(HRS2], Theorem 1.14. 

THEOREM 1.1. The following are equivalent for a finite-dimensional le-algebra A. 
(i) A is quasitilted 
(ii) l. contains all indecomposable projective modules 

(ill) 'R. contains all indecomposable injective modules 
(iv) Any path in mod A starting in an indecomposable injective module and 

ending in an indecomposable projective module bas a refinement of irre­
ducible maps and any such refinement is sectional. 

We will also need the following lemma and its dual, whose proof is basically con• 
tained in (HRSl) or (HRS2]. 

LEMMA 1.2. Let A be a quasitilted algebra. and (Xo, ... , Xt) be a path contained in 
ind A. If Xo belongs to 'R. or if Xt belongs to£, then there exists an indecomposable 
module Y and nonzero maps Xo -+ Y and Y ..... Xt. In particular, an indecomposable 
A-module X belongs to a cycle if and only if it belongs to a short cycle. 

We need the notion of a one-point extension algebra. Let A be a finite-dimensional 
k-algebra and M in modA. The one-point extension algebra A(M) of A by M is by 
definition the finite dimensional k-algebra 

If 11 = A[M] is the one-point extension algebra of A by M then the category of 11· 
modules is equivalent to the category of triples (k',AX,f) where/: M ® k'-+ Xis a 
map of A•modules. 

It was shown in [HRS2] that a quasitilted algebra 11 is always of the form A[M] 
for a quasitilted algebra A and a A•module M. We will also need from (HRS2) that in 
thi11 case the indecomposable direct summands of M are contained in !.. Moreover the 
following results are established in [HRS2), Lemma 2.1 and 2.2. 

LEMMA 1.3. Let A be a k-algebra with gl.dimA :5 2 and let 11 = A(M] for a A-module 
M. Let .6.y = (k',AX,f) be in mod.6.. Then 

(i) If ker f is not projective, then pd.6.Y ~ 2. 
(ii) Assume that pdAcoker f :5 1. Then pd.6.Y :5 1 if and only if ker f is 

projective. 
(ill) id.6.Y :5 1 if and only if idAX :5 1 and Exti{M, X) = 0. 

The following observations will be useful in the next section. 
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LEMMA 1.4. Lei A be a k-algebra and Jet A = A[M] for a A-module M = Mi EB M2 
with M1 #, 0 #, M2. Let X 1,X2 be two indecomposable nonisomor.hic A-modules and 

/i: Mi-+ Xi be non-zero maps for i = 1,2. Let ~y = (k,A(X1 EB X2),/ = ( ~ X )> 
be in mod A. Then Y is indecomposable. 

' PROOF: Indeed, if Y is decomposable then there exists i such that (0,Xi,0) is a direct 
summand of Y. We may assume that i = 1. This gives rise to the following commutative 
diagram of A-modules. 

0 - X1 

l al 
M1 EBM2 

I 
- X1EBX2 

l .s! 
0 - X1 

with //J = 0 and a/J = lx1, Writing a= (a1,a2) and /J = (~;) we obtain fi/J1 = 0 = 
h/32 and a1/J1 + 02/32 = lx,, Since X1 is indecomposable and X1 ¢ X2 we infer that 
02/32 is nilpotent, thus 01/31 = Ix, -a2/J2 is invertible. In particular {J1 is invertible, and 
therefore Ji = 0, contrary to our assumption. Thus Y is an indecomposable A-module. 

LEMMA 1.5. Let A be a k-algebra and let A = A[M) for a A-module M = M1 EB M2 
with Mi #: 0 #: M2, Let X be an indecomposable A-module and /i : Mi -+ X be maps 

for i = 1,2 which are not both equal to zero. Let ~y = (k,AX,f = (~~ )) be in 

mod A. Then Y is indecomposable. 

PROOF: Indeed, if Y is decomposable then we have that (0,X, 0) is a direct summand 
of Y. This gives rise to following commutative diagram of A-modules. 

0 - x 

0 - x 



• 

where et and /J are i11omorphisID11 and /i/J = h/J = O. Thus /i = h = 0 contrary to our 
assumption. Thua Y is an indecomposable A-module. 

In the proof of the main result we will make use of the criterion in [DP). For the 
convenience of the reader we will recall this result. Before doing so, we have to introduce 
some further notation. Recall that we may define for a finite-dimensional k-algebra A 
the quiver Q(A). The vertices of Q(A) are the isomorphism classes [SJ of simple A­
modulea S, and the number of arrows [S1 to [SJ is the dimension of Extl(S,S'). We 
also consider & putial order on the vertices of Q(A) by defining a~ b if there ia a path 
in Q(A) from a to b. Note that this implies th&t there is & p&th in ind A from P(a) to 
P(b) where for a vertex c E Q(A) we have denoted by P(c) the projective cover of the 
simple A-module S{c) corresponding to the vertex c. Given any A-module N we define 
the aupport 1Jlgebni of N as the factor algebra of A modulo the ideal generated by all 
idempotents which annihilate N. Given a vertex a E Q(A) we define A• as the support 
algebra of EB S(b). H Q(A) has no oriented cycle we infer that the r&dical radP(a) .,o 
of P(a) is an A'1 -module. Given a E Q(A) we denote by radP(a) = EB;',:1R;(a) the 
decomposition of radP(a) into indecomposable direct summands. Using this notation 
we have the following result from [DP]. 

THEOREM 1.6. Let A be a finite-dimensional algebra whose quiver Q( A) .has no oriented 
cycle. Then the Auslander-Reiten quiver r A has a preprojective component if and only 
if for evezy vertex a E Q(A) one of the following conditions is satisfied: 

(i) there is apreprojective component 'P ofrA• such that R;{a) f. 'P for every 
1 Si~ n •. 

(ii) for each 1 Si Sn. the set of predecosson {YE rA• IY ~ Ri(a)} of 
R;(a) in ind A• is finite and consists of clirecting modules. Ha is sink, 
then rad P( a) is a directing module in mod A•. 

2. The main result. 

We keep the notation from the previous sections. 

LEMMA 2.1. Let A be a quasitilted algebra and M = M1 EB M2 a A-module such that 
1:.. = A[M] is a quasitilted algebra. Tben each indecomposable direct summand of M1 
is contained in n.(A) or M2 is projective. 

PROOF: Suppose that there exists an indecomposable direct awnmand MI of M1 with 
MI 'I, n.(A) and that M2 is not projective. Consider the !:..-module Y = (k,MI,"1) 
where ,r~ is the projection onto MI. By Lemma 1.5 we have that Y is indecomposa.ble 
and by 1.3 we have that pdAY = 2. Thus there exists an indecomp011able injective 
!:..-module AI BUch that HomA(I, TAY) :/: 0. Therefore there exists a path (I, rY, E, Y) 
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in ind A, where E is an indecomposable durect summand of the middle term of the 
Auslander-Reiten sequence ending in Y. Since Ml ~ 'R.(A), there is a path in ind A 
form M; to an indecomposable A-module X with idAX = 2. In particular X E .C(A). 

By Lemma 1.2 there is a path Mf .J.. FL X in ind A. If Jg:/: O, then, by Lemma 

1.3, the indecomposable A-module (k,X, (~)>has both projective dimension and 

injective dimension equal to two, a contradiction. Thus fg ... 0. Since idAX = 2, we 
infer that HomA(Ti X,AP) -1- 0 for some indecomposable projective A-module P. The 
following commutative diagram of A-modulea shows that there exists a path in indA 
from Y to (0,X,0) 

M1EBM2 
~ 

- M; 

l ,1 
M1 EB Mi 

J 
F -

l ·l 
0 --+ X 

where j is the extended map as defined in the introduction. We thus obtain by com­
bining the constructed paths a non-sectional path in ind A from I to AP. Since P is 
also A-projective, we have a contradiction to 1.1. 

We also point out the following easy consequence. 

COROLLARY 2.2. Let A be a quasitilted algebra and M = EBfMi a A-module sucb that 
A= A[M) is a quasiillted algebra. HM, ~ 'R.(A) for all 1 ~ i ~ t, then Mis projective. 

THEOREM 2.3. Let A be a quasitilted algebra. Then the Auslander-Reiten quiver of 
A has a preprojective component. 

PROOF: We will prove the theorem by induction on the number n of simple A-modules. 
For n = 1 there is nothing to show. So assume that all quasitilted algebras with less 
than n simple modules have a preprojective component. 

Let A be a quasitilted algebra with n simple modules. Let Q(A) be the quiver of 
A. Let a E Q( A) be a vertex. If a is not a sink then there exists a sink w and a path 
from a tow. Let M = radP(w). Then there exists a quasitilted algebra A such that 
A = A[M) and also A• = A•. By induction, A has a preprojective component, so the 
vertex a satisfies one of the conditions in 1.6. Thus we are left with the case that a = w 
is a sink. As noted before we can write A = A[M) for a quasitilted algebra A and a 
A-module M = radP(w). By induction we have that the Auslander-Reiten quiver of A 
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has a preprojeetive component. We will show that AM satisfies one of the conditiom 
of 1.6. 

For this let M1 be the direct sum of those indecomposable direct snmmanda of M 
which are contained in the preprojective components of AA, Then M = Mi EB M2. If 'P 
is a preprojective component of r A we may assume that 'P contains an indecomposable 
summand of M1. Otherwise, 'P will also be a preprojective component for the Auslander­
Reiten quiver of A-, compare [DP]. In particular we will assume from now on that M1 :/: 0 
and that w does not satisfy condition (ii) of 1.6. 

We will show first that M2 is projective. 

H M2 is not projective there exists an indecomposable non-projective direct sum­
mand M~ of M2, Let A1 be the connected component of A supporting M;. We first 
consider the case that all indecomposable projective A1-modules are contained in pre­
projective components of r Ai. Let P be an indecomposable projective Ai-module with 
HomA1 (P, TA1 MD -:/:- 0. By assumption we have that P is contained in a preprojec­
tive component 'P which also contains an indecomposable direct summand Mf of M 1 • 

Since HomA1(P,TA1Mn ,f. 0 and M~ ¢. 'P there exists X E 'P with Mf =::: X and 
HomA1 (X, TA 1 M:z)-:/:- 0. In particular we obtain a path from M; to M~. By Lemma 1.2 

there exists an indecomposable Ai-module Yanda path Mf ..1..... Y .L.. rM~ in indA1, 

We consider the A-module Z = (k, Y, er = ( t) ). Then Z is indecomposable and by 

Lemma 1.3 we infer that pd~Z = 2 = id,&Z. For this note that M; is a direct summand 
of k~ a i:wd ExtA.i (M, Y) -,f O, for HomA1 (Y, TM) :f- O. This contradict11 the fact that 
A is quasi tilted. Therefore there exists an indecomposable projective A1 -module which 
is not contained in a preprojective component of r Ai. Since Ai is connected there ex­
ist indecomposable projective Ai-modules P,P' such that HomA1(P,P')-:/= 0 and Pis 
contained in a preprojective component 'P of r Ai and P' is not contained in a prepro­
jective component of r Ai. Again there is an indecomposable direct summand M; of M1 
contained in 'P. Since M2 is not projective we have by Lemma 2.1 that M1 E ~A). 
Let O 'Ff E HomA1 (P1 P'). Then by the choice of P,P' we have that/ E rad00(P,P'). 
Thus for each r ~ 1, there exists a chain of irreducible maps 

Ii Ii /. 
P = Xo - Xi - ·•• - Xr 

and a map 9r: Xr-+ P' such that /1 .. ,fr9r 'F O. Chooser in such a way tha.t T"Xr is 
a successor of M{. Note that idATXr = 2. Since ~A) i11 closed under successors and 
M{ E 'R.(A) we infer that T Xr E 'R.(A), a contradiction. Thus M2 is projective. 

Assume that M2 -:f:. O. We will show next that in this case there exists an indecom­
posable A-module X with idAX = 2 and HomA(M1,X)-:/:- 0. 

By the previous part of the proof we know that M2 is projective. Let M~ be an 
indecomposable direct summand of M 2 and as before let Ai be the connected component 
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of A supporting M2. Let M; be an indecomposable direct summand of M1. Theu M; 
lies in a preprojective component 'P of r Ai. We consider S( M{ -+) the subset of 'P 
consisting of those indecomposable modules X for which there is a sectional path from 
M{ to X. 

We distinguish the following two cases. 

First assume that there is no proper successor of S(M{ -+) which is projective. 
Arguing as above we find X E S(Mf -+) with idAX = 2. Indeed, since A1 is connected 
there exist indecomposable projective Ai-modules P,P' such that HomA1 (P,P') ,:f= 0 
and P is contained in 'P and P' is not contained in a preprojective componeut of r Ai. 
By the choice of P, P' we have that / E rad00 (P, P'). Thus for each r ~ 1, there exists 
a chain of irreducible maps 

Ii X la J. 
P = Xo ---+ 1 ---+ • • • ---+ X,. 

and a map g,. : X,. -+ P' such that Ji ... f,.g,. ¥, 0. Chooser in such a way that TX,. is 
contained in S(M{ -+ ). Note that idA TX,.= 2. 

Next assume that there is a proper successor S( Mi -+) which is projective. Consider 
E = S(-+ P) the subset 0£ 'P consisting of those indecomposable modules X for which 
there ia a sectional path from X to P. Note that the indecomposable modules in -rE all 
have injective dimension two and that there is a path from M{ to an indecomposable 
module in -rE. Also note that TE is a seperating subcategory in the sense that each 
map from a predecessor of-rE in 'P to a module which is not a predecessor of TE £actors 
through TE. We consider a nonzero map Mi to an indecomposable injective module. 
Since any path from an indecomposable injective to an indecomposable projective is 
sectional for a quasitilted algebra we infer that I is not a predecessor of -rE. Hence 
there ia nonzero map from M; to an indecomposable module in TE. This proves our 
claim. 

Next we will show that HomA(M2, Y) = 0 for all YE ind A with pdAY = 2. 

Suppose to the contrary that there exists an indecomposable A-module Y with 
pdAY = 2 and HomA(M2, Y) ¥, 0. By the previous claim there also exists an indecom­
poaable A-module X with idAX = 2 and HomA(M1 ,X) -t,. 0. Choose nonzero maps 

/ : M1 -+ X and g : M 3 -+ Y. Consider the ~-module Z = (k, X EB Y, ( ~ ~ ~ ). 
By Lemma 1.5 we have that Z is indecomposable and by Lemma 1.3 we have ttat 
pdAZ = 2 = idAZ, a contradiction. 

It follows from this that each submodule of M2 is projective, since otherwise the 
corresponding factor module would have projective dimension two. Moreover it follows 
that M2 is directing and each indecomposable summand of M2 has only finitely many 
predecessors. In fact let X be a A-module with O =/: f E Hom(X, Mi) for an indecom­
p011able direct summand M~ of M2. Then let / = 11' µ be the canonical factorisation 
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through B = imf. So Bis projective, and hence Xis projective and isomorphic to B. 
As a consequence of this we infer that there is no path from an indecomposable direct 
summand of M1 to an indecomposable direct summand of M2, 

As a final step we will show that Mis directing as a A-module. By the previous 
remark it is enough to show that M1 is directing. Suppose that there exists indecom­
posable direct summands Mi and Mi' of M1 and a non-sectional path from Mi to 
Mi'• 

1£ Mi' is not projective there exists a path from Mi to T Mi'. By Lemma 1.2 

there exists a path Mf -1... Y _!_,. T Mf. Consider the indecomposable A-module 

Z = (k,Y, (!)> which again by Lemma 1.3 has both projective and injective di­

mension two. So we have that Mi' is projective. Again by Lemma 1.2 we obtain a path 

Mi L Y ..!... Mi'. We will show that there exists an indecomposable non-projective 
A-module W such that HomA(Mi,TW)-:/: 0 and HomA(W.Mn-:/: 0. 1£ fg = 0 this 
follows from [HR). So suppose that Jg-:/: 0 and let E = S(-+ Mi'). By assumption we 
have that Mi is a predecessor of rE. Therefore the nonzero map fg factors through a 
module in rE. In particular there exists an indecomposable non-projective A-module 
W such that HomA(Mi,rW) ::/, 0 and HomA(W,Mi')-:/: 0. Since Mi' is projective we 
infer that idATW = 2. Let O ::/- a E HomA(Mf,rW) and O-:/: fJ E HomA(w,Mn. Since 
Wis non-projective we have that fJ is not surjective. Also, pdAcoker fJ = 2. Thus there 
exists an indecomposable A-module Y with pdAY = 2 and a nonzero map -y : Mi' -+ Y. 
Consider the indecomposable ~-module Z = ( k, r W @ Y, ( ~ ~)) which agam by 

Lemma 1.3 has both projective and injective dimension two, a contradiction. Thus M1 
and therefore M is directing. 

This shows that the extension vertex w E Q(.6.) satisfies the condition (ii) of The­
orem 1.6. In fact, we have just seen that M = radP(w) is directing. Also any inde­
composable summand M2 has only finitely predecessors all of which are directing. The 
indecomposable direct summands of M1 are all contained in preprojective components 
of r A, and hence there are only finitely many predecessors and all are directing. Note 
that A=~"'. 

This finishes the proof of the theorem. 

We point out that this proof may be used to obtain a different proof for the ex­
istence of preprojective components in case of tilted algebras (St), [K). But we do not 
obtain the stronger result that there exists a unique preprojective component, which 
is a preprojective component for a concealed algebra, in case we start with a tilting 
module without nonzero preinjective summands. 
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3. Examples. 

In this section we will consider some examples. The first example shows that a 
tilted algebra in general will not have a unique preprojective component. Thia is well­
known, but we include it for the convenience of the reader. The second example deals 
with the case of a one-point extension by the sum of two simple projective modules 
which ly in different components of the Auslander-Reiten quiver. 

Let A be the path algebra over the field k of the opposite of the following quiver 
modulo the ideal generated by all paths of length 2. 

The Auslander-Reiten quiver of A is given as follows. From this we see that A is a 
tilted algebra.. In fa.ct there is a complete slice in the preinjective component. Also we 
see that there exist two preprojective components. 

0 0 
~-M, o 0 u u 

u LJ 
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Next we consider the algebra A given by the path algebra 0£ the opposite 0£ the 
following quiver modulo the ideal generated by all paths of length 2. 

o ___ o 
0 

The Auslander-Reiten quiver of A is given as £ollows. This may be used to verify 
the remarks below. 

0 0 
~# 0 0 u u 0 0 

~~~ 0 0 0 

\ /\0 
0 /\/ 

\ / 
0 

Let S be the simple projective in the unique preprojective component and let S' 
be the simple projective in the preinjective component. Let M be the sum of the two 
simple projective A-modules. We consider fl. = A(M]. We claim that fl. is a quasitilted 
algebra. In fact, let Z = (kt,X,f) be an indecomposable -6-module. We may assume 
that t ~ 1, compare [HRS2]. It is easily seen that HomA(M, Y) = 0 = Extl (Y, M) for 
all indecomposable A-modules Y with pdAY = 2. Since Z is indecomposable it follows 
from Lemma 1.3 that pd4 Z S 1. Thus -6 is a quasitilted algebra, and hence has a 
preprojective component. This o£ course may be verified by a direct computation. Note 
that fl. is a tilted algebra, for the preinjective component contains a complete slice. 
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