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Quasitilted algebras admit a preprojective component

Fravio U. CoELHO! AND DIETER HAPPEL?

Let k be an algebraically closed field and A be a finite-dimensional k-algebra. We
denote by mod A the category of finitely generated left A-modules. By I’y we denote
the Auslander-Reiten quiver of A. Recall that the vertices of I'; correspond to the
isomorphism classes of indecomposable finitely generated A-modules. The number of
arrows from an indecomposable A-module X to an indecomposable A-module Y is the
dimension of the k-vector space rad(X,Y)/rad*(X,Y), where rad(—~,~) denotes the
Jacobson radical of mod A. We denote by 7X = DT'r X the Auslander-Reiten translate
of the indecomposable A-module X. This is defined for each indecomposable module and
in case X is non-projective the translate X will be indecomposable and non-injective.
Dually there is defined 7=X = TrDX. A connected component P of Iy is called a
preprojective component if P does not contain an oriented cycle and each X € P is of the
form =7 P for some r € N and an indecomposable projective A-module P. For details
see [ARS). The existence of preprojective components has been established for various
classes of algebras such as tilted algebras [St] or algebras satisfying the separation
condition [B). One of the important features of an indecomposable module X lying in
a preprojective component is that X is homologically trivial, i.e. Ext}(X,X) = 0 for
i > 0 and Endp X = k and that its isomorphism class is uniquely determined by the
composition factors.

Quasitilted algebras have been introduced and investigated in [HRS2]. Recall that
a finite-dimensional k-algebra A is called a quasitilied algebra if there exists a hereditary
abelian k-category H and a tilting object T € H such that A = EndT. In this article
we will not work with this definition but rather with the homological characterization
established in [HRS2]. We will use the following notation. For X € mod A we denote
by pdaX (resp. idpX) the projective dimension (resp. the injective dimension) of X
and we denote by gl.dim A the global dimension of A. The algebra A is quasitilted if and
only if gl.dim A = 2 and for each indecomposable A-module X we have either pdp X <1
oridp X <1.

As a main result we will show that the Auslander-Reiten quiver of a quasitilted
algebra always has a preprojective component. We should point out that in general
there may be more than one such component. In section three we will give some easy
examples. Also we should mention that our proof is different from the one given for tilted
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algebras. Also note that in [CS] other aspects of the structure of the Auslander-Reiten
quiver of a quasitilted algebra are considered.

The key idea of the proof is to investigate in detail conditions on a module M
over a quasitilted algebra A such that the one-point extension algebra A[M] is again
quasitilted. This will extend results obtained in [HRS2]. The results obtained here will
then allow us to make use of a result in [DP).

In the first section we start by recalling some preliminary facts. The second section
contains the proof of the theorem, while in section 3 we will present some examples.
We denote the composition of morphisms f : X - Y end g : ¥ — Z in a given
category K by fg. The following notation will be useful. Let M,N,X be A-modules
and f : M — X a map. Then we will denote by f : M @ N — X the map whose
restriction to M is f and whose restriction to N is zero. For unexplained terminology
and for some representation-theoretic background we refer to [ARS] and [R].

1. Preliminaries.

In this section we will recall some basic facts on quasitilted algebras from [HRS2].
Moreover we will study one-point extensions of quasitilted algebras.

Let A be a finite-dimensional k-algebra. A path in mod A is a sequence (X, ..., X;)
of indecomposable A-modules X; for 0 < ¢ < ¢, such that there is a map 0 # f; €
rad(X;, Xi41) for 0 < i < t. In this case we write Xy < X; and say that X, is a
predecessor of X; and that X, is a successor of Xp. If t > 1 and X, ~ X; we say that
the path is a cycle. If t = 1 and X ~ X; we say that the path is a short cycle. We say
that the path (Xo,...,X;) is sectional if X;_; % 7 X4y for 0 < i < t. If (Xop,...,X;) isa
path, we say that a path (Y;,...,Y,) is a refinement of (X, ..., X;) if there is an order-
preserving function = : {0,...,t} — {0,...,s} such that X; = Y,(;),m(0) = 0,7(¢) = s.
A refinement (Yy,...,Y,) of a path (Xj,...,X;) is said to be a refinement of irreducible
maps if there is an irreducible map from Y; to Y;4) for all 0 € i < s, or equivalently
rad(Y;, iy )/rad?(Y;, Yipa) # 0 forall 0 < i < s,

Following {(HR] we say that a module M is directing provided there do not exist
indecomposable summands M; and M of M, and an indecomposable non-projective
module W such that M; < 7W and W < M;. We refer to [HR) for a further study of
directing modules.

The following subcategories of mod A are useful. We denote by ind A the full
subcategory of mod A containing a chosen set of representatives of the isomorphism
classes of indecomposable A-modules. We denote by £ = L(A) the full subcategory
of ind A containing those indecomposable modules X such that every predecessor ¥ of
X satisfies pdpaY < 1. Dually, we denote by R = R(A) the full subcategory of ind A
containing those indecomposable modules X such that every successor Y of X satisfles
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idaY < 1. Using this we have the following characterization of quasitilted algebras
[HRS2], Theorem 1.14.

THEOREM 1.1. The following are equivalent for a finite-dimensional k-algebra A.
(i) A is quasitilted
(ii) £ contains all indecomposable projective modules
(iii) R contains all indecomposable injective modules
(iv) Any path in modA starting in an indecomposable injective module and
ending in an indecomposable projective module has a refinement of irre-
ducible maps and any such refinement is sectional.

We will also need the following lemma and its dual, whose proof is basically con-
tained in [HRS1] or [HRS2].

LEMMA 1.2. Let A be a quasitilted algebra and (Xg,...,X;) be a path contained in
indA. If X, belongs to R or if X, belongs to L, then there exists an indecomposable
module Y and nonzero maps Xo — Y and ¥ — X,. In particular, an indecomposable
A-module X belongs to a cycle if and only if it belongs to a short cycle.

We need the notion of a one-point extension algebra. Let A be a finite-dimensional
k-algebra and M in modA. The one-point extension algebra A{M] of A by M is by
definition the finite dimensional k-elgebra

= (3 %)

K A = A[M] is the one-point extension algebra of A by M then the category of A-
modules is equivalent to the category of triples (k*,s X, f) where f : M @ k* -+ X isa
map of A-modules.

It was shown in [HRS2] that a quasitilted algebra A is always of the form A[M]
for a quasitilted algebra A and a A-module M. We will also need from [HRS2] that in
this case the indecomposable direct summands of M are contained in £. Moreover the
following results are established in [HRS2], Lemma 2.1 and 2.2.

LEMMA 1.3. Let A be a k-algebra with gl.dimA < 2 and let A = A[M] for a A-module
M. Let oY = (k*, s X, f) be in modA. Then
(i) If ker f is not projective, then pdpY > 2.
(ii) Assume that pdycoker f < 1. Then pdpaY < 1 if and only if ker f is
projective.
(iii) idaY <1 if and only if idy X <1 and Ext}(M,X) =0.

The following observations will be useful in the next section.
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LEMMA 1.4. Let A be a k-algebra and let A = A[{M] for a A-module M = M, & M,
with My # 0 # M;. Let X,,X; be two indecomposable nonisomorhic A-modules and

fi : M; = X; be non-zero maps fori = 1,2. Let oY = (k,o(X1 ® X3),f = ({)1 ‘g))
be in modA. Then Y is indecomposable.

PROOF: Indeed, if Y is decomposable then there exists i such that (0, X;,0) is a direct
summand of Y. We may assume that i = 1. This gives rise to the following commutative
diagram of A-modules.

] — Xi
! |
M, e M; —— Xi18X

l |

0 ei—y X1

with ff = 0 and af = 1x,. Writing a = (a3, a2) and 8 = g; we obtain f15) =0 =

f282 and @181 + a3B; = 1x,. Since X is indecomposable and X; # X; we infer that
a2/ is nilpotent, thus &y §1 = 1x, —azf; is invertible. In particular §; is invertible, and
therefore f; = 0, contrary to our assumption. Thus ¥ is an indecomposable A-module.

LEMMA 1.5. Let A be a k-algebra and let A = A[M] for a A-module M = M, & M,
with M; # 0 # M;. Let X be an indecomposable A-module and f; : M; = X be maps

for i = 1,2 which are not both equal to zero. Let oY = (k,pX,f = (;;)) be in
modA. Then Y is indecomposable.

PROOF: Indeed, if ¥ is decomposable then we have that (0, X,0) is a direct summand
of Y. This gives rise to following commutative diagram of A-modules.

ittt

M, & M, il 2, X

l d

0 —_— X



where « and 3 are isomorphisms and f;8 = f38 = 0. Thus f; = f; = 0 contrary to our
assumption. Thus Y is an indecomposable A-module.

In the proof of the main result we will make use of the criterion in [DP}. For the
convenience of the reader we will recall this result. Before doing so, we have to introduce
some further notation. Recall that we may define for a finite-dimensional k-algebra A
the guiver Q(A). The vertices of Q(A) are the isomorphism classes [S] of simple A-
modules S, and the number of arrows [S'] to {S] is the dimension of Ext}(S,S’). We
also consider a partial order on the vertices of Q(A) by defining a =< b if there is a path
in Q(A) from a to b. Note that this implies that there is a path in ind A from P(a) to
P(b) where for a vertex ¢ € Q(A) we have denoted by P(c) the projective cover of the
simple A-module S(¢) corresponding to the vertex c. Given any A-module N we define
the support algebra of N as the factor algebra of A modulo the ideal generated by all
idempotents which annihilate N. Given a vertex a € Q(A) we define A® as the support
algebra of Q'S(b). If Q(A) has no oriented cycle we infer that the radical rad P(a)

of P(a) is an A®-module. Given a € Q(A) we denote by rad P(a) = @2, Ri(a) the
decomposition of rad P(a) into indecomposable direct summands. Using this notation
we have the following result from [DP).

THEOREM 1.6. Let A be a finite-dimensional algebra whose quiver Q(A) has no oriented
cycle. Then the Auslander-Reiten quiver I'y has a preprojective component if and only
if for every vertex a € Q(A) one of the following conditions is satisfied:
(i) there is a preprojective component P of T'x« such that R;(a) ¢ P for every
1<i<n,.
(i) for each 1 < i < n, the set of predecossors {Y € Tz« |Y < Ri(a)} of
Ri(a) in ind A® is finite and consists of directing modules. If a is sink,
then rad P(a) is a directing module in mod A®.

2. The main result.

We keep the notation from the previous sections.

LEMMA 2.1. Let A be a quasitilted algebra and M = M, & M; a A-module such that
A = A[M)] is a quasitilted algebra. Then each indecomposable direct summand of M,
is contained in R(A) or M; is projective.

PROOF: Suppose that there exists an indecomposable direct summand M] of M; with
M] ¢ R(A) and that M, is not projective. Consider the A-module ¥ = (k, Mj,#})
where =} is the projection onto M]. By Lemma 1.5 we have that Y is indecomposable
and by 1.3 we have that pdaY = 2. Thus there exists an indecomposable injective
A-module AT such that Homa (I, 7aY) # 0. Therefore there exists a path (I,7Y, E,Y)
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in ind A, where E is an indecomposable durect summand of the middle term of the
Auslander-Reiten sequence ending in Y. Since Mj ¢ R(A), there is a path in indA
form M] to an indecomposable A-module X with idpX = 2. In particular X € L(A).
By Lemma 1.2 there is a path Mj —!—oF-—'—o”XinindA. If fg # 0, then, by Lemma
1.3, the indecomposable A-module (k, X, f(']g ) has both projective dimension and

injective dimension equal to two, a contradiction. Thus fg = 0. Since idp X = 2, we
infer that Hom (75 X, o P) # 0 for some indecomposable projective A-module P. The
following commutative diagram of A-modules shows that there exists a path in ind A
from Y to (0,X,0)

L)
MyeoM;, —— M

| 1|
MoM; —— F

l dl

0 —_ X

where f is the extended map as defined in the introduction. We thus obtain by com-
bining the constructed paths a non-sectional path in ind A from I to oP. Since P is
also A-projective, we have a contradiction to 1.1.

We also point out the following easy consequence.

COROLLARY 2.2. Let A be a quasitilted algebra and M = @{M; a A-module such that
A = A[M)] is a quasitilted algebra. If M; ¢ R(A) for all 1 < i < ¢, then M is projective.

THEOREM 2.3. Let A be a quasitilted algebra. Then the Auslander-Reiten quiver of
A has a preprojective component.

PROOF: We will prove the theorem by induction on the number n of simple A-modules.
For n = 1 there is nothing to show. So assume that all quasitilted algebras with less
than n simple modules have a preprojective component.

Let A be a quasitilted algebra with n simple modules. Let Q(A) be the quiver of
A. Let a € Q(A) be & vertex. If a is not a sink then there exists a sink w and a path
from a to w. Let M = rad P(w). Then there exists a quasitilted algebra A such that
A = A[M] and also A* = A®. By induction, A has a preprojective component, so the
vertex a satisfies one of the conditions in 1.6. Thus we are left with the case that a = w
is a sink. As noted before we can write A = A[M] for a quasitilted algebra A and a
A-module M = rad P(w). By induction we have that the Auslander-Reiten quiver of A
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has a preprojective component. We will show that s M satisfies one of the conditions
of 1.6.

For this let M) be the direct sum of those indecomposable direct summands of M
which are contained in the preprojective components of Ay. Then M = My @ M;. P
is a preprojective component of I'y we may assume that P contains an indecomposable
summand of M;. Otherwise, P will also be a preprojective component for the Auslander-
Reiten quiver of A, compare [DP). In particular we will assume from now on that M; # 0
and that w does not satisfy condition (ii) of 1.6.

We will show first that M, is projective.

If M; is not projective there exists an indecomposable non-projective direct sum-
mand M; of M;. Let A, be the connected component of A supporting M;. We first
consider the case that all indecomposable projective A;-modules are contained in pre-
projective components of I'y,. Let P be an indecomposable projective Aj-module with
Homy, (P,7a, M}) # 0. By assumption we have that P is contained in a preprojec-
tive component P which also contains an indecomposable direct summand M; of M;.
Since Homy, (P, 72, M}) # 0 and M} ¢ P there exists X € P with M] < X and
Homy, (X, 7a, M3) # 0. In particular we obtain a path from M; to M;. By Lemma 1.2

there exists an indecomposable Aj-module YV and a path M Ay L, TM) in ind A;.
We consider the A-module Z = (k,Y,a = ({).) ). Then Z is indecomposable and by

Lemma 1.3 we infer that pdaZ = 2 =ida Z. For this note that M} is a direct summand
of ker @ and Ext} (M,Y) # 0, for Homy, (Y, 7M) # 0. This contradicts the fact that
A is quasitilted. Therefore there exists an indecomposable projective A;-module which
is not contained in a preprojective component of I's,. Since A; is connected there ex-
ist indecomposable projective Aj-modules P, P! such that Homy,(P,P') # 0 and P is
contained in a preprojective component P of I'y, and P’ is not contained in a prepro-
jective component of I's,. Again there is an indecomposable direct summand M} of M,
contained in P. Since M3 is not projective we have by Lemma 2.1 that M{ € R(A).
Let 0 # f € Homa, (P, P'). Then by the choice of P, P' we have that f € rad*(P, P').
Thus for each r > 1, there exists a chain of irreducible maps

P=X, h X fa s fe X,

and a map g, : X, — P' such that f;... f g, # 0. Choose r in such a way that X, is
a successor of M. Note that idarX, = 2. Since R(A) is closed under successors and
M} € R(A) we infer that X, € R(A), a contradiction. Thus M; is projective.

Assume that M, # 0. We will show next that in this case there exists an indecom-
posable A-module X with idy X = 2 and Hom, (M, X) # 0.

By the previous part of the proof we know that Mj is projective. Let M} be an
indecomposable direct summand of M, and as before let A; be the connected component
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of A supporting Mj. Let M} be an indecomposable direct summand of M;. Then M}
lies in a preprojective component P of I's,. We consider S(M] —) the subset of P
consisting of those indecomposable modules X for which there is a sectional path from
Mj to X.

We distinguish the following two cases.

First assume that there is no proper successor of S(M; —) which is projective.
Arguing as above we find X € S(M] —) with idy X = 2. Indeed, since A, is connected
there exist indecomposable projective A;-modules P,P' such that Homy, (P, P') # 0
and P is contained in P and P' is not contained in a preprojective component of Ty, .
By the choice of P, P' we have that f € rad®(P, P'). Thus for each r > 1, there exists
a chain of irreducible maps

P=X° h Xl fa o, J (3 Xr

and a map g, : X, — P’ such that f;...frgr # 0. Choose r in such a way that X, is
contained in S(M] —). Note that idy7X, = 2.

Next assume that there is a proper successor S(M] —) which is projective. Consider
¥ = §(— P) the subset of P consisting of those indecomposable modules X for which
there is a sectional path from X to P. Note that the indecomposable modules in 7Z all
have injective dimension two and that there is a path from M] to an indecomposable
module in 7Z. Also note that rZ is a seperating subcategory in the sense that each
map from a predecessor of 7L in P to a module which is not a predecessor of rZ factors
through 7. We consider a nonzero map Mj to an indecomposable injective module.
Since any path from an indecomposable injective to an indecomposable projective is
sectional for a quasitilted algebra we infer that I is not a predecessor of TZ. Hence
there is nonzero map from M] to an indecomposable module in 3. This proves our
claim.

Next we will show that Homy (M;,Y) =0 for all Y € ind A with pdp Y = 2.

Suppose to the contrary that there exists an indecomposable A-module ¥ with
pdaY =2 and Hom, (M3,Y) # 0. By the previous claim there also exists an indecom-
posable A-module X with idpX = 2 and Hom,(M;,X) # 0. Choose nonzero maps

f: M — X and g : M3 — Y. Consider the A-module Z = (k,X Y, ({Jl 22)
By Lemma 1.5 we have that Z is indecomposable and by Lemma 1.3 we have t
pdaZ = 2 =ida Z, a contradiction.

It follows from this that each submodule of Mj; is projective, since otherwise the
corresponding factor module would have projective dimension two. Moreover it follows
that M; is directing and each indecomposable summand of M; has only finitely many

predecessors. In fact let X be a A-module with 0 # f € Hom(X, M}) for an indecom-
posable direct summand M) of M;. Then let f = 7y be the canonical factorisation
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through B = im f. So B is projective, and hence X is projective and isomorphic to B.
As a consequence of this we infer that there is no path from an indecomposable direct
summand of M; to an indecomposable direct summand of M,.

As a final step we will show that M is directing as a A-module. By the previous
remark it is enough to show that M, is directing. Suppose that there exists indecom-
posable direct summands M; and My of M) and & non-sectional path from Mj to
MY,

If M{ is not projective there exists a path from Mj to 7M{. By Lemma 1.2
there exists a path M; Ly L tMy. Consider the indecomposable A-module

Z = (k,Y, ( {;)) which again by Lemma 1.3 has both projective and injective di-
mension two. So we have that My is projective. Again by Lemma 1.2 we obtain a path

M Ly, M. We will show that there exists an indecomposable non-projective
A-module W such that Homa(Mj,7W) # 0 and Homs (W, M{') # 0. If fg = 0 this
follows from [HR]. So suppose that fg # 0 and let £ = §(— M}'). By assumption we
have that M] is a predecessor of TZ. Therefore the nonzero map fg factors through a
module in 7X. In particular there exists an indecomposable non-projective A-module
W such that Homa(Mj, W) 3 0 and Hom, (W, M}') # 0. Since M}’ is projective we
infer that ida7W = 2. Let 0 # a € Homa (M],7W) and 0 # B € Hom, (W, M{'). Since
W is non-projective we have that g is not surjective. Also, pdacoker 8 = 2. Thus there
exists an indecomposable A-module Y with pd,Y = 2 and a nonzero map v : My’ = Y.
Consider the indecomposable A-module Z = (k, W @ Y, g _(.; ) which again by
Lemma 1.3 has both projective and injective dimension two, a contradiction. Thus M;
and therefore M is directing.

This shows that the extension vertex w € Q(A) satisfies the condition (ii) of The-
orem 1.6. In fact, we have just seen that M = rad P(w) is directing. Also any inde-
composable summand M, has only finitely predecessors all of which are directing. The
indecomposable direct summands of M; are all contained in preprojective components
of ', and hence there are only finitely many predecessors and all are directing. Note
that A = A%,

This finishes the proof of the theorem.

We point out that this proof may be used to obtain a different proof for the ex-
istence of preprojective components in case of tilted algebras [St], [K]. But we do not
obtain the stronger result that there exists a unique preprojective component, which
is a preprojective component for a concealed algebra, in case we start with a tilting
module without nonzero preinjective summands.



3. Examples.

In this section we will consider some examples. The first example shows that a
tilted algebra in general will not have a unique preprojective component. This is well-
known, but we include it for the convenience of the reader. The second example deals
with the case of a one-point extension by the sum of two simple projective modules
which ly in different components of the Auslander-Reiten quiver.

Let A be the path algebra over the field k of the opposite of the following quiver
modulo the ideal generated by all paths of length 2.

sl

] o

The Auslander-Reiten quiver of A is given as follows. From this we see that A is a
tilted algebra. In fact there is a complete slice in the preinjective component. Also we
see that there exist two preprojective components.
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Next we consider the algebra A given by the path algebra of the opposite of the
following quiver modulo the ideal generated by all paths of length 2.

O,

N

0,

T
O O0*———o0

The Auslander-Reiten quiver of A is given as follows. This may be used to verify
the remarks below.

Let S be the simpie projective in the unique preprojective component and let S’
be the simple projective in the preinjective component. Let M be the sum of the two
simple projective A-modules. We consider A = A[M]. We claim that A is a quasitilted
algebra. In fact, let Z = (k*, X, f) be an indecomposable A-module. We may assume
that ¢ > 1, compare [HRS2]. 1t is easily seen that Hom(M,Y) = 0 = Ext} (Y, M) for
all indecomposable A-modules Y with pdsY = 2. Since Z is indecomposable it follows
from Lemma 1.3 that pdaZ < 1. Thus A is a quasitijlted algebra, and hence has a
preprojective component. This of course may be verified by a direct computation. Note
that A is a tilted algebra, for the preinjective component contains a complete slice.
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