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Abstract

In this note, we calculate susceptibilities, as derivatives of a thermodynamical potential, for the general perturbative holo-
graphic setup for transport with magnetic field, charge density and topological term, and compare with the quantities
obtained in the standard AdS, dyonic black hole analysis of Hartnoll and Kovtun. We find that the results do not match,
despite previous expectations.
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1 Introduction

The AdS/CFT correspondence [1] (see [2, 3] for a review)
usually relates strongly coupled field theory to weakly cou-
pled string theory in its classical supergravity limit, with
“top-down” models, derived from systems of branes in a
decoupling limit. Common applications to condensed mat-
ter, AAS/CMT (see [4] for a review), are usually phenom-
enological, “bottom-up” constructions. That applies in par-
ticular to models of transport in condensed matter systems.

However, there are a few examples of top-down models as
well, most notably the ABJM vs. AdS, X CP? correspondence
[5], which has been used as a sort of a prototype for transport
in strongly coupled 241 dimensional condensed matter sys-
tems. Of course, it is not a top-down model in the sense that
there is no derived relation of the ABJM model to any con-
densed matter system (unlike supersymmetric SU(N) gauge
theories in 3+1 dimensions, thought of as an extension of
the gluon theory for QCD), only a phenomenological one: it
gives similar physics. But the holographic map is derived. At
nonzero temperature, the dyonic black hole in AdS, has been
used as a model for 241 dimensional transport in the presence
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of a magnetic field [6, 7]. One can calculate thermodynamic
quantities, and transport from fluctuations around the dyonic
background. Note that these were extended to the presence of
a topological term in the action in [8].

However, the generic transport is necessarily obtained from
a background obtained by adding perturbations at infinity (and
perhaps the horizon of the black hole), so that the full back-
ground solution is not known, following the method in [9-15].
One rather generic case was considered in [16]. In [17], the
Wiedemann-Franz law was obtained by a combination of the
two methods. In particular, the matrix of susceptibilities y,, cal-
culated as the second-order derivatives of the thermodynamic
potential in the dyonic black hole background, and was related
via the matrix of diffusivities D to the matrix of conductivities
(as expected from the general theory of the hydrodynamic limit),
for which the results in the perturbative background from [16].

But that implies the assumption that dyonic black hole
background of [6, 7] and the perturbative one of [16] give
the same thermodynamics, which is not obvious. There-
fore in this paper we investigate the possibility of these two
results giving the same answer. This has implications beyond
the specific case considered here, as it measures the correct-
ness of importing results from a top-down construction to a
bottom-up one, or vice versa.

The paper is organized as follows. In Section 2 we con-
sider the perturbative model with topological term, but only
B, B, external fields, and calculating the thermodynamics,
the magnetizations and the susceptibilities with this simpli-
fied version of the fluctuations. In Section 3, we calculate
the transport coefficients for a more general version of the
model, with E and &€ = (VT)/T as external fields as well. In

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s13538-024-01488-w&domain=pdf

106 Page2of8

Brazilian Journal of Physics (2024) 54:106

Section 4, we calculate the susceptibilities for this general
case, and compare with the AdS, dyonic black hole results.
We conclude in Section 5.

2 AdS/CMT Perturbative Model and Boundary
Conditions at the Black Hole Horizon

For the gravitational theory with AdS, asymptotics, we con-
sider a 3 + 1 dimensional Einstein-Hilbert action (where the
spacetime is described in coordinates , r, x, y) for gravity
with a scalar dilaton ¢, an U(1) gauge field with a Maxwell
term with kinetic function Z(¢) and a topological term with
function W(¢). We also add two linear axions &, and &, with
action proportional to a function ®(¢), in order to break
translational invariance, as needed for transport. The action
is thus given by:

_ 4 /- 1 _ 1
1—/dx \/_g[l&rGN(R (OREIC)

0,9) - 30 +0L1109)

F, F"Z(p) .
- —F, F"W(@)| .
4gi
@2.1)
where, as usual, F,, = 0,A, —0,A, and F,, = %F&,.

This model without the topological term has been studied
by [9] and in [16] the authors added the topological term
to it.

The equations of motion for this model are:

-for the metric field:

1 1 167Gy . 1 -
Ry, = 50,906+ V(@) + ng(ZFMFV = 38 o).
4
2.2)
-for the connection A i
1 v ouv
——= 0,V (F" + W@)F") =0, @3
V8
-for the axion fields:
D($)9,,0" y; + 0, 4,0 PP ($) = 0 (2.4)
-and finally for the dilaton field:
0,9 = V'($) - l((a )’ =0, (@)
u o \HAl uX2
(2.5

F, Fwz'
= 167:GN<”V—@) + FWF’”W’(d))).

4gi

The axion fields have background solutions
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Xl = klx ) /YZ = kz-x s (26)

that break translational invariance, as we need, and k; # k,
would also break isotropy.

The background solution for this model is given by an
asymptotically AdS, metric

ds* = ~U(rdE + ——di* + 'O + dy?),
u(r)

while the U(1) gauge field is such that the boundary field
theory has a magnetic field B and an electric field defined
by a(r), so is

Q2.7)

A = a(r)dt — Bydx. (2.8)

In order for us to have a holographic dual (with AdS, asymp-
totics), we require that the scalar potential V(¢) satisfies

6

V(0) = 12 V'(0)=0. (2.9)

2.1 Thermodynamics and Magnetization

In the above background, we want to study electrical and
thermal transport in the presence of a magnetic field. We
consider the Euclidean action in the bulk, in the absence of
axion perturbations, as

Sy = / d'xy/z ( 167:GN (r+ %(0@2 +V($))

2Dy pu W(¢)F”VF”V).

(2.10)
4gi

In this case, the response of the Euclidean action with the
change in the magnetic field gives the magnetization density,
| AT
M=———. 2.11
Vol 0B @1h)
We also need to consider the response of the action with
respect to a fluctuation in the metric of the type 6g,, = —B,y,
which gives the energy magnetization density,

M . 1 95
=— lim — —.

£7 7 550 Vol 0B, (2.12)
These two affect the background solutions by adding a

term to A, and a non-diagonal term to the metric,

A = a(r)dt + (=B + (a(r) — p)B,y)dx, (2.13)
2
ds* = — U(r)(dt + B,ydx)* + ar 2O dx® + dy?).
U(r)
(2.14)
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Then on-shell, the gauge terms equal

F, F* =2E*OB+ B u - Bja(n)* —24'(r)*  (2.15)

FWF,W =4¢72Y"/ (r)(=B,a(r) + B+ B, ) , (2.16)

and the Ricci scalar is given by

R= U(r)( Bie™' —6V'(r)? — 4V”(r)> —4U' NV () = U"(r).
(2.17)
Taking the derivatives

—108 A (B4 Biu—Ba) _,y, ,
Vol 98 / d’<1—21e HOZ() - AW ()a (r))

84
(2.18)
105, _ /A drlgle—zva(r) . <B+Bl;4 Bia(r) oy
VoloB, _ J, 167G, 2
Z(p) - 4W(¢)a’(r)> (u— a(r))]
(2.19)

and then the limit of B, going to zero, we get the magnetiza-
tion densities,

=2V(r)
M= / <Be EAC) 4W(¢>a'<r>>

A B —2V(r)Z
M= [ dr<e—2@) - 4W(¢>)a’(r)>(u ~ a(r)).

84

(2.20)

221

We can also define the heat magnetization density as
My = Mg — uM, giving

A —2V(r)
B
Mo=- [ dr(e_zw»
2
r, 84

2.2 Susceptibilities

—4W(¢)a'(r)>a(r). (2.22)

We define the susceptibilities, as usual, as the second deriva-
tives of the thermodynamical potential, which in holography
equals the Euclidean action, which is a priori a function of
B, B,, pand T, and in the most general case to be considered
in the next section, also of E and &, Sp(B, B, 4, T;E, &). In
this case, the magnetization susceptibility is the derivative
of the magnetization with respect to B,

_ 0 (__1095
X85 = 58 \ " Vol 0B . (2.23)

B],H,T

and more generally, for replacing any B with a B, so

_ 0 (L%
485 = 3B, \ ™ Vol 0B,

Then, by taking the derivative of Egs. (2.18-2.19), we get

b e0z9)
= [ D,
T

(2.24)

By.u,T

g
—2V(r)Z
XBB, =/ —M))(M a(r))dr,
, g4
A =2V(r) e~2Ving
X8, = / e I, (d’)(u a(r))*dr.
! r 167Z'Gn g4

(2.25)

For completeness, we can calculate also the derivatives
of the heat magnetizations M,

oM, 27

=2 =- / 2D (ryyar (2.26)
u,T T g4

and

aM A —2V(r) —2V(r)

S / U0 L D )+ ardr

o8, |, J, 161G, 2

(2.27)

Here we see that no terms proportional to W(¢) appear in
the susceptibilities BBy

3 Ansatz and Transport Coefficients

We are interested in calculating the susceptibilities for the
model with general perturbations, using the ansatz from [16].
In this section we review the calculation of the transport coef-
ficients in [16], since the results are going to be used later.

The source of fluctuations is the same as in the previous
section at B; = 0, a magnetic field A®) = —By, but now we
also consider a nonzero electric field E, = E and thermal
gradient %VXT = £. We also add general fluctuations for all
fields depending on the sources from the Einstein equations
of motions, 6h,, for the metric, 6A , for the gauge field and
0 y, for the axion fields.

The resulting fields with all their fluctuations are:

-the metric field,

=U(r) 0 e(&huezv(’) — &tU(r)) e&h,‘,ezv(')
0 - €sh, 2’0 €dh, e’
B = o 3.1)
e(Sh,e®" — EtU(r)) €dh,e*' D 2V 0 )
e&h,yezv") e&h,_yezv") 0 eV
-the gauge field,
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A, =a(r)
A, = —By+te(€a(r) — E) + €6A, 3.2)
Ay = €5Ay

-and the axion fields

n(r)=kx+edy (3.3)

) =ky+edy,. 34

Here, € is added as a mathematical tool in order to account
for the order in the fluctuations, since we are considering B,
E and & small.

3.1 Maxwell’s Equations of Motion

The gauge equations of motion are given by
1 v uv\
—_gd”\/—g(F” + WE") = 0.

In the equation for v = x only the y = r term survives

o,[\/—&(F™ + WF™)| = 0.

and in the equation for v = y we have an extra term that also
survives

3.5)

(3.6)

0,[\/=g(F” + WF)| = —4¢d' (nW()e — @V e Ve,
4
3.7

Note that the second term in the equation above is the
same as the integrand times & of the magnetization found
in (2.20).

As explained in [16], in order to do a calculation
without having the full solution, we can take advantage
of the fact that there are generalized currents that are
r-independent, J;, following the general idea of the mem-
brane paradigm in the form of Igbal and Liu [18]. We
can define these currents for the model modified by the
magnetization term as

T = \[—g(F™ + WF™) »
T =[—g(F” + WE?) — e£M(). (3:8)

Note that we do in fact have 0,._7 = 0. On-shell, we have

ee*V I Z(¢)(h,d' (r) + U(r)e V") (Bsh,, + 6A"))

g
ee4V(’)Z(¢)<5ht},a’(r) + U(e VO <5Ag_ - B5hm> )
F = > - +
84
+ 4ee*VOW(P)(Ea(r) — E) — eEM(r).

(3.9)
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The currents are going to be useful for us because they
do not depend on the coordinate », and thus we can relate
the fields for any r to values at the horizon or the boundary:
J(r) = T (ry) = lim F(r). (3.10)

At the horizon we have that the magnetization vanishes,
M(r),) = 0, directly from the result in (2.20). Also, we can
impose regularity conditions near the horizon [9],

oA, = —EIC=) g 3.11
x——T'F (r—rh) 3.11)
6A, = O(r —ry) (3.12)
_ GOhy, Ee 2D log(r — 1)
6h,, = U yp + 0@ -1, (3.13)
Shy,
oh,, = m + O —r,) (3.14)
oy, = O —r). (3.15)

We then obtain that at the horizon the usual currents J!
equal the generalized currents J', and equal

YO Z($)(8h e Vd (r) + Béh,, — E)

J' = J(r,) = lim >

r=ry &
(3.16)
! eV Z(¢)(5h,e*Vd' (r) — Béh,, )
J'=J,(r) = lim - 7 +4W(¢)(Ea(r) — E).
" 4
(3.17)

We still need to deal with 64,;, appearing in the above formu-
las, and for that we must use the gravity equations of motion.

3.2 Einstein’s Equations of Motion

The equations of motion for gravity are

167Gy
=

1
2F, F° — ~g F, F"*’).
1g? Euvlop

1 1
R, = §0M¢dv¢ + EV(db) + wkby =3
(3.18)

We calculate them on-shell at linear level in €. The deri-
vation of the formulas can get involved, so, since we are
interested in the result near horizon, we can expand the
background field near this region,

a(ry=a,(r—r,) + ...
Viry=V,+ ...

(3.19)
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Using this, for uv =ty, we end up with the Einstein
equation

%U(r)ezv(’) (511;; + 46h:yV’(r)> — B*8h, e Z($)+
1

+3 (K + k3) R, > V() — 2Bh, U(r)d (rZ(¢)

= —2U(nd (r)6A|Z(¢) + 2Be~ Y 7z(p)(Ea(r) — E).
(3.20)

We can rewrite the above expression so we get a more
familiar result [9]

U ol ) — (SBZ+ 506 + e @ )oh,, — ZUBZeY b, =
—2UZe¥d'sA' + 2BZ(¢a - E).
8 Y8

(3.21)

A similar expression can be found for pyv = #x,

1 2
UG i) — (5B°Z + 106 + K)e @ )oh, — EUBZeNa'h,, =
= —2UZVd SA!.
8 '*

(3.22)
We need impose the regularity conditions (3.11-3.13), and
another expansion near the horizon for the function U(r),

Ur) =@ —r)U ) + ..., (3.23)

where the coefficient in the expansion is given, as usual, by
the temperature

U'(r,)) = 4xT. (3.24)
Note that
w—_  E 1 __E
x 4zTr—r, U (3:25)
Then we have
(ﬁzzs2 + %ezv(kf + k%)(b)&h,x - i—:ZBeZVuthh,y = —i—’;ZezvahE +e?arnTeE
4 4 4
(ﬁzzgz + %ezv(kf + k%)d))&h,y — 2 7B ay6h, = — 2% ZBE
g g g
(3.26)

and we can solve for 6h,, and 6h,, in terms of &, E, B.
With this result, we can rewrite the currents (3.16-3.17) and
then equate with the general formula for transport

Ji = O-XiE — (Xxin . (327)

and thus we can identify the thermoelectric transport coef-
ficients, obtaining (when comparing with [16] note that here
we have considered the more general case with k; # k,)

1 V(2 + k)P2x2gip* + 2IB*Z% + 827 (k2 + 1) D /2)
0,= =
o2 4iyg3B2p* + 2B Z + gy (ki + k5@ /2)

Th

(3.28)

2B K380 + KiB2Z7 + 632V (I3 + k)@ /2
0,, = 4K
o T P B + BZ + G (I + KD)D/2)

Tn

(3.29)

2k5g3spe*’ (ki + k)@ /2

a. =
N 4kigiBp? + 2k2B2Z + g2e?V (k2 + kD)@ /2)?

Tn

(3.30)
02 263840" + 26, B2 2% + 8376 (k3 + 15)® /2
ad,. = zK,S
T Akg B + (G BPZ + g3V (K + )O/22 |
(3.31)
Here
p=-2Ze"a, (3.32)
is the charge density and
s = 4geVn (3.33)

is the entropy density.

One important observation for the following is that
there is no explicit dependence on T in the above formulas
(the only explicit dependence on T in 6h,,, 6h,, was through
the factor T¢, which was factored out in order to obtain the

coefficients a;, 6,;).

4 Susceptibilities of the General Model
with Perturbations

The susceptibilities of the model are the double derivatives
of the thermodynamic potential,

_ 120
Vol daob ’

other vars.

Iab (4])

where a and b stand for the thermodynamic variables.
The potential is given by the on-shell Euclidean action
times the temperature

Q=TS,, 4.2)
so we need to compute the Euclidean action
F, F*Z(¢) -
S = / d“x(—”—zd) = Fu P W(@)
4g 4
Ry —3(0"$)(9,9) — 3((01)* + (0 D(P)
~V@)+ 167G,y

4.3)

on the ansatz (3.1 3.4), this time up to quadratic terms in €.
The integral over time cancels with the temperature in
(4.2), and the integrals over x and y turn into an overall
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volume Vol = [ dx [ dy, so in the end our result will only

depend on an integral over r.
4.1 Susceptibilities with (a, b) € (&, E, B)

The full quadratic Lagrangian is too big for us to show in
this paper, but luckily a lot of terms go to zero when we take
the double derivatives. Furthermore, counterterms also do
not contribute at this level.

Here we calculate and show these facts for the off-
diagonal susceptibilities involving the magnetic B and
electric E fields and the thermal gradient &:

A a(NZ()
= [ drl ———— |, 4.4
A 8h,Z(¢)
- P i
ABE /r/, r( gZU(r) >’ 4.5)
A a(r)éh,yZ(dn)
= [ dr| ——=—+00 |. 4.6
)(-fB /r; r< giU(r) ) ( )

We also obtain formulas for the diagonal susceptibilities
involving the same:

o /A )
L T\ gun )

.7
A 2
a(r)~Z(¢) )
Xee = / dr(— +0@) ), (4.8)
n gi U(r)
A 8%+ 8h2 — U(r)?( 8h2, + k2,

e [ g LD )

(4.9)

4.2 Susceptibilities with (a, b) = (T, ...)

We wish to also compute the susceptibilities involving the tem-
perature 7 as (at least) one of the variables (a, b). One way to
do this is to solve the integral of  and get a result that depends
on the fields at the boundary and at the horizon, while the
latter is related to the temperature. This proved to be a hard
challenge in this general case, since we obtain functions that
are not calculable with the methods we employ.

Instead, the path we explored is to make use of the already
computed result for the electrical currents (3.8), and con-
sider only the case that the T dependence comes only from
explicit dependence, not from implicit T dependence in the

@ Springer

conductivities o, a,, (previously computed) and in the metric
fluctuations 6h,,, 6h, ..
First, we use the fact that

Jn =Ty =T, (4.10)

since J; does not depend on r. Thus we can relate the fields
at any r through the result for the thermoelectric response
(3.27),

Ji=0,E—a,TE, 4.11)

where we have computed o,; and a,; in Section 3, where we
noted that they had no explicit T dependence.
Then we obtain

\—g(F" + WF") — ¢éM(r)5,, = 6, 4,E — a;,TE. 4.12)

Solving for £ the above equation for i = x, we have

ry

: Z(¢)(8h,e*Dd' (r) + U(r)(BSh

+6A')) + Eglo,,
axxgiT

(4.13)

Then we substitute £ as a function of T from the above for-
mula in the quadratic Lagrangian, and after taking derivatives
(and assuming 6h,, 6h,, and o, o, are T-independent, i.e.,
considering only the explicit dependence in their formulas) we
have, at lowest order in 7,

AN 26 a(r)*Z(¢)
Xer = / dr——r (Z()(6h,*d ()
no 08 TPUM) (4.14)
+U(r)(BSh,, + 6A")) + Egio,,).
Rewriting this, we get the final form,
A 20,.a(r)*Z(p)é
= dr| ———|. 4.15
XET /u, < axxgiﬂ ) ( )

We can do the same procedure to find the other suscep-
tibilities involving T, at the lowest order in 7,

Z(¢)5h,xe2v(")a’(r)
a2 g6T3

xx94

A
Tar = / dr 252a(r)26h,y2(¢)2<

ZG)U(r) (Boh,, + 6A(r)) + Egi%)
.\ A

2 5673
a););g4T

T 0Q

A
“Veiarz| = / dr3e*a(r)*Z(¢p)x

B.u T
o (Z(qﬁ)(éh,xezv(')a’(r) + U(r) (B(‘ihhv + 5A)'C>) + Egio')oc)2
azxgiT“ U(r) ‘

X1t =

(4.16)

Note the sign difference, and the multiplication by 7,
which are standard for ;.
Rewriting these, we get
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A (262a(r)?h, Z(¢)*E
XBT = / dr xxg4T2
4.17)
/ 3e a(r)2Z(<}'>)é‘2
wm = 2,8 T2U()
4.3 Comparison with Dyonic Black Hole Results
In [6, 7], the thermodynamic potential Q(7', u, B) was cal-

culated for the AdS, dyonic black hole in the absence of
the topological term W, obtaining

Q  cad u? B?
S=(-1-543%), .
V 4z ( a? at (4.18)
where
o VN (4.19)
iy 6r 4
and T(a, B, p) is obtained from a from the equation
2 2
42T 4 ¥ _B (4.20)

Then the entropy density and charge density are
obtained from the first derivatives of Q,

S _ 100 5
=== =ca
V' VT,
_ 109 _e, @20
g Voulgr =« #

and the matrix of susceptibilities with respect to 7 and u is
obtained from the second derivatives [17],

3
1 0°Q beay
=——— ——— + O(T
){MM \% 0”2 BT 66( _ﬂ ( )
3
T 320 demay )
=--—>| =—5—5T+0r
A VoT?lp, 6a] —,u > (422)
1 9°Q 2cpag
=—= = +O(T).
A =TV 9Touly 6al — 2 @

Note that y; is linear in T at small 7 (due to the multi-
plication by T of the double derivative).

But one can consider also the topological term W, as
was done in [8], and find the thermodynamical potential
Q  cd® < - M_2

v = 4.23)

o

2 B
+ 3B— +4W’u—> ,
at a3

and in that case we obtain a modification in the charge density,

p= o

% L 0% 4.24)

= Slau-wB),
BT T

but not in the entropy density formula (as a function of a),
2
s =ca*.

The magnetization density is now

- C<§+W;4>.

T\

_ 1 0Q
VdB

(4.25)

From (4.20), we obtain at T, u fixed « = a(B), giving

2 2
da<3+ K +3B—> —28% (4.26)
a
so that finally
—<l(i- 25" 4.27
X8 = T 3a* + p2a2 + 382 )" 4.27)
Putting T ~ 0 in (4.20), we obtain
~ £ o
XBB = Thal_ + O(). (4.28)
0
For
_oM
XrB = o |, ) (4.29)
we obtain at fixed B, u from (4.20) that
da B> i’
dl = —(3+3—+—= ], )
so that
-8 « 431
A8 = 102 38 4 3B + ula?’ “4.3D)
Putting T ~ 0 in (4.20), we obtain
cB 1
X1p = Fr— +0). 4.32)

We see that both yp, and y; go to constants at 7 — 0,
while we saw that y, was then linear in 7.

It is hard to see how this can be consistent with the formu-
las for ypr and yppin (4.17), where the temperature appears
in the denominator. We should note that in (4.17), e, should
be taken from (3.30), which is expressed in terms of p, but
then has no explicit W dependence, while the black hole for-
mulas (4.22), (4.32) have no W dependence when expressed
in terms of y, and the two are related via a W dependence
in (4.24). So either one or the other of the formulas has W,
while the other does not. Yet, as noted, even at W = 0, we
seem to have a mismatch.
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One possibility then is that our assumption of partial deriva-
tive acting only on the explicit 7”s in the conductivities and
metric components was wrong, but that seems unlikely.

More likely is that, actually, the formulas derived from
the AdS, dyonic solution, a “top-down” type solution, in fact
do not match the general solution, with fields introduced as
perturbations. Thus one should be very careful when import-
ing results from one way of calculating into another.

5 Conclusions

In this work we have calculated thermodynamic suscep-
tibilities, the second-order derivatives of the thermody-
namic potential, whose matrix is related to the conductiv-
ity matrix by the general theory of the hydrodynamic limit,
for a general holographic model with external fields B, B,
and then E, B, u, ¢ introduced as perturbations at infinity. In
the process, we have also found more general formulas for
the thermoelectric conductivities in the case that not only
translational invariance, but isotropy is also broken, through
general linear dilatons y, = k\x, y, = kyy, k| # k,.

We have then compared the formulas with formulas obtained
in the standard analysis using the “top-down” AdS, dyonic
black hole, and we have found that the results do not match.
While there is a possibility that one of the assumptions in our
calculation is unwarranted, we think that unlikely. More likely,
calculations using different types of assumptions (the fields are
nonperturbatively introduced in the dyonic black hole, while
perturbatively introduced at infinity in the case considered here)
are not expected to match in general, so one should be careful
when exporting them from one model to the other.
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