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Abstract
In this note, we calculate susceptibilities, as derivatives of a thermodynamical potential, for the general perturbative holo-
graphic setup for transport with magnetic field, charge density and topological term, and compare with the quantities 
obtained in the standard AdS

4
 dyonic black hole analysis of Hartnoll and Kovtun. We find that the results do not match, 

despite previous expectations.
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1  Introduction

The AdS/CFT correspondence [1] (see [2, 3] for a review) 
usually relates strongly coupled field theory to weakly cou-
pled string theory in its classical supergravity limit, with 
“top-down” models, derived from systems of branes in a 
decoupling limit. Common applications to condensed mat-
ter, AdS/CMT (see [4] for a review), are usually phenom-
enological, “bottom-up” constructions. That applies in par-
ticular to models of transport in condensed matter systems.

However, there are a few examples of top-down models as 
well, most notably the ABJM vs. AdS4 × ℂℙ

3 correspondence 
[5], which has been used as a sort of a prototype for transport 
in strongly coupled 2+1 dimensional condensed matter sys-
tems. Of course, it is not a top-down model in the sense that 
there is no derived relation of the ABJM model to any con-
densed matter system (unlike supersymmetric SU(N) gauge 
theories in 3+1 dimensions, thought of as an extension of 
the gluon theory for QCD), only a phenomenological one: it 
gives similar physics. But the holographic map is derived. At 
nonzero temperature, the dyonic black hole in AdS4 has been 
used as a model for 2+1 dimensional transport in the presence 

of a magnetic field [6, 7]. One can calculate thermodynamic 
quantities, and transport from fluctuations around the dyonic 
background. Note that these were extended to the presence of 
a topological term in the action in [8].

However, the generic transport is necessarily obtained from 
a background obtained by adding perturbations at infinity (and 
perhaps the horizon of the black hole), so that the full back-
ground solution is not known, following the method in [9–15]. 
One rather generic case was considered in [16]. In [17], the 
Wiedemann-Franz law was obtained by a combination of the 
two methods. In particular, the matrix of susceptibilities �s , cal-
culated as the second-order derivatives of the thermodynamic 
potential in the dyonic black hole background, and was related 
via the matrix of diffusivities D to the matrix of conductivities 
(as expected from the general theory of the hydrodynamic limit), 
for which the results in the perturbative background from [16].

But that implies the assumption that dyonic black hole 
background of [6, 7] and the perturbative one of [16] give 
the same thermodynamics, which is not obvious. There-
fore in this paper we investigate the possibility of these two 
results giving the same answer. This has implications beyond 
the specific case considered here, as it measures the correct-
ness of importing results from a top-down construction to a 
bottom-up one, or vice versa.

The paper is organized as follows. In Section 2 we con-
sider the perturbative model with topological term, but only 
B,B1 external fields, and calculating the thermodynamics, 
the magnetizations and the susceptibilities with this simpli-
fied version of the fluctuations. In Section 3, we calculate 
the transport coefficients for a more general version of the 
model, with E and � = (∇T)∕T  as external fields as well. In 
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Section 4, we calculate the susceptibilities for this general 
case, and compare with the AdS4 dyonic black hole results. 
We conclude in Section 5.

2 � AdS/CMT Perturbative Model and Boundary 
Conditions at the Black Hole Horizon

For the gravitational theory with AdS4 asymptotics, we con-
sider a 3 + 1 dimensional Einstein-Hilbert action (where the 
spacetime is described in coordinates t, r, x, y) for gravity 
with a scalar dilaton � , an U(1) gauge field with a Maxwell 
term with kinetic function Z(�) and a topological term with 
function W(�) . We also add two linear axions �1 and �2 with 
action proportional to a function Φ(�) , in order to break 
translational invariance, as needed for transport. The action 
is thus given by:

where, as usual, F�� = ��A� − ��A� and F̃𝜇𝜈 =
𝜖𝜇𝜈𝛿𝜌

2
√
−g
F𝛿𝜌.

This model without the topological term has been studied 
by [9] and in [16] the authors added the topological term 
to it.

The equations of motion for this model are:
-for the metric field:

-for the connection A�:

-for the axion fields:

-and finally for the dilaton field:

The axion fields have background solutions

(2.1)

I = ∫ dx4
√
−g

�
1

16𝜋GN

�
R − V(𝜙) −

1

2
(𝜕𝜇𝜙)

(𝜕𝜇𝜙) −
1

2
((𝜕𝜒1)

2 + (𝜕𝜒2)
2)Φ(𝜙)

�

−
F𝜇𝜈F

𝜇𝜈Z(𝜙)

4g2
4

− F𝜇𝜈F̃
𝜇𝜈W(𝜙)

�
,

(2.2)

R�� =
1

2
������ +

1

2
V(�) +

16�GN

4g2
4

(
2F��F

�
�
−

1

2
g��F��F

��
)
,

(2.3)
1√
−g

𝜕𝜇
√
−g

�
F𝜇𝜈 +W(𝜙)F̃𝜇𝜈

�
= 0,

(2.4)Φ(�)���
��i + ���i�

��Φ�(�) = 0

(2.5)

(𝜕𝜇𝜙)
2 − V �(𝜙) −

1

2
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2)Φ�(𝜙)

= 16𝜋GN

(
F𝜇𝜈F

𝜇𝜈Z�(𝜙)

4g2
4

+ F𝜇𝜈F̃
𝜇𝜈W �(𝜙)

)
.

that break translational invariance, as we need, and k1 ≠ k2 
would also break isotropy.

The background solution for this model is given by an 
asymptotically AdS4 metric

while the U(1) gauge field is such that the boundary field 
theory has a magnetic field B and an electric field defined 
by a(r), so is

In order for us to have a holographic dual (with AdS4 asymp-
totics), we require that the scalar potential V(�) satisfies

2.1 � Thermodynamics and Magnetization

In the above background, we want to study electrical and 
thermal transport in the presence of a magnetic field. We 
consider the Euclidean action in the bulk, in the absence of 
axion perturbations, as

In this case, the response of the Euclidean action with the 
change in the magnetic field gives the magnetization density,

We also need to consider the response of the action with 
respect to a fluctuation in the metric of the type �gtx = −B1y , 
which gives the energy magnetization density,

These two affect the background solutions by adding a 
term to Ax and a non-diagonal term to the metric,

(2.6)�1 = k1x , �2 = k2x ,

(2.7)ds2 = −U(r)dt2 +
1

U(r)
dr2 + e2V(r)(dx2 + dy2),

(2.8)A = a(r)dt − Bydx.

(2.9)V(0) = −
6

L2
, V �(0) = 0.

(2.10)

SE = ∫ d4x
√
g

�
1

16𝜋GN

�
R +

1

2
(𝜕𝜙)2 + V(𝜙)

�
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4g2
4
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𝜇𝜈 −W(𝜙)F𝜇𝜈F̃
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�
.

(2.11)M = −
1

Vol

�SE

�B
.

(2.12)ME = − lim
B1→0

1

Vol

�SE

�B1

.

(2.13)A = a(r)dt + (−B1 + (a(r) − �)B1y)dx,

(2.14)

ds2 = − U(r)(dt + B1ydx)
2 +

dr2

U(r)
+ e2V(r)(dx2 + dy2).
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Then on-shell, the gauge terms equal

and the Ricci scalar is given by

Taking the derivatives

and then the limit of B1 going to zero, we get the magnetiza-
tion densities,

We can also define the heat magnetization density as 
MQ = ME − �M , giving

2.2 � Susceptibilities

We define the susceptibilities, as usual, as the second deriva-
tives of the thermodynamical potential, which in holography 
equals the Euclidean action, which is a priori a function of 
B,B1,� and T, and in the most general case to be considered 
in the next section, also of E and � , SE(B,B1,�, T;E, �) . In 
this case, the magnetization susceptibility is the derivative 
of the magnetization with respect to B,

(2.15)F��F
�� = 2E−4V(r)(B + B1� − B1a(r))

2 − 2a�(r)2

(2.16)F𝜇𝜈F̃
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1

2
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1
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)
− 4U�(r)V �(r) − U��(r).
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4
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)

(2.19)
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4
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]

(2.20)M = ∫
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g2
4
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)
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(� − a(r)).
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1

Vol
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,

and more generally, for replacing any B with a B1 , so

Then, by taking the derivative of Eqs. (2.18–2.19), we get

For completeness, we can calculate also the derivatives 
of the heat magnetizations MQ,

and

Here we see that no terms proportional to W(�) appear in 
the susceptibilities �BiBj

.

3 � Ansatz and Transport Coefficients

We are interested in calculating the susceptibilities for the 
model with general perturbations, using the ansatz from [16]. 
In this section we review the calculation of the transport coef-
ficients in [16], since the results are going to be used later.

The source of fluctuations is the same as in the previous 
section at B1 = 0 , a magnetic field A(0)

x
= −By , but now we 

also consider a nonzero electric field Ex = E and thermal 
gradient 1

T
∇xT = � . We also add general fluctuations for all 

fields depending on the sources from the Einstein equations 
of motions, �h�� for the metric, �A� for the gauge field and 
��i for the axion fields.

The resulting fields with all their fluctuations are:
-the metric field,

-the gauge field,

(2.24)�BiBj
=

�

�Bi

(
−

1
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�SE

�Bj

)|||||Bk ,�,T

.
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-and the axion fields

Here, � is added as a mathematical tool in order to account 
for the order in the fluctuations, since we are considering B, 
E and � small.

3.1 � Maxwell’s Equations of Motion

The gauge equations of motion are given by

In the equation for � = x only the � = r term survives

and in the equation for � = y we have an extra term that also 
survives

Note that the second term in the equation above is the 
same as the integrand times � of the magnetization found 
in (2.20).

As explained in [16], in order to do a calculation 
without having the full solution, we can take advantage 
of the fact that there are generalized currents that are  
r-independent, Ji , following the general idea of the mem-
brane paradigm in the form of Iqbal and Liu [18]. We 
can define these currents for the model modified by the 
magnetization term as

Note that we do in fact have �rJ
i = 0 . On-shell, we have

(3.2)

At = a(r)

Ax = −By + t�(�a(r) − E) + ��Ax

Ay = ��Ay

(3.3)�1(r) = k1x + ���1

(3.4)�2(r) = k2y + ���2.

(3.5)
1√
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√
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�
F𝜇𝜈 +WF̃𝜇𝜈
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x
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4

+

+ 4�e4V(r)W(�)(�a(r) − E) − ��M(r).

The currents are going to be useful for us because they 
do not depend on the coordinate r, and thus we can relate 
the fields for any r to values at the horizon or the boundary:

At the horizon we have that the magnetization vanishes, 
M(rh) = 0 , directly from the result in (2.20). Also, we can 
impose regularity conditions near the horizon [9],

We then obtain that at the horizon the usual currents Ji 
equal the generalized currents Ji , and equal

We still need to deal with �hti , appearing in the above formu-
las, and for that we must use the gravity equations of motion.

3.2 � Einstein’s Equations of Motion

The equations of motion for gravity are

We calculate them on-shell at linear level in � . The deri-
vation of the formulas can get involved, so, since we are 
interested in the result near horizon, we can expand the 
background field near this region,

(3.10)J
i(r) = J
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r→∞

J
i(r).
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4�T
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(3.19)

a(r) = ah(r − rh) + ...

V(r) = Vh + ...

� = �h + ...
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Using this, for �� = ty , we end up with the Einstein 
equation

We can rewrite the above expression so we get a more 
familiar result [9]

A similar expression can be found for �� = tx,

We need impose the regularity conditions (3.11–3.13), and 
another expansion near the horizon for the function U(r),

where the coefficient in the expansion is given, as usual, by 
the temperature

Note that

Then we have

and we can solve for �htx and �hty in terms of �,E,B.
With this result, we can rewrite the currents (3.16–3.17) and 

then equate with the general formula for transport

and thus we can identify the thermoelectric transport coef-
ficients, obtaining (when comparing with [16] note that here 
we have considered the more general case with k1 ≠ k2)

(3.20)
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U(r)e2V(r)

(
�h��

ty
+ 4�h�

ty
V �(r)

)
− B2�htye

−2V(r)Z(�)+

+
1

4

(
k2
1
+ k2

2

)
�htye

2V(r)Φ(�) − 2BhrxU(r)a�(r)Z(�)

= −2U(r)a�(r)�A�
y
Z(�) + 2Be−2V(r)Z(�)(�a(r) − E).

(3.21)

U(e4V�h�
ty
)� −

(
�

g2
4

B2Z +
1

2
(k2

1
+ k2

2
)e4VΦ

)
�hty −

2�

g2
4
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= −
2�

g2
4
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y
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2�
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4
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(
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4
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2
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1
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2
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)
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2�
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4

UBZe2Va�hry =

= −
2�
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4
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x
.

(3.23)U(r) = (r − rh)U
�(rh) + ...,

(3.24)U�(rh) = 4�T .

(3.25)�A�
x
= −

E

4�T
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U
.
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(
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1
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2
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)
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(3.27)Ji = �xiE − �xiT� ,
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1

2

e2V (k2
1
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4
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1
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Here

is the charge density and

is the entropy density.
One important observation for the following is that 

there is no explicit dependence on T in the above formulas 
(the only explicit dependence on T in �htx, �hty was through 
the factor T� , which was factored out in order to obtain the 
coefficients �xi, �xi).

4 � Susceptibilities of the General Model 
with Perturbations

The susceptibilities of the model are the double derivatives 
of the thermodynamic potential,

where a and b stand for the thermodynamic variables.
The potential is given by the on-shell Euclidean action 

times the temperature

so we need to compute the Euclidean action

on the ansatz (3.1 3.4), this time up to quadratic terms in �.
The integral over time cancels with the temperature in 

(4.2), and the integrals over x and y turn into an overall 

(3.29)
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volume Vol = ∫ dx ∫ dy , so in the end our result will only 
depend on an integral over r.

4.1 � Susceptibilities with (a, b) ∈ (�, E, B)

The full quadratic Lagrangian is too big for us to show in 
this paper, but luckily a lot of terms go to zero when we take 
the double derivatives. Furthermore, counterterms also do 
not contribute at this level.

Here we calculate and show these facts for the off-
diagonal susceptibilities involving the magnetic B and 
electric E fields and the thermal gradient �:

We also obtain formulas for the diagonal susceptibilities 
involving the same:

4.2 � Susceptibilities with (a, b) = (T, ...)

We wish to also compute the susceptibilities involving the tem-
perature T as (at least) one of the variables (a, b). One way to 
do this is to solve the integral of r and get a result that depends 
on the fields at the boundary and at the horizon, while the 
latter is related to the temperature. This proved to be a hard 
challenge in this general case, since we obtain functions that 
are not calculable with the methods we employ.

Instead, the path we explored is to make use of the already 
computed result for the electrical currents (3.8), and con-
sider only the case that the T dependence comes only from 
explicit dependence, not from implicit T dependence in the 

(4.4)�E� = ∫
Λ

rh

dr

(
−
a(r)Z(�)

g2
4
U(r)

)
,

(4.5)�BE = ∫
Λ

rh

dr

(
−
�htyZ(�)

g2
4
U(r)

)
,

(4.6)��B = ∫
Λ

rh

dr

(
a(r)�htyZ(�)

g2
4
U(r)

+O(t)

)
.

(4.7)�EE = ∫
Λ

rh

dr

(
Z(�)

g2
4
U(r)

)
,

(4.8)��� = ∫
Λ

rh

dr

(
a(r)2Z(�)

g2
4
U(r)

+O(t2)

)
,

(4.9)

�BB = ∫
Λ

rh

dr

⎛⎜⎜⎜⎝

Z(�)

g2
4
U(r)

⎛⎜⎜⎜⎝

�
�h2

tx
+ �h2

ty
− U(r)2

�
�h2

rx
+ �h2

ry

��

2
− U(r)e−2V(r)

⎞⎟⎟⎟⎠
+O(t)

⎞⎟⎟⎟⎠
.

conductivities �xx, �xx (previously computed) and in the metric 
fluctuations �htx, �hry.

First, we use the fact that

since Ji does not depend on r. Thus we can relate the fields 
at any r through the result for the thermoelectric response 
(3.27),

where we have computed �xi and �xi in Section 3, where we 
noted that they had no explicit T dependence.

Then we obtain

Solving for � the above equation for i = x , we have

Then we substitute � as a function of T from the above for-
mula in the quadratic Lagrangian, and after taking derivatives 
(and assuming �htx, �hry and �xx, �xx are T-independent, i.e., 
considering only the explicit dependence in their formulas) we 
have, at lowest order in T,

Rewriting this, we get the final form,

We can do the same procedure to find the other suscep-
tibilities involving T, at the lowest order in T,

Note the sign difference, and the multiplication by T, 
which are standard for �TT.

Rewriting these, we get

(4.10)J
i(r) = J

i(rh) = Ji ,

(4.11)Ji = �xiE − �xiT� ,

(4.12)
√
−g

�
Fri +WF̃ri

�
− 𝜖𝜉M(r)𝛿iy = 𝜎xiE − 𝛼xiT𝜉.

(4.13)

� =
Z(�)

(
�htxe

2V(r)a�(r) + U(r)
(
B�hry + �A�

x

))
+ Eg2

4
�xx

�xxg
2
4
T

.

(4.14)
�ET = ∫

Λ

rh

dr
2�xxa(r)

2Z(�)

�2
xx
g4
4
T3U(r)

(
Z(�)

(
�htxe

2V(r)a�(r)

+U(r)
(
B�hry + �A�

x

))
+ Eg2

4
�xx

)
.

(4.15)�ET = ∫
Λ

rh

dr

(
2�xxa(r)

2Z(�)�

�xxg
2
4
T2U(r)

)
.

(4.16)

�BT = ∫
Λ

rh

dr 2�2a(r)2�hryZ(�)
2

(
Z(�)�htxe

2V(r)a�(r)

�2
xx
g6
4
T3

+
Z(�)U(r)

(
B�hry + �A�

x
(r)

)
+ Eg2

4
�xx

�2
xx
g6
4
T3

)

�TT = −
T

Vol

�Ω

�T2

|||||B,�
= ∫

Λ

rh

dr3�2a(r)2Z(�)×

×

((
Z(�)

(
�htxe

2V(r)a�(r) + U(r)
(
B�hry + �A�

x

))
+ Eg2

4
�xx

)2
�2
xx
g6
4
T4U(r)

)
.
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4.3 � Comparison with Dyonic Black Hole Results

In [6, 7], the thermodynamic potential Ω(T ,�,B) was cal-
culated for the AdS4 dyonic black hole in the absence of 
the topological term W, obtaining

where

and T(�,B,�) is obtained from � from the equation

Then the entropy density and charge density are 
obtained from the first derivatives of Ω,

and the matrix of susceptibilities with respect to T and � is 
obtained from the second derivatives [17],

Note that �TT is linear in T at small T (due to the multi-
plication by T of the double derivative).

But one can consider also the topological term W, as 
was done in [8], and find the thermodynamical potential

and in that case we obtain a modification in the charge density,

(4.17)

�BT = ∫
Λ

rh

dr

(
2�2a(r)2�hryZ(�)

2�

�xxg
4
4
T2

)

�TT = ∫
Λ

rh

dr

(
3�2a(r)2Z(�)�2

�xxg
4
4
T2U(r)

)
.

(4.18)
Ω

V
=

c�3

4�

(
−1 −

�2

�2
+ 3

B2

�4

)
,

(4.19)c

4�
=

√
2N3∕2

6�

1

4

(4.20)4�T

�
= 3 −

�2

�2
−

B2

�4
.

(4.21)
s =

S

V
= −

1

V

�Ω

�T

||||B,� = c�2

� = −
1

V

�Ω

��

||||B,T =
c

�
��

(4.22)

��� = −
1

V

�2Ω

��2

||||B,T =
6c�3

0

6�2
0
− �2

+O(T)

�TT = −
T

V

�2Ω

�T2

||||B,� =
4c��3

0

6�2
0
− �2

T +O(T2)

��T = −
1

V

�2Ω

�T��

||||B =
2c��2

0

6�2
0
− �2

+O(T).

(4.23)
Ω

V
=

c�3

4�

(
−1 −

�2

�2
+ 3

B2

�4
+ 4W

�B

�3

)
,

but not in the entropy density formula (as a function of � ), 
s = c�2.

The magnetization density is now

From (4.20), we obtain at T ,� fixed � = �(B) , giving

so that finally

Putting T ≃ 0 in (4.20), we obtain

For

we obtain at fixed B,� from (4.20) that

so that

Putting T ≃ 0 in (4.20), we obtain

We see that both �BB and �TB go to constants at T → 0 , 
while we saw that �TT was then linear in T.

It is hard to see how this can be consistent with the formu-
las for �BT and �TT in (4.17), where the temperature appears 
in the denominator. We should note that in (4.17), �xx should 
be taken from (3.30), which is expressed in terms of � , but 
then has no explicit W dependence, while the black hole for-
mulas (4.22), (4.32) have no W dependence when expressed 
in terms of � , and the two are related via a W dependence 
in (4.24). So either one or the other of the formulas has W, 
while the other does not. Yet, as noted, even at W = 0 , we 
seem to have a mismatch.

(4.24)� =
Q

V
= −

1

V

�Ω

��

||||B,T =
c

�
(�� −WB) ,

(4.25)M =
1

V

�Ω

�B

||||T ,� =
c

�

(
B

�
+W�

)
.

(4.26)d�

(
3 +

�2

�2
+ 3

B2

�4

)
= 2B

dB

�3
,

(4.27)�BB =
c

�

1

�

(
1 −

2B2

3�4 + �2�2 + 3B2

)
.

(4.28)�BB ≃
c

�

2�0

4�2
0
− �2

+O(T).

(4.29)�TB = −
�M

�T

||||B,� ,

(4.30)dT =
d�

4�

(
3 + 3

B2

�4
+

�2

�2

)
,

(4.31)�TB =
cB

4�2

�2

3�4 + 3B2 + �2�2
.

(4.32)�TB =
cB

4�

1

4�2
0
− �2

+O(T).
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One possibility then is that our assumption of partial deriva-
tive acting only on the explicit T’s in the conductivities and 
metric components was wrong, but that seems unlikely.

More likely is that, actually, the formulas derived from 
the AdS4 dyonic solution, a “top-down” type solution, in fact 
do not match the general solution, with fields introduced as 
perturbations. Thus one should be very careful when import-
ing results from one way of calculating into another.

5 � Conclusions

In this work we have calculated thermodynamic suscep-
tibilities, the second-order derivatives of the thermody-
namic potential, whose matrix is related to the conductiv-
ity matrix by the general theory of the hydrodynamic limit, 
for a general holographic model with external fields B,B1 
and then E,B,�, � introduced as perturbations at infinity. In 
the process, we have also found more general formulas for 
the thermoelectric conductivities in the case that not only 
translational invariance, but isotropy is also broken, through 
general linear dilatons �1 = k1x,�2 = k2y , k1 ≠ k2.

We have then compared the formulas with formulas obtained 
in the standard analysis using the “top-down” AdS4 dyonic 
black hole, and we have found that the results do not match. 
While there is a possibility that one of the assumptions in our 
calculation is unwarranted, we think that unlikely. More likely, 
calculations using different types of assumptions (the fields are 
nonperturbatively introduced in the dyonic black hole, while 
perturbatively introduced at infinity in the case considered here) 
are not expected to match in general, so one should be careful 
when exporting them from one model to the other.
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