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ABSTRACT
The nature of the dark sector components of the Universe still remains one of the largest
unknown. Among many possibilities, it has been speculated that dark matter and dark energy
may be more tightly coupled than usually thought, one component interacting with the other.
Here, we continue to explore the possible dark sector interaction through means of the
Layzer–Irvine equation together with a model of an interacting dark sector applied to clusters
of galaxies. We have selected galaxy clusters that have their mass profiles determined by
gravitational lensing effect (optical observations) and have their intracluster gas temperatures
measured from X-ray observations and spectral fit found in the literature. Using a simple
model based on semi-analytical simulations, we derived a putative dynamical evolution of
the clusters and used it to estimate the coupling parameter of the dark sector interaction.
Through a Bayesian analysis, we obtain a 3σ detection of the interaction strength for 11
clusters at −0.027 ± 0.009 that translates in a compounded Universal equilibrium virial
ratio, U/T, of −0.61+0.04

−0.03. We note that the X-ray temperature determination is sometimes
inconsistent, depending on the instrument and/or methodology used. The level of detection
and these inconsistencies call for caution. We expect that future observations will give us a
clearer indication of an eventual dark sector interaction.

Key words: gravitation – galaxies: clusters: general – cosmology: theory – dark energy – dark
matter – large-scale structure of Universe.

1 IN T RO D U C T I O N

Since the discovery of cosmic acceleration (Perlmutter et al. 1999)
and the proposal of dark energy (DE) as its source, in addition to the
already sought dark matter (DM; Zwicky 1933, 1937), the largely
unknown nature of the dark sector naturally called for possible
interactions within its manifestations (Amendola 2000a,b).

Despite considerable efforts towards direct and indirect detection,
the only evidence at hand of the existence of the dark sector remain
purely gravitational, through the Cosmic Microwave Background
observations (Ade et al. 2014), supernovae acceleration (Perlmutter
et al. 1999; Riess et al. 1998) or clusters displaying segregated mass
and baryons (dissociative clusters), such as the so-called Bullet
Cluster (Clowe et al. 2006), El Gordo (Jee et al. 2014), Abell
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1758 (Monteiro-Oliveira et al. 2017), among others. In this context,
detection of interactions within the dark sector would significantly
help us understand the nature of DM and DE and, of course, add
evidence for the very existence of these two elusive components.

In a previous paper (Le Delliou et al. 2015, hereafter LeD15),
we developed an approach to the detection of such interactions in
the virial state of galaxy clusters, through a simplified coupled dark
energy (CDE) cosmology model, coupled with the Layzer–Irvine
dynamical virial equation. Based on a series of papers exploring
such detection in apparently balanced clusters, and their check by
other groups (Bertolami, Gil Pedro & Le Delliou 2007; Le Delliou,
Bertolami & Gil Pedro 2007; Bertolami, Gil Pedro & Le Delliou
2008, 2009, 2012; Abdalla et al. 2009; Abdalla, Abramo & de Souza
2010; He et al. 2010), this latest approach attempted to include the
effect of departure from equilibrium (DfE). However, although this
allowed for the use in the detection of a wider sample of clusters, it
involved the assumption that clusters present small departures from
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virial equilibrium and found it to be the source of inconsistencies in
the results. This paper proposes now to remedy these inconsistencies
by allowing larger departures in an evaluation independent from
the astrophysical processes expected to source this deviation from
balance. We also attempt a more robust statistical treatment of the
data, with a Bayesian approach.

This paper is organized as follows. In Section 2, we describe the
framework in which data are analysed. The sample and statistical
treatment are discussed in Section 3.1, while the analysis is
described in Section 4. The results are discussed in Section 5 before
to conclude in Section 6.

2 TH E F R A M E WO R K

2.1 The cosmological model

We model the universe, composed of DM and DE only, as a
flat Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) background
metric. The dark sector interaction is modelled with a heat flux in
the Bianchi identities between the two dark components, denoted
by subscript c for cold DM and d for DE (i.e. energy conservation
equations, linking the energy densities ρ evolutions, the DE equa-
tion of state wd = Pd/ρd, Pd being the DE pressure, and the Hubble
parameter H to the DM–DE interaction coupling ξ ):

ρ̇c + 3Hρc = 3Hξρc, ρ̇d + 3Hρd (1 + wd) = −3Hξρc. (1)

With this sign convention, positive ξ means that DE decays into
DM. The equation-of-state parameter wd is set to −1 in most of
our analyses, except in one case where we make it a free parameter
of the model. The rest of the FLRW evolution is standard. This
interacting model, of which idea is based on Amendola (2000a),
has been largely used in this simplified form by, e.g. Bertolami et al.
(2007), Bertolami et al. (2009), Feng et al. (2008), Caldera-Cabral,
Maartens & Schaefer (2009), Abdalla et al. (2009), Abdalla et al.
(2010), Majerotto, Väliviita & Maartens (2010), He et al. (2010),
He, Wang & Abdalla (2011), Bertolami et al. (2012), Cao & Liang
(2013), Salvatelli et al. (2013), Le Delliou et al. (2015), Costa et al.
(2017), and is considered sufficient to capture the essential effect of
the Amendola (2000a) model1 for the purpose of studying its effect
on virial balance, including the simplifying assumption of taking
wd = −1 (Amendola et al. 2013; Wang et al. 2016). This value
of wd corresponds as well to that of the concordance model from
observations (e.g. Ade et al. 2014), i.e. the cosmological constant,
and allows for easier comparison in the future of our results with
the literature.

2.2 The Layzer–Irvine equation

The Layzer–Irvine equation can be recasted to relate the kinetic
(ρK) and gravitational potential (ρW) parts of the DM density ρc of
the studied, evolving system (a cluster). As a generalization of the
virial equation, it describes how the system tends to relax. Within
this CDE scenario, it has been obtained by Bertolami et al. (2007)
and He et al. (2010) as

ρ̇c + H [(2 + 3ξ ) ρK + (1 − 6ξ ) ρW] = 0. (2)

Note that the densities in the Layzer–Irvine equation are average
densities of inhomogeneous distributions and that the interaction

1Note that other coupling, similar to Amendola (2000a) or not, can also be
proposed (e.g. Böhmer et al. 2008; Li & Zhang 2011).

term density dependence here becomes inhomogeneous and inte-
grated in the same way. In LeD15,2 the condition of small departures
from equilibrium was imposed that led to the approximation
ρ̇K/ρK � ρ̇W/ρW. In this work, the results from LeD15 require
to allow the clusters to be away from equilibrium. Thus, ρ̇W and ρ̇K

will be modelled separately (see Section 2.2.2).
Equation (2) can now be reformulated to give the out-of-

equilibrium virial ratio

ρK

ρW
= −1 − 6ξ

2 + 3ξ
− 1

2 + 3ξ

ρ̇K + ρ̇W

HρW
. (3)

This allows us to compare observed values of the virial ratio,
built from the quantity ρK/ρW extracted from clusters and called
hereafter the observed virial ratio (OVR), with a modified ratio
involving the interaction coupling, which we will refer to as
the equilibrium virial ratio (EVR),3 and the time evolution term
involving the time derivative, which we call DfE. We propose to
model and build the OVR and DfE from observations of clusters’
mass M200 enclosed in a radius r200,4 a concentration parameter
c200 and the X-ray temperature TX. The DfE will also depend on
the parameter of interest ξ , on the density parameter �c0, and
on h ≡ H0/100 km s−1 Mpc−1 that enter in the Hubble rate H.
Rewriting equation (3) as

ρK

ρW
+ 1

2 + 3ξ

ρ̇K + ρ̇W

HρW
= −1 − 6ξ

2 + 3ξ
, (4)

explicit the Universal, predicted EVR (i.e. the kinetic to potential
ratio that should be reached by a cluster at perfect equilibrium)
that can be obtained from specific clusters’ OVR minus DfE in
the left-hand side of equation (4). The first step is to evaluate the
kinetic and potential energy densities. Then we need to evaluate in a
sensible way the DfE term. Thus, only remains to place constraints
on the interaction coupling parameter ξ , which can be performed
by Markov Chain Monte Carlo (MCMC) simulations.

2.2.1 The kinetic and potential energy densities

We follow LeD15 evaluations of these densities from the mea-
surements of the given cluster’s X-ray temperature TX, mass M200,
and Navarro–Frenk–White (NFW) concentration parameter c200.
The potential energy is approximated using the NFW density
profile (Navarro, Frenk & White 1996) extracted from the cluster’s
observed mass and concentration (defining c200 = r200/r0 instead of
using r0). Thus, we have

ρW = − 3GM2
200

4πr4
200fc

, (5)

2In LeD15, the choice of the coupling strengths ξ1 = ξ /18 and ξ2 =
−(ξ/6) ρc/ρd was inconsistent with the derivation of the Layzer–Irvine
equation by He et al. (2010), which defines ξ1 and ξ2 to be constants.
Here, we amend that inaccuracy by simply adopting ξ1 = ξ and ξ2 = 0,
which also makes the interaction dependent on the DM energy density only,
but leads to a different Layzer–Irvine equation. Notice that the sign of the
interacting term yields a positive flux 3Hξρc towards DM when all terms are
positive, making the arbitrary choice followed by some phenomenological
descriptions of the interacting term in the literature (for instance, He et al.
2010; Cao & Liang 2013; Costa et al. 2017).
3Formerly named theoretical virial ratio (TVR) in LeD15.
4Recall then that M200/Vol(r200) = 200 ρcr with the critical density ρcr =
3H 2(z)/8πG.
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with

fc ≡ C2/c200
1
2 c2

200 − C
, C ≡ C ′ ln C ′ − c200, C ′ ≡ 1 + c200 . (6)

The kinetic energy is (LeD15)

ρK = 9

8π

M200

r3
200

kBTX

μmH
, (7)

where kB is the Boltzmann constant, μ = 0.63 is the intracluster
plasma mean molecular weight (defined as the mean mass of the
particles divided by the Hydrogen mass, assumed to be completely
ionized and with primordial chemical composition), and mH is the
proton mass.

Here, we maintain the LeD15 proxy of cluster kinetic energy
by TX, as analyses such as Mainini (2005), Mainini & Bonometto
(2006), Le Delliou & Barreiro (2013), and Liao et al. (2017) lead us
to expect a small segregation of baryons for non-extremal models.
Moreover, hydrodynamical simulations (as seen in Rasia, Tormen &
Moscardini 2004; Baldi et al. 2010) and some considerations on
reaching energy equipartition, e.g. through dynamical friction (Del
Popolo 2009), provide reasonable grounds to consider baryons
kinetic state to be good tracer of total mass kinetic energy. The
ratio of these two densities is the OVR

ρK

ρW
= −3

2

r200

GM200

kBTX

μmH
fc. (8)

The radius r200 is evaluated from the NFW parameters (see foot-
note 4) with the critical density at the redshift of the cluster and in
the same cosmology assumed by the observers to keep consistency
with the fitted NFW profile.

2.2.2 Evaluating the DfE

To allow for the extra freedom introduced by relaxing the small
departures from equilibrium assumption, compared to LeD15, the
virial ratio now depends on both temperature and virial radius, the
concentration remaining a parameter derived from the observed
NFW density profile (Section 3.1). We note that both densities
can be rewritten as functions of their local measured quantities,
recognizing the critical density ratio definition in powers of mass
and radius, as

ρK = ρK(TX) = 300 ρcr
kBTX

μmH
(9)

and

ρW = ρW(r200) = − (200 ρcr)
2 G

4π

3

r2
200

fc
. (10)

We thus can compute the time derivatives of equation (3) as

ρ̇K + ρ̇W = dρK

dTX
ṪX + dρW

dr200
ṙ200, (11)

which is fully general, as opposed to the evaluation in LeD15.
The delicate part is then to evaluate ṪX and ṙ200. Based on the
reasonable expectations from hierarchical structure formation that
clusters’ temperature and radius should evolve to equilibrium
values, increasing faster in the past than in the future, we propose
two physically reasonable ansätze that derivatives asymptote to
zero from positive decreasing values, meaning that both TX and
r200 should increase to reach equilibrium. Such behaviour can be
observed in semi-analytical simulations (as can be seen from the
studies of Henriksen & Widrow 1995, 1997, 1999; Del Popolo
et al. 2000; Le Delliou & Henriksen 2003; MacMillan, Widrow &

Henriksen 2006; Le Delliou 2008). Although cosmological N-body
and smooth particle hydrodynamic (SPH) simulations are usually
unable to provide the isolated behaviour of haloes (Macciò et al.
2004; Baldi et al. 2010; Baldi 2012), the semi-analytical infall model
explains generic features and behaviours of haloes. In particular, the
model developed by Henriksen & Widrow (1995), Henriksen &
Widrow (1997), Henriksen & Widrow (1999), and extended in
various works such as Del Popolo et al. (2000), Le Delliou &
Henriksen (2003), MacMillan et al. (2006), Le Delliou (2008)
has been shown to contain all the physical behaviours observed
in fully numerical simulations, including such characteristics as
their NFW (Navarro et al. 1996) density profiles (Del Popolo et al.
2000; Le Delliou & Henriksen 2003), or their typical repeated
merger mass acquisition (Le Delliou 2008). In particular, fig. 5 of
Henriksen & Widrow (1999) clearly shows the sharp increase until
quasi-equilibrium of self-similar mass and radius of the system,
and together with figs 3–5 of Le Delliou & Henriksen (2003) or
figs 1–3 of Le Delliou (2008), how the smooth accretion of mass
pushes towards a quasi-virial equilibrium that very quickly relaxes
to the usual virial when the system becomes isolated. Figs 1–3 of
Le Delliou (2008) demonstrate the effect of non-smooth mergers on
the quasi-equilibrium state. Put together, these behaviours vindicate
our choice of the following ansätze:

ṪX = TX/t0

(t/t0)2
, ṙ200 = γ

r200/t0

(t/t0)γ+1
, (12)

derived, respectively, from heuristic exponential parametrizations
TX = T ∗

X exp(−t0/t) and r200 = r∗
200 exp(−(t0/t)γ ) (γ �= 1), where

T ∗
X and r∗

200 are the asymptotic equilibrium values and t0 is some
characteristic time-scale. The parametrization is using the simplicity
of the strong convergence of the exponential function (see e.g. the
fast virialization of haloes seen in Henriksen & Widrow 1999, and
their moderately violent relaxation) and the finite value convergence
of the inverse power law. We further restrict our parametrization of γ

to positive values so as to keep the approach of asymptotic growth of
the radius towards r∗

200. When γ < 1 (γ > 1), the radius approaches
the equilibrium faster (slower) than the temperature.5 These ansätze
are used locally to give the evolution slopes but are not considered
globally integrable. They provide one equation,

ṪX

TX/t0
=

(
ṙ200

γ r200/t0

) 2
γ+1

, (13)

to obtain the unknown time evolutions ṪX and ṙ200. The remaining
equation needed to provide a solution in terms of observed values
for these unknown can be chosen as the equation of state for the
perfect gas, considered isobaric:

TX

r3
200

= constant, (14)

which can be derived into

ṪX

ṙ200
= 3

TX

r200
. (15)

Solving for the derivatives in terms of γ , TX, and r200, the DfE term
is given by

− ρ̇K + ρ̇W

(2 + 3ξ ) HρW
= −

(
3

TX

ρW

dρK

dTX
+ r200

ρW

dρW

dr200

) (
γ 23γ+1

) 1
1−γ

(2 + 3ξ ) Ht0
,

(16)

5The two cases are better analysed separately due to divergences at γ = 1.
For the sake of simplicity, in this work we consider only the first case.

MNRAS 490, 1944–1952 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/2/1944/5586595 by Instituto de Física de São C
arlos U

SP user on 10 M
arch 2021



Constraints on DE–DM interaction with clusters 1947

with the derivatives given by

TX

ρW

dρK

dTX
= ρK

ρW

d ln ρK

d ln TX
= ρK

ρW
(17)

and

r200

ρW

dρW

dr200
= 2 − d ln fc

d ln r200
= 2 − d ln fc

d ln c200
. (18)

The exact time-scale t0 is not important to our purposes. Since
this parameter only appears dividing (γ 23γ + 1)1/(1 − γ ), it can be
absorbed into this term with the only effect of shifting the value
of γ at which its marginalized distribution becomes suppressed (as
that term diverges with γ approaching the unity), so we set t0 = 1
(in units of km−1 s Mpc).

3 TH E DATA

We start from a sample of 50 clusters with weak-lensing mass
measurements of M200 given by Okabe & Smith (2016) and
corresponding measurements of c200 kindly provided by Okabe
[private communication, as they were obtained at the same time
as Okabe & Smith (2016) but remained unpublished]. Note that
both parameters, M200 and c200, are obtained by a fitting procedure,
so do not derive from any c200–M200 scaling relation. Therefore, the
eventual dependence of the c200–M200 on the coupling between DE
and DM (as showed by the N-body simulations of Baldi et al. 2010;
Li & Barrow 2011a, b) will not alter our results.

The NFW profiles are based on a flat �CDM background
cosmology with DM and DE density parameters �c0 = 0.3 and
�d0 = 0.7, which we use in the evaluation of r200. These data
can be complemented with X-ray temperature data from a few
different sources. By collecting temperature data from Maughan
et al. (2012), Martino et al. (2014) or Mantz et al. (2016), Mantz
et al. (2017) (hereafter M12, M14, and M16, respectively), we end
up with subsets of 22, 19, or 30 clusters. The data are summarized
in Table 1.

We note that uncertainties in M200, c200, and kBTX from M12 are
generally asymmetrical, in the form x̄

+σ+
−σ− . Since these quantities

should be always positive and typically σ+ ≥ σ−, it seems
reasonable to assume that these 1σ -error measurements represent
well 68.3 per cent credible intervals of lognormal distributions. As
in LeD15, we want these lognormal distributions to have their
parameters μ and σ adjusted to match the following conditions:
(i) the maximum probability coincides with the nominal value x̄,
(ii) the probability of the random variable lying between x̄ − σ−
and x̄ + σ+ is 68.3 per cent and (iii) the probability density function
has the same value at the points x̄ − σ− and x̄ + σ+, so that the
interval between them corresponds to the 68.3 per cent most likely
values. For this, we write

χ2 = C2
(i) + C2

(ii) + C2
(iii), (19)

where

C(i) ≡ exp(μ − σ 2)

x̄
− 1, (20)

C(ii) ≡ fμ,σ (x̄ + σ+)

fμ,σ (x̄ − σ−)
− 1, (21)

C(iii) ≡ Fμ,σ (x̄ + σ+) − Fμ,σ (x̄ − σ−)

0.683
− 1 (22)

represent the three conditions, with

fμ,σ (x) = 1

xσ
√

2π
exp

[
− (ln x − μ)2

2σ 2

]
(23)

and

Fμ,σ (x) = 1

2

[
1 + erf

(
ln x − μ

σ
√

2

)]
(24)

the lognormal probability (PDF) and cumulative (CDF) density
functions, respectively. We then find, for each of these measure-
ments, the pair of parameters (μ, σ ) that minimizes χ2. The
parametrizations obtained are verified to match the three conditions
remarkably well in all cases. We list all the fitted parameters (μ, σ ) in
Table 2. Since the logarithm of these distributions follow Gaussian
distributions with the usual parameters (μ, σ ), we proceed to use
linear error propagation for the left-hand side of equation (4) with
the asymmetrical measurements x̄

+σ+
−σ− symmetrized to x̄ ′ ± 
x ′ =

exp (μ ± σ ) for the quantities M200, c200, and kBTX. Whenever
possible, the error is propagated on the combined logarithmic
quantities first, to minimize introduction of bias. We compute the
OVRs following equation (8) and present them in Fig. 1.

The differences in OVRs reflect the different temperature
measurements listed in Table 1 and also plotted in Fig. 2. In
view of conflicting data, we build ‘gold’ samples of clusters
that have at least two temperature measurements within 1σ

of each other, and consider their average (or the average of
their logarithms) for the calculations. By inspecting Fig. 2,
we selected three gold samples composed of six clusters
from M12+M14: ABELL0115, ABELL0209, ABELL0781,
ABELL1763, ABELL1914, ABELL2631; one cluster from
M12+M16: ABELL0586; and four clusters form M14+M16:
ABELL0773, ABELL1689, ABELL1835 and ABELL2537 from
overlapping error bar clusters. A sample with all eleven clusters
from these samples (referred to as GOLD) is also considered.

The Hubble function H(z) in the DfE term must be evaluated in
the CDE cosmology, thus depending on the parameters ξ , h, and
�c0h2. In terms of these parameters, H(z) is given by the Friedmann
equation (restricting to the case wd = −1) in the form
[

H (z)

100

]2

= h2 + �c0h
2 a−3(1−ξ ) − 1

1 − ξ
. (25)

When wd is free, H(z) is obtained from the Friedmann equation in
its original form with the numerical solutions of equations (1). We
then include H(z) from cosmic chronometer data (Moresco et al.
2016), the JLA supernovae binned data set (Betoule et al. 2014) and
the local measurement of H0 = (73.24 ± 1.74) km s−1Mpc−1 from
Riess et al. (2016), joined to the clusters data, in order to perform
the analysis outputting h and �c0h2 together with ξ .

3.1 The clusters likelihood

The left-hand side of equation (4), computed from the mea-
surements of mass, temperature and NFW concentration, con-
stitutes our observable, as explained in Section 2.2. Denoting
by fN (x; μ, σ ) = (2πσ 2)−1/2 exp[− (x − μ)2 /2σ 2] the PDF of a
Gaussian distribution N(μ, σ ), we assume Gaussian likelihoods
Lcluster = fN (EVR; μ, σ ) for each cluster, with μ and σ given
by the nominal value and standard deviation of the quantity
OVR–DfE, to compare the predicted values of the EVR EVR(ξ ) ≡
− (1 − 6ξ ) / (2 + 3ξ ) with this observable.

The total likelihood of a set of clusters is given by the product
Lclusters = ∏

i Lcluster i of the likelihoods of all the clusters in the
given sample. We should stress that the left-hand side of equation (4)
depends on the amount of matter and the Hubble parameter
through �c0 and H0, or equivalently �c0h2 and h, motivating us
to include H(z) and supernovae data. The parameters ξ and γ
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Table 1. Redshift, NFW parameters from Okabe & Smith (2016) and temperature of galaxy clusters from different sources. Temperatures are given in keV
and masses in units of h−11014M
.

Cluster z M200 c200 kBTX (Maughan et al. 2012) kBTX (Martino et al. 2014) kBTX (Mantz et al. 2016, 2017)

ABELL0068 0.2546 6.65+1.35
−1.16 4.83+1.83

−1.31 7.8 ± 1.0 5.02 ± 1.65 9.62 ± 1.65

ABELL0115 0.1971 7.04+2.66
−1.97 1.59+1.12

−0.77 6.7 ± 0.3 6.46 ± 0.51 11.74 ± 0.90

ABELL0209 0.2060 12.75+2.27
−1.91 3.63+1.02

−0.84 7.4 ± 0.5 7.56 ± 1.40 8.98 ± 0.67

ABELL0267 0.2300 5.96+1.16
−1.08 3.16+1.01

−0.81 4.4+0.5
−0.4 – –

ABELL0383 0.1883 5.23+1.30
−1.07 4.12+2.06

−1.41 4.5 ± 0.3 5.76 ± 1.26 7.26 ± 0.42

ABELL0521 0.2475 5.61+1.18
−1.05 3.48+1.57

−1.09 4.8 ± 0.2 – 7.29 ± 0.25

ABELL0586 0.1710 6.65+2.15
−1.61 6.77+6.83

−3.36 7.6 ± 0.8 – 7.40 ± 0.53

ABELL0697 0.2820 9.74+2.90
−2.13 1.75+1.00

−0.75 10.2+0.8
−0.7 – 14.58 ± 1.44

ABELL0750 0.1630 6.30+2.71
−1.74 3.79+2.72

−1.68 – – 6.04 ± 0.38

ABELL0773 0.2170 9.56+1.28
−1.14 5.67+1.58

−1.27 7.4 ± 0.4 8.64 ± 2.05 8.97 ± 0.52

ABELL0781 0.2984 6.57+1.97
−1.65 2.32+2.16

−1.32 5.5+0.7
−0.5 5.64 ± 2.22 –

ABELL0907 0.1669 14.28+4.59
−2.99 1.86+0.94

−0.72 5.4 ± 0.2 6.23 ± 0.45 7.17 ± 0.26

ABELL0963 0.2050 7.13+1.38
−1.20 3.77+1.38

−1.05 – – 7.60 ± 0.37

ABELL1423 0.2130 4.30+1.19
−0.97 5.03+4.17

−2.30 – – 7.04 ± 0.45

ABELL1682 0.2260 8.66+1.38
−1.21 3.93+1.00

−0.83 5.8+2.0
−1.2 – 7.67 ± 0.74

ABELL1689 0.1832 10.98+1.66
−1.46 10.56+4.31

−2.81 8.4+0.4
−0.3 11.23 ± 1.06 10.92 ± 0.32

ABELL1763 0.2279 16.92+3.42
−2.70 3.11+1.09

−0.86 8.1 ± 0.5 7.98 ± 1.45 9.09 ± 0.67

ABELL1835 0.2528 10.09+1.88
−1.63 6.94+4.29

−2.35 – 11.06 ± 1.09 12.15 ± 0.45

ABELL1914 0.1712 8.73+1.92
−1.59 2.64+1.03

−0.81 8.5+0.6
−0.4 8.57 ± 1.57 9.67 ± 0.50

ABELL2009 0.1530 7.78+3.19
−2.03 1.96+1.61

−0.96 – – 7.37 ± 0.47

ABELL2111 0.2290 4.93+2.68
−1.48 4.98+9.01

−3.92 6.4+0.7
−0.6 – 9.07 ± 0.70

ABELL2204 0.1524 9.56+2.29
−1.83 5.17+2.10

−1.48 8.4+0.8
−0.6 10.50 ± 1.11 14.98 ± 0.72

ABELL2219 0.2281 10.40+2.15
−1.75 2.04+0.99

−0.75 – – 12.80 ± 0.36

ABELL2261 0.2240 11.93+2.18
−1.80 2.69+0.93

−0.74 7.3 ± 0.4 – 8.75 ± 0.49

ABELL2390 0.2329 10.60+1.91
−1.67 4.11+1.15

−0.96 – – 15.47 ± 0.68

ABELL2485 0.2472 5.72+1.33
−1.13 3.44+2.11

−1.34 – – 7.37 ± 0.94

ABELL2537 0.2966 7.65+2.31
−1.90 8.76+10.55

−4.29 – 8.68 ± 3.78 9.22 ± 0.61

ABELL2552 0.2998 7.61+2.88
−2.08 3.20+3.16

−1.76 – – 10.43 ± 1.34

ABELL2631 0.2779 7.13+2.07
−1.66 1.73+2.10

−1.03 6.9+0.8
−0.5 6.50 ± 1.20 –

ABELL2645 0.2510 4.16+1.15
−0.99 3.58+2.30

−1.39 – – 7.30 ± 1.53

ABELL2813 0.2924 8.17+1.91
−1.61 4.99+2.96

−1.83 – 5.48 ± 1.13 –

RXJ1504.1−0248 0.2153 5.53+1.46
−1.25 14.75+11.69

−5.44 9.4+1.1
−1.0 – 15.31 ± 1.09

RXJ1720.1+2638 0.1640 5.23+1.96
−1.45 3.27+1.96

−1.31 6.8+0.5
−0.3 7.46 ± 1.03 9.45 ± 0.48

RXJ2129.6+0005 0.2350 4.69+1.63
−1.29 1.44+1.51

−0.86 6.2 ± 0.6 7.62 ± 1.35 8.31 ± 0.44

ZwCl1021.0+0426 0.2906 5.24+1.09
−0.96 4.60+2.32

−1.52 – 10.48 ± 2.10 –

ZwCl1459.4+4240 0.2897 8.54+1.22
−1.08 3.91+0.92

−0.77 – 6.41 ± 2.76 –

are also implicit in the likelihood Lcluster through the DfE term.
Lclusters is thus also multiplied by the product of the Gaussian
likelihoods LH (z) = ∏

i fN (H (zi)predicted; H (zi), σH (zi )) of the H(z)
data and by the JLA likelihood LJLA, based on estimates of binned
distance modulus obtained from the JLA supernovae sample (from
Betoule et al. 2014):Ltotal = Lclusters × LH (z) × LJLA. An additional
nuisance parameter 
M is included to account for a possible shift
in the absolute magnitudes of the supernovae.

We thus obtain the unnormalized posterior distribution probabil-
ities P(θ |D), for our set of parameters θ = {

ξ, h,�c0h
2, γ,
M

}
given the data D by using Bayes’ theorem

P (θ | D) = Ltotal(D | θ )π(θ )

P (D)
, (26)

where π(θ ) is the prior probability for the parameters, assumed flat
and detailed in Section 4. The correct normalization of the posterior
distribution is given by the marginal likelihood or evidence P(D),
which is not required for our parameter inference purposes.

4 TH E M C M C A NA LY S E S

Using the EPIC code (Marcondes 2017), we run MCMC simulations
for our interacting model with fixed wd = −1 using each of the
four samples considered above and with wd using the GOLD
sample. The clusters data are combined with H(z) and supernovae
data in all cases. We set flat priors over the intervals [−0.2,
0.2] for ξ , [0.5, 0.9] for h, [0.0, 0.3] for �c0h2, [0.00, 0.99]
for γ , [−1.0, 1.0] for 
M and [−2.0, −0.4] for wd when it is
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Table 2. Lognormal parameters (μ, σ ) for measurements of masses (in
units of h−11014M
), concentrations and temperatures (from Maughan et al.
2012, in keV) with asymmetrical uncertainties.

Cluster M200 c200 kBTX

ABELL0068 (1.93, 0.19) (1.67, 0.30) (2.06, 0.13)
ABELL0115 (2.04, 0.31) (0.68, 0.52) (1.90, 0.04)
ABELL0209 (2.57, 0.16) (1.34, 0.25) (2.00, 0.07)
ABELL0267 (1.81, 0.19) (1.22, 0.28) (1.50, 0.10)
ABELL0383 (1.70, 0.22) (1.56, 0.38) (1.51, 0.07)
ABELL0521 (1.76, 0.20) (1.37, 0.35) (1.57, 0.04)
ABELL0586 (1.97, 0.27) (2.26, 0.59) (2.03, 0.11)
ABELL0697 (2.34, 0.25) (0.72, 0.46) (2.33, 0.07)
ABELL0750 (1.96, 0.32) (1.56, 0.50) –
ABELL0773 (2.27, 0.13) (1.79, 0.24) (2.00, 0.05)
ABELL0781 (1.94, 0.27) (1.14, 0.62) (1.73, 0.11)
ABELL0907 (2.74, 0.25) (0.75, 0.41) (1.69, 0.04)
ABELL0963 (1.99, 0.18) (1.41, 0.30) –
ABELL1423 (1.51, 0.24) (1.89, 0.53) –
ABELL1682 (2.18, 0.15) (1.41, 0.23) (1.85, 0.26)
ABELL1689 (2.42, 0.14) (2.47, 0.31) (2.14, 0.04)
ABELL1763 (2.86, 0.18) (1.21, 0.30) (2.09, 0.06)
ABELL1835 (2.34, 0.17) (2.14, 0.41) –
ABELL1914 (2.20, 0.20) (1.06, 0.33) (2.15, 0.06)
ABELL2009 (2.17, 0.31) (0.94, 0.55) –
ABELL2111 (1.77, 0.37) (2.19, 0.91) (1.87, 0.10)
ABELL2204 (2.30, 0.21) (1.75, 0.32) (2.14, 0.08)
ABELL2219 (2.38, 0.18) (0.84, 0.40) –
ABELL2261 (2.51, 0.16) (1.07, 0.29) (1.99, 0.05)
ABELL2390 (2.39, 0.17) (1.46, 0.25) –
ABELL2485 (1.78, 0.21) (1.42, 0.44) –
ABELL2537 (2.09, 0.26) (2.60, 0.62) –
ABELL2552 (2.12, 0.31) (1.49, 0.62) –
ABELL2631 (2.02, 0.25) (0.96, 0.69) (1.96, 0.09)
ABELL2645 (1.47, 0.25) (1.48, 0.45) –
ABELL2813 (2.14, 0.21) (1.79, 0.42) –
RXJ1504.1−0248 (1.76, 0.24) (2.97, 0.47) (2.25, 0.11)
RXJ1720.1+2638 (1.75, 0.31) (1.36, 0.45) (1.93, 0.06)
RXJ2129.6+0005 (1.62, 0.30) (0.71, 0.67) (1.83, 0.10)
ZwCl1021.0+0426 (1.69, 0.19) (1.67, 0.38) –
ZwCl1459.4+4240 (1.21, 0.29) (2.81, 0.57) –

free. The code evolved 12 independent Markov chains in each
case, the convergence, according to the Gelman–Rubin criteria
for multivariate distributions (Gelman & Rubin 1992; Brooks &
Gelman 1998), being checked with the multivariate potential scale
reduction factor R̂p for p parameters within about 5 × 10−3 of 1.

The constraints on ξ and wd are given in Table 3 at 1σ and 2σ

confidence levels (CL); the other parameters are given in Table A1.
In Fig. 3, we plot the marginalized distributions of the parameters

ξ , γ , and the joint-posterior distribution of ξ and wd when this is
also free, with the sample GOLD. We note that the analysis with wd

free has no effect on the marginalized distribution of the interaction
constant (the corresponding violet and brown curves are almost
indistinguishable), although it does affect the distribution of �c0h2

(not plotted).

5 R ESULTS

Constraints with sample M12+M16 are compatible with ξ =
0 within 1σ , while M12+M14, M14+M16, GOLD and GOLD
with wd free give 1.44σ , 2.30σ , 2.80σ , and 2.77σ detections,
respectively. When we let the DE equation-of-state parameter vary,

Figure 1. Processed OVRs from the NFW fit parameters data combined
X-ray temperatures from different sources. The vertical grey line marks the
classic value 0.5.

it can be noted from the joint-posterior distribution that wd and
ξ are not correlated; hence, the constraints on ξ (and also on all
other parameters except �c0h2) are practically unchanged. This can
be seen in the lack of strong difference in Fig. 3 between the two
GOLD distributions.

If we disregard the M12+M16 sample, as it only contains one
cluster, it appears that we have 2σ to 3σ detection of the DE–DM
interaction, a slight improvement on previous results of the virial
detection idea (e.g. Bertolami et al. 2007). As discussed previously,
the main problem appears from the inconsistent X-ray temperature
detections, with no present guiding principle to favour one data set
over another. We turned the difficulty by selecting in the three data
sets available to us that contained consistent clusters and compiled
them in a GOLD sample. The method clearly improves detection
when stacking as many clusters as possible: the distribution of ξ on
Fig. 3 is more peaked for larger samples.
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Figure 2. X-ray temperatures from different sources. Values are listed in
Table 1.

Table 3. Constraints on the interaction strength parameter ξ and the derived
parameter EVR(ξ ) of the CDE model from H(z) data, supernovae data
and each of the clusters samples M12+M14, M12+M16, M14+M16 and
GOLD.

Parameter Sample Best fitting 1σ CL 2σ CL

100 ξ M12+M14 −1.90 −1.86+1.23
−1.28 −1.86+2.62

−2.47

M12+M16 −2.29 −1.83+4.65
−4.43 −1.83+10.42

−8.45

M14+M16 −3.90 −3.94+1.58
−1.44 −3.94+3.38

−2.81

GOLD −2.85 −2.70+0.90
−0.91 −2.70+1.82

−1.81

GOLD (wd free) −3.05 −2.79+0.94
−0.93 −2.79+1.97

−1.79

wd GOLD (wd free) −0.98 −0.99+0.16
−0.14 −0.99+0.29

−0.32

6 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we have continued the works of Bertolami et al.
(2007), Le Delliou et al. (2007), Bertolami et al. (2008), Bertolami
et al. (2009, 2012), Abdalla et al. (2009, 2010), He et al. (2010), Le
Delliou et al. (2015) on virial detection of dark sector interaction.
The approach of Le Delliou et al. (2015) for non-virialized clusters
was improved to obtain consistent results. Based on evaluation of
the dynamical out-of-equilibrium state independent of the details
of each cluster’s astrophysical history, the method relies on a set
of simplifying reasonable assumptions. Although the convergence
ansatz could be debatable, its general features prove to provide
enough power to the method so as to be able to yield consistent
results. From a sample of 50 clusters with full necessary data,
consistency led us to trim down to a maximum of 11 clusters.
The results range from no detection, but for a single cluster sample,
to 3σ detection, with improvement when the samples are larger.
This is a strong indication that the method is sound and likely to
yield a clear answer to dark sector interaction question, given larger
samples of clusters, with clear guidance on the X-ray temperature
detection reliability and robust weak lensing determination.

This is why the detection of interaction in the dark sector (or
its ruling out) will greatly benefit from future instruments and
surveys. In particular, increasing the number of clusters with mass
distribution measurements through lensing effects (which need
deep imaging and large field of view) with the next generation of
telescopes, such as the Thirty Meter Telescope (TMT; Skidmore &
TMT International Science Development Teams & TMT Science

Figure 3. Marginalized distributions of ξ and γ for the samples M12+M14 (dashed), M12+M16 (dotted), M14+M16 (dash–dotted), GOLD with wd fixed
(solid, thin) and GOLD with wd free (solid, thick). The dashed vertical line marks the no-interaction value ξ = 0. The last panel shows the two-dimensional
joint-posterior distribution of the parameters ξ and wd when this parameter is free, using the GOLD sample.
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Advisory Committee 2015), the Giant Magellan Telescope (GMT;
Johns et al. 2012) and the European Extremely Large Telescope (E-
ELT; McPherson et al. 2012). Likewise, the X-ray detected clusters
will increase in the next few years with the extended ROentgen
Survey with an Imaging Telescope Array (eROSITA; Merloni et al.
2012). With these perspectives in observations and the method
finalized here, we are confident that a reliable dark sector interaction
detection is within reach.
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Ribeiro A. L. B., Sodré L., Dupke R., 2017, MNRAS, 466, 2614
Moresco M. et al., 2016, J. Cosmol. Astropart. Phys., 1605, 014
Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563
Okabe N., Smith G. P., 2016, MNRAS, 461, 3794
Perlmutter S. et al., 1999, ApJ, 517, 565
Rasia E., Tormen G., Moscardini L., 2004, MNRAS, 351, 237
Riess A. G. et al., 1998, AJ, 116, 1009
Riess A. G. et al., 2016, ApJ, 826, 56
Salvatelli V., Marchini A., Lopez-Honorez L., Mena O., 2013, Phys. Rev.

D, 88, 023531
Skidmore W., TMT International Science Development Teams, TMT Sci-

ence Advisory Committee, 2015, Res. Astron. Astrophys., 15, 1945
Wang B., Abdalla E., Atrio-Barandela F., Pavón D., 2016, Rep. Prog. Phys.,

79, 096901
Zwicky F., 1933, Helv. Phys. Acta, 6, 110
Zwicky F., 1937, ApJ, 86, 217

A P P E N D I X : C O N S T R A I N T S O N T H E OTH E R
PA R A M E T E R S

Completing Table 3, we present here in Table A1 the remaining
constraints on the other parameters of our analyses. The confidence
intervals reported for γ without central values reflect the fact that
its distributions are poorly constrained, only suppressed by the
singularity as γ approaches 1 but otherwise flat. The exact values
at which the distributions become suppressed are sensitive to our
arbitrary choice of t0 = 1 km−1 s Mpc (see Section 2.2.2). However,
this does not affect our results, which are based on marginalizing
this parameter over all values allowed by our priors. Constraints
on the parameters �c0 and �d0 derived from �c0h2 and h are also
listed.
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Table A1. Constraints on parameters of CDE model from H(z) data,
supernovae data and each of the clusters samples M12+M14, M12+M16,
M14+M16, and GOLD.

Parameter Group Best fitting 1σ CL 2σ CL

h M12+M14 0.72 0.72+0.01
−0.02 0.72+0.02

−0.03
M12+M16 0.72 0.71+0.02

−0.01 0.71+0.03
−0.02

M14+M16 0.71 0.72+0.01
−0.02 0.72+0.02

−0.03
GOLD 0.71 0.71+0.02

−0.01 0.71+0.03
−0.02

GOLD (wd free) 0.71 0.71+0.02
−0.01 0.71+0.03

−0.02

�c0h2 M12+M14 0.13 0.13+0.02
−0.01 0.13+0.03

−0.02
M12+M16 0.13 0.13+0.03

−0.02 0.13+0.06
−0.03

M14+M16 0.13 0.13 ± 0.01 0.13 ± 0.02
GOLD 0.13 0.13 ± 0.01 0.13 ± 0.02

GOLD (wd free) 0.14 0.15+0.02
−0.03 0.15+0.04

−0.07

γ M12+M14 0.03 0 < γ ≤ 0.41 0 < γ ≤ 0.61
M12+M16 0.20 0 < γ ≤ 0.64 0 < γ ≤ 0.71
M14+M16 0.10 0 < γ ≤ 0.43 0 < γ ≤ 0.63

GOLD 0.01 0 < γ ≤ 0.39 0 < γ ≤ 0.57
GOLD (wd free) 0.11 0 < γ ≤ 0.38 0 < γ ≤ 0.57


M M12+M14 0.04 0.04 ± 0.04 0.04+0.08
−0.09

M12+M16 0.04 0.04 ± 0.04 0.04+0.08
−0.09

M14+M16 0.03 0.03+0.05
−0.04 0.03+0.09

−0.08
GOLD 0.03 0.04 ± 0.04 0.04+0.08

−0.09
GOLD (wd free) 0.04 0.04 ± 0.04 0.04 ± 0.09

�c0 M12+M14 0.26 0.26+0.03
−0.02 0.26+0.06

−0.05
M12+M16 0.26 0.26+0.05

−0.04 0.26+0.12
−0.07

M14+M16 0.25 0.25+0.02
−0.03 0.25 ± 0.05

GOLD 0.25 0.26+0.02
−0.03 0.26+0.04

−0.05
GOLD (wd free) 0.28 0.29+0.04

−0.06 0.29+0.09
−0.13

�d0 M12+M14 0.74 0.74+0.02
−0.03 0.74+0.05

−0.06
M12+M16 0.74 0.74+0.04

−0.05 0.74+0.07
−0.12

M14+M16 0.75 0.75+0.03
−0.02 0.75 ± 0.05

GOLD 0.75 0.74+0.03
−0.02 0.74+0.05

−0.04
GOLD (wd free) 0.72 0.71+0.06

−0.04 0.71+0.13
−0.09
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