

Proceedings of the $6^{ m th}$ Latin American Congress of Sedimentology

July 2013

University of São Paulo, Brazil

Editors

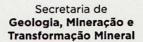
Carlos H. Grohmann, Claudio Riccomini, Dilce de Fátima Rossetti, Renato Paes de Almeida, André Oliveira Sawakuchi, Lucas V. Warren, Adilson Soares, Fernanda Quaglio, Paulo Cesar Fonseca Giannini, Thomas Rich Fairchild, Giorgio Basilici, Mario Luis Assine

This volume was published with financial support from FAPESP Grant #2013/09615-8 São Paulo Research Foundation (FAPESP)

"As opiniões, hipóteses e conclusões ou recomendações expressas neste material são de responsabilidade do(s) autor(es) e não necessariamente refletem a visão da FAPESP"

Organization

Realization



Support

Sponsors

Bronze quota

The Quaternary aeolian record from Lençóis Maranhenses, Northeast Brazil

Carlos C. F. Guedes*, Paulo C. F. Giannini, André O. Sawakuchi, André Zular Instituto de Geociências, Universidade de São Paulo, Brazil.
*ccfguedes@yahoo.com.br

Optically stimulated luminescence (OSL-SAR) ages obtained in aeolian deposits from the east coast of Maranhão State, Brazil, allowed the identification of at least four generations of dune fields, including the active one. The two oldest generations (G1/G0: OSL ages from 259±25 to 88±9 ky) were not distinguished by field criteria, only by geochronological data. Generation 2 corresponds to aeolian features stabilized by vegetation that occurs up to 135 km far from the present coast line. OSL-SAR ages of stabilization of these features are between 19 and 14 ky, a narrow time interval in the Pleistocene which comprises the climatic event HS-1. During this event the intensity of trade winds decreased and precipitation increased in the area due to a greater influence of the Intertropical Convergence Zone, which was shifting southward. These climatic variations reduced the capacity of aeolian transportation and led the dune field system to stabilization. Provenance analysis by heavy minerals allowed identifying the continental shelf eastward from the Parnaíba river mouth as the sedimentary source for the east coast of Maranhão State aeolian deposits, which is fed by alongshore littoral drift to west. The Parnaíba river apparently has a minor direct contribution as sedimentary source for active and inactive aeolian generations.