Dialogues in Health 1 (2022) 100003

Contents lists available at ScienceDirect
DIALOGUES
IN HEALTH

Dialogues in Health

journal homepage: www.elsevier.com/locate/dialog

Assessing the effect of Aedes (Stegomyia) aegypti (Linnaeus, 1762) control R

based on machine learning for predicting the spatiotemporal distribution

of eggs in ovitraps

Check for
updates

Rafael Piovezan >*, Thiago Saloméao de Azevedo &b Euler Faria ¢, Rosana Veroneze ,
Claudio José Von Zuben °, Fernando José Von Zuben ¢, Maria Anice Mureb Sallum ?

@ Universidade de Sdo Paulo, Faculdade de Satide Publica, Departamento de Epidemiologia, Sdo Paulo, SP, Brazil
Y Universidade Estadual Paulista, Departamento de Zoologia, Rio Claro, SP, Brazil
¢ Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computagdo, Campinas, SP, Brazil

ARTICLE INFO

Article history:

Received 17 August 2021

Received in revised form 15 January 2022
Accepted 25 January 2022

Available online 09 February 2022

Keywords:

Aedes aegypti
Surveillance
control

Machine Learning
dengue

ABSTRACT

Background: Aedes aegypti is the dominant vector of several arboviruses that threaten urban populations in tropical and
subtropical countries. Because of the climate changes and the spread of the disease worldwide, the population at risk of
acquiring the disease is increasing.

Methods: This study investigated the impact of the larval habitats control (CC), nebulization (NEB), and both methods
(CC + NEB) using the distribution of Ae. aegypti eggs collected in urban area of Santa Barbara d'Oeste, Sdo Paulo State,
Brazil. A total of 142,469 eggs were collected from 2014 to 2017. To verify the effects of control interventions, a spatial
trend, and a predictive machine learning modeling analytical approaches were adopted.

Results: The spatial analysis revealed sites with the highest probability of Ae. aegypti occurrence and the machine
learning generated an asymmetric histogram for predicting the presence of the mosquito. Results of analyses showed
that CC, NEB, and CC + NEB control methods had a negative impact on the number of eggs collected in ovitraps, with
effects on the distribution of eggs in the three weeks following the treatments, according to the predictive machine
learning modeling.

Conclusions: The vector control interventions are essential to decrease both occurrence of the mosquito vectors and
urban arboviruses. The inference processes proposed in this study revealed the relative causal impact of distinct mosquito
control interventions. The spatio-temporal and the machine learning analysis are relevant and Powered by Editorial
Manager® and ProduXion Manager® from Aries Systems Corporation robust analytical approach to be employed in sur-
veillance and monitoring the results of public health programs focused on combating urban arboviruses.

1. Introduction

several man-made habitats in urban areas, and vector control programs
are exceedingly complex—especially in developing countries, which

It is estimated that about 2.5 billion people are at risk of acquiring Den-
gue virus infections worldwide [1]. In addition to Dengue, mosquitoes can
carry almost 4000 arboviruses [2] including Mayaro, Venezuelan equine
encephalitis, Eastern equine encephalitis, Chikungunya, yellow fever,
Rocio, Saint Louis encephalitis, West Nile, and Oropouche [3]. Malaria
and bancroftian filariasis are other mosquito-borne diseases that affect pop-
ulations inhabiting tropical and subtropical areas [4].

Aedes (Stegomyia) aegypti (Linnaeus, 1762) is one of the most important
mosquitos that threatens public health because it can adapt to the urban en-
vironment and potentially transmit arboviruses [5,6]. The habitats used by
this species are usually anthropical [7-9]. The species is associated with

makes it difficult to control the species.

Dengue has recently received increasing attention worldwide and has
infected more than 11,740 million people in the Americas approximately
6000 deaths in the last six years [10]. However, it is believed that the num-
ber of cases is underestimated and that there may be as many as 390 million
cases annually [11-14]. While most Dengue infections only cause mild
symptoms such as fever, headache, myalgia, and arthralgia, a small percent-
age of people develop severe disease [15].

In Brazil, four Dengue serotypes are transmitted by Ae. aegypti [15]. The
countrywide presence of this mosquito where several arboviruses circulate
are a major threat to public health [16]. From 2015 to the 23rd epidemio-
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logical week in 2021, more than 6.618 million new Dengue cases and 3583
new deaths were reported [17-24]. In addition, Brazil is currently impacted
by other emerging arboviruses transmitted by Ae. aegypti. From 2015 to
2021, the chikungunya fever affected 845,958 people, and the Zika virus
fever reached 262,104 cases [17-23]. The Zika virus is associated with mi-
crocephaly outbreak caused by a that is transmitted from pregnant women
to their fetuses [25]. From the beginning of the epidemic in the 45 epidemi-
ological weeks of 2015 to 2021, 3577 cases of congenital syndrome and mi-
crocephaly were noted in Brazil [26].

The development of improved vector control management in urban
areas is essential to reduce the risk of epidemics and control transmission
of arboviruses. A better understanding of the factors that contribute to the
spread of Dengue in urban areas is needed for the development and predic-
tion of more efficient management and vector control practices. Large in-
vestments have been made in the control of Dengue: Brazil spent more
than USD $300 million in controlling Ae. aegypti in 2015 [27].

The control of Ae. aegypti encompasses three major approaches: vector
surveillance and control, epidemiological surveillance of arboviruses
suspected and confirmed cases, and robust social communication and
health education programs [16,28]. The implementation of an effective
vector control program depends on the government investments. For this
reason, methods that allow one to optimize control and direct interventions
to those locations of increased epidemiological risk are critical [12,29-31].
Therefore, effective control of Ae. aegypti will result in decreasing Dengue,
Zika, and chikungunya infections in the urban populations exposed to the
mosquito vectors [7,32].

The use of oviposition traps for surveillance of Ae. aegypti is a sensitive
and safe way to help mosquito control [33,34]. Likewise, measuring the im-
pact of interventions is of fundamental importance for program administra-
tors. Based on this information, one can delineate measures and plans to
adopt the most advantageous vector control methods. Thus, our study
will evaluate the effectiveness of entomological surveillance and control
measures delineated to eliminate Ae. aegypti. We investigated the results
of interventions adopted based on the ovitraps findings using spatio-
temporal analysis and predictive models considering field-collected data.
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2. Materials and methods
2.1. Study area

The field collections were carried out in the municipality of Santa
Bérbara d'Oeste Sao Paulo state, southeastern Brazil (Fig. 1) (22.75° S;
49.38° W) at 560 m altitude. The total area of the municipality is
271 km?. In accordance with Koeppen [35], the climate is Cwa and tropical
with a rainy summer and a dry winter. The mean precipitation is
1466.1 mm annually [36,37].

The investigation was based on egg collection using ovitraps installed
throughout the city. The collection approach is described in Dengue control
guides [16,28,38]. Larval and adult control interventions were included in
the analyses. These interventions were larval habitat control (CC) and
Blocking Nebulization (NEB). Both technologies, CC and NEB, were em-
ployed isolated (CC or NEB) and combined (CC + NEB) in each area of
the respective trap.

2.2. Ovitraps

We distributed 155 ovitraps in the urban area of Santa Barbara d'Oeste.
Egg collections employed standard methods and were routinely used for
monitoring Ae. aegypti. The ovitraps were black pots with an approximate
volume of one liter and 14 cm long, 3.5 cm wide and 0.5 cm thick wooden
pallet. The distribution of traps was defined by superimposing a grid with
quadrants on the map of the municipality with a spatial correlation
among larval habitats of approximately 500 m (a radius of approximately
250 m) between the traps. This value is based on autocorrelation test of
Ae. aegypti habitats and an exponential isotropic semi-variogram that dem-
onstrated spatial correlation between habitats. There was no significant re-
lationship beyond this distance. Importantly, this value is close to the values
recommended for the control of larval habitats when Dengue cases are con-
firmed. This procedure is consistent with the importance of spatial distribu-
tion data for vector control and the delineation of transmission risk areas
[9]. The centroid was determined in each quadrant, and the buildings

SaltajBarbara d'Oeste - SP Municipality .
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Fig. 1. Study area and ovitraps: n = 155 - Aedes aegypti - (Brazil; Sdo Paulo state and municipality Santa Bérbara d'Oeste, 2014 to February of 2017).
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were chosen randomly. Ovitraps (n = 155) were distributed in the urban
area (one per quadrant) of the municipality and surveyed 52 weeks per
year. The ovitraps were installed around the buildings from ground level
to approximately 1.5 m high.

Field collections were done from 2014 to 2017. The traps were
inspected by mosquito control personnel—pallets were removed and re-
placed by new pallets with the same dimensions and materials. The water
levels were replaced in each ovitrap, and a new collection was performed
in the following week. After removing the pallets, they were kept in plastic
boxes to avoid damage and drying. In the laboratory, the eggs found on
each pallet were counted under a stereomicroscope, and data on the num-
ber of eggs in each pallet were tabulated. The eggs were systematically re-
moved from the pallets via brushes and disposed in chloride solution before
washing in a sewage network. Aedes (Stegomyia) albopictus (Skuse, 1894)
can occasionally lay eggs in the ovitraps. However, Ae. aegypti becomes
the dominant species in these traps in highly urbanized landscapes [9].

2.3. Vector control

Larval habitats control and adult elimination using insecticide nebuliza-
tion as primary activities were performed in Santa Barbara d'Oeste, State of
Sao Paulo, Brazil. Larval habitat control included both active search and re-
moval of any objects that can accumulate water and favor the development
of the immature stages of Ae. Aegypti: This species is known to use domestic
anthropic breeding sites [7-9]. Collections were carried out in houses vis-
ited by vector control personnel. This activity aimed to study the control
of immature mosquito stages by eliminating the oviposition habitats.

Adult control used insecticide nebulization. It was employed to block
the transmission of Dengue virus because the intervention is primarily fo-
cused on eliminating potentially infected females from areas with active
transmission. Nebulization for the control of adult mosquitoes requires
spraying with organophosphate insecticide (Malathion GT 96%) using
light or heavy equipment, e.g., ultra-low volume (ULV)-dispersing micro
drops with diameters of 5 and 30 pm [16]. All control interventions are de-
scribed in Dengue control guidebooks [16,28,39]. The vector control activ-
ities were performed according to the same procedure in different areas of
the municipality, by the same control personnel of the municipality and
with the same training and technical skills.

The control actions (CC, NEB, and CC + NEB) were performed in the
ovitraps as a function of the demand of notifications of suspected and pos-
itive cases of Dengue. For each ovitrap selected through the mathematical
model, an area with a radius of 250 m received one type of treatment to
stop Dengue transmission. The control in each area was performed once
during the follow-up period of the respective trap. Thus, treatment was per-
formed in accordance with the occurrence of Dengue cases.

3. Calculations
3.1. Spatial analysis

The ovitraps were georeferenced and plotted in the Santa Barbara
d'Oeste municipality map. Spatial and temporal analyses were performed
from 2014 until 2017. The field data was organized into three periods:
(1) 2014; (2) 2015, and (3) 2016 to February of 2017. The total number
of eggs collected in each trap yearly were summarized. This statistical anal-
ysis was done to spatially verify the efficiency of the control methods em-
ployed, i.e., places with different types of treatments have different
numbers of eggs.

A first-degree trend analysis was performed to transform the database
into an image using a grid of the estimated number of eggs found in the
traps. This mapping technique consisted of a method in which a continuous
surface is fitted to Z values as a linear function of the XY coordinates of the
irregularly distributed sampled points. For this, we adopted a first-degree
polynomial equation with multiple regression between the values of the at-
tribute investigated and the geographic locations [40,41].
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The equation used was:
Z; = a+ bx; +cy (1)

where Z; corresponds to the predicted value of the number of eggs at trap i
and x; and y; are the corresponding geographic coordinates.

This analysis was carried out using Eq. (1) because it allowed us to visu-
alize the local fluctuations represented by the residual values. These devia-
tions were obtained by subtracting the surface of the original data from the
first-degree trend, thus resulting in a surface of deviations (residuals). The
residuals can be positive when the original surface values are greater than
those interpolated on the trend surface or negative when the situation is op-
posite. The residuals were used to observe the areas where there was a ten-
dency to increase or decrease the number of eggs for each year of field
collection. Values with the point deviations from the calculated surface
were found via the dependent variable in relation to the predicted value
via a regression line according to the following Eq. [41]:

/11',' = Zl* —Zl' (2)

where Z;" corresponds to the real number of eggs in trap i.

This spatial analysis technique allows one to investigate intercalary re-
lationships of the same spatial variable, thus confronting regional trends
with local anomalies. Following this round of analysis, the annual quantity
fluctuation maps of Ae. aegypti eggs were compiled from 2014 to 2017
employing data interpolation via the minimum curvature algorithm. This
method was used because it smoothed the information, thus providing a
cartographic result that was more representative of the original data [41].

In the final round of analysis, a database on the location of the blocks
where the insecticide nebulization and larval control were applied were
georeferenced and overlaid on the residual maps of surface trend. We
then extracted values of local fluctuations in the number of eggs studied
per year and the interventions adopted to control Ae. aegypti habitats. Six
graphs were prepared to show the behavior of the anomalies of the occur-
rence (local deviation surface) of Ae. aegypti eggs associated with each con-
trol method adopted.

3.2. Mathematical modeling

The innovative use of machine learning seen here allowed one to pre-
dict those traps with a promising time interval free of Ae. aegypti eggs.
These regions were a radius of 250 m from the ovitraps installed in the cen-
troids of the quadrants. In this area, the traps that presented some type of
treatment (CC, NEB or CC + NEB) within this six-week interval were de-
fined as having control action between the first three and the last three
weeks. This interval of three weeks before the control was established
was integrated so that the predictive model would have robust conditions
to estimate the number of eggs collected in the following three weeks if
there was no control intervention. Our results uncovered 185 promising re-
gions. The details of the machine learning approach are presented below as
well as in the Supplementary Material.

3.2.1. Inferring the effect of a control event using the causal impact

An accurate estimation of the impact caused by an intervention on any
spatio-temporal process of interest is quite relevant for strategic decision-
making [42]. Here, we should compare two basic scenarios: (1) the real sce-
nario of the process evolution after intervention; and (2) the hypothetical
(unobserved) scenario of what would have happened in the process evolu-
tion without an intervention. Given a high confidence estimation of the hy-
pothetical scenario 2, it is possible to measure the causal impact of the
intervention, thus properly characterizing the cost/benefit relation of the
intervention. Though several approaches have already been proposed to
perform causal inference [43], the approach described here is inspired by
the methodology supporting the Causal Impact software package proposed
by Brodersen and colleagues [44] where the time series associated with the
two scenarios just described (a real and a synthetic time series) are
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compared. The synthetic time series is obtained here via a machine learning
approach responsible for training a nonlinear learning model from avail-
able data, thus guiding a high-performance time series prediction of the oc-
currence of eggs in ovitraps when no intervention is considered.

3.2.2. Data processing

This section is divided into three subsections: First, crude datasets ex-
plain all data preparation procedures conceived to build a single time co-
herent dataset for feeding further analyses. Second, training datasets
explain the procedures conceived for getting examples to train three ma-
chine learning models required for applying the causal impact approach. Fi-
nally, the inference dataset was obtained to explain the procedures that
were developed to acquire samples of distinct scenarios of the control strat-
egies.

3.2.3. Raw datasets

Three datasets were made available: (1) collection of eggs, (2) control
events, and (3) rainfall index with data ranging from January 2014 to
February 2017. All information was manually annotated by the health pro-
fessionals of Santa Barbara d'Oeste. There was no key (unique row identi-
fier) to join the information of these three datasets into a single dataset
that could describe the time series of all variables of interest for each loca-
tion. Therefore, a series of procedures was developed to produce a single
dataset for later analyses: The collection of eggs dataset is composed of a
vast number of discrete events with non-constant time intervals. This char-
acteristic is due to the sporadic pattern of egg collection. An example of this
dataset is presented in Table 1 of the Supplementary material.

Nonetheless, a full history of these events can be sampled from the
dataset for each location. We pre-processed this data to achieve this goal
by producing a weekly time series for each location in the city while consid-
ering the total number of Ae. aegypti eggs collected for that week and loca-
tion. Any week for a specific location that did not have any larval counting
was flagged as —1 in further analyses (representing a missing value).
Table 2 of the Supplementary material displays an example of the egg col-
lection dataset after treatment.

The daily rainfall index dataset was used to calculate the average and
standard deviation of the rainfall index for each week of the year. Table 3
of the Supplementary material presents an example of the rainfall index
dataset after treatment.

The original dataset of control interventions has a similar pattern as the
original egg collection dataset. Both are composed of discrete events with
the weekly collection of ovitraps. The control intervention has a non-
constant time interval resulting from the epidemiological concepts pre-
sented in point 2.3. The characteristics of each type of control strategy
(NEB, and CC) are described above. Routines to build a weekly time series
for each location were developed. Table 4 of the Supplementary Material
presents an example of the control intervention dataset after treatment.

After each of the three original datasets was pre-processed in isolation,
the resulting information was compiled into a single dataset using the year,
week, and location. The final dataset for the 1976 locations from 2014 to
February of 2017 resulted in 322,088 rows and 8 columns. Table 5 of the
Supplementary Material presents an example of this final dataset.

3.2.4. Training dataset

After producing a single dataset with all necessary information, a rou-
tine was developed to find space-time promising regions with the following
requirements:

+ Time: 6-week time window.

» Region: 250-m radius around each location (i.e., pair of latitude and lon-
gitude) available in the dataset.

» No intervention: only time windows in which a control strategy interven-
tion did not take place were considered.

This routine aimed to find promising spatio-temporal regions displaying
the evolution pattern of the Ae. aegypti eggs over time in normal conditions.
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This routine yielded 1748 samples. Fig. 1 of the Supplementary Material
shows an example of a space-time promising region.

These samples were used to train three non-linear autoregressive units
with exogenous entries (NARX) machine learning models to forecast the
number of Ae. aegypti eggs three weeks ahead: t + 1,t + 2,t + 3. The pro-
cedures used for training the models are described in the subsection on pro-
posed models.

3.2.5. Inference dataset

Samples of the intervention methods should be analyzed to measure
their causal impact on the target variable. Therefore, we performed another
search algorithm that could find samples in a six-week window with a con-
trol strategy intervention in the third week from regions composed of a ra-
dius of 250 m around each location. This search algorithm could identify
185 samples split into three scenarios:

« Scenario 1: 85 samples with only larval habitat control intervention in the
third week.

« Scenario 2: 69 samples with larval habitat control and nebulization inter-
ventions in the third week.

« Scenario 3: 31 samples with only nebulization intervention in the third
week.

Fig. 2 of the Supplementary Material shows an example of three samples
from the inference dataset.

3.2.6. Proposed models

We used three non-linear models that were autoregressive with exoge-
nous entries to forecast the number of eggs collected in the next three
weeks configuring a direct multi-step forecasting strategy. Each model
was responsible for forecasting one week ahead, t + 1,t + 2,and t + 3.
The machine learning model selected for addressing this task was the Ex-
treme Gradient Boosting Machine (XGBoost) [45].

The predictors and the target variable assigned to each model is de-
scribed in the list that follows.

» Model 1:

Predictors:

rainfall — mean(t — 3), rainfall — std.(t — 3), eggs(t — 3),
rainfall — mean(t — 2), rainfall — std.(t — 2), eggs(t — 2),
rainfall — mean(t — 1), rainfall — std.(t — 1), eggs(t — 1),
rainfall — mean(t), rainfall — std.(t).

Target: eggs(t + 1).

» Model 2:

Predictors:

rainfall — mean(t — 3), rainfall — std.(t — 3), eggs(t — 3),
rainfall — mean(t — 2), rainfall — std.(t — 2), eggs(t — 2),
rainfall — mean(t — 1), rainfall — std.(t — 1), eggs(t — 1),
rainfall — mean(t), rainfall — std.(t).

rainfall — mean(t + 1), rainfall — std.(t + 1).

Target: eggs(t + 2).

* Model 3:

Predictors:

rainfall — mean(t — 3), rainfall — std.(t — 3), eggs(t — 3),

rainfall — mean(t — 2), rainfall — std.(t — 2), eggs(t — 2),

rainfall — mean(t — 1), rainfall — std.(t — 1), eggs(t — 1),

rainfall — mean(t), rainfall — std.(t).

rainfall — mean(t + 1), rainfall — std.(t + 1).

rainfall — mean(t + 2), rainfall — std.(t + 2).

Target: eggs(t + 3).

All data (1,748 samples) was first normalized and then divided using a
hold-out validation scheme with 80% (1,427 samples) for training and 20%
(357 samples) for testing. The training set was used for training the models
and optimizing their hyper-parameters using the methodology explained
below. The test set was left untouched and was only used to evaluate the
model performance.
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Table 1

Search space of parameters.
Parameter Min Max
subsample 0.7 1
MINChizWeight 1 20
reglambda le™* 10

Bayesian global search optimization (BSO) was used to select the model
parameters [46]. The boundaries of each parameter (i.e., the maximum and
minimum values) was configured to limit the search space. Table 1 presents
the search space defined for the BSO process. Default values were used for
all other parameters.

The BSO aimed to find a local maximum (i.e., a minimum loss value) on
the search space created by the distribution of values of each parameter re-
specting the minimum and maximum values configured.

A 10-fold cross-validation was performed at each BSO process iteration
as shown in Fig. 3 in Supplementary Material.

The loss function selected for guiding the optimization process was the
mean squared error (MSE) as presented in Eq. (3):

E; :%i(yj_yj)z 3)

Here, the index j represents a sample of the training fold ranging from 1 to
n, nis the total number of samples in the training fold, y; is the predicted value,
; is the true observed value, and the index i is the iteration of the k-fold.

As a result, each iteration of the BSO is a complete run of the k-fold
scheme on the training dataset with a final score E being the average MSE
across all 10 folds (Eq. 4). The standard deviation of the error is presented
in Eq. 5:

1 10
E= E;E[ (4)
_ zz'lgl(Ei_E)z (5)
o= 10

The main goal of the BSO process was to find the best set of hyper-
parameters for each model that yields a minimum value of E. In other
words, it was desirable to minimize the average of the MSE across all 10
folds of the k-fold cross-validation.

4. Results

We collected 142,469 eggs in the ovitraps during field activities. The av-
erage number of eggs collected weekly in each trap was 13.9. The minimum
and maximum number of eggs collected per trap was 0.0 and 357, respec-
tively, with a variance of 51.3. Spatial analysis was used to correlate the ef-
fects of control events in space and time. The analytical approach employed
a model that included the control interventions within a maximum radius
of 250 m from each trap. The results of the spatial analyses and mathemat-
ical modeling are shown separately.

4.1. Spatial analysis

The spatial analysis generated trend residue maps for 2014, 2015, and
2016 to February of 2017 (Fig. 2). The maps show the points in the munic-
ipality where the trends of egg occurrence were above or below average,
thus indicating where there was a greater concentration of eggs in the
traps. The trend maps showed that the most critical points varied during
the three periods studied. The variation correlated to the control interven-
tions performed.

The histograms generated by the correlation between the trend residue
maps and the control actions (CC, NEB, CC + NEB) showed an asymmetric
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distribution that shifted to the left (Fig. 3). This result indicates that the
trend in the number of eggs collected was lower in areas where vector con-
trol was performed than in areas that did not receive the treatments.

4.2. Mathematical modeling

Here, 85 CC events, 69 CC + NEB, and 31 NEB were included. For the
modeling analysis, the assumptions described in the Methods section were
applied. Table 2 shows the results of the modeling performance obtained at
the best iteration of the BSO process for each of the three models (¢t + 1,t +
2 and t + 3) in terms of average error, E, and standard deviation of the
error, 0. Table 2 also presents the error obtained for the test dataset.

Table 2 shows the generalization capacity of the pattern learned during
the training process. This group of models underscores the ability to fore-
cast three weeks ahead the amount of mosquito eggs under normal condi-
tions (i.e., with no control intervention whatsoever).

The most important variables for the models, despite the small differ-
ences, were precipitation and the number of eggs in the weeks prior to
field collections. Figs. 4, 5, and 6 of the Supplementary Material show the
importance of each predictor (variable) for Models 1, 2, and 3, respectively.

The impact of the control activities are shown in Table 3. The larval hab-
itat control (CC) decreased the number of eggs collected by 43.56% (t + 1)
in relation to what was predicted by the model. In the following two weeks,
the larval habitat control maintained the effect of reducing the number
of eggs collected in relation to what was predicted by the model: (t + 2:
— 44.21% and t + 3: —52.79%). Similarly, adult control by insecticide
nebulization also reduced the number of eggs collected in relation to what
was predicted by the modeling (t + 1: — 79.82%; t + 2: — 43.41%;
t + 3: — 61.83%) as well as the two types of treatment together
(CC + NEB) also showed the effects on the number of eggs collected.

The results indicate that egg collections decreased by at least 25% of the
sampled traps except for CC and NEB at t + 2. There was a 100% reduction
in the number of eggs collected in relation to the values predicted by the
mathematical model. No eggs were found in 25% of the traps—this was a
100% reduction relative to the value predicted by the models (with no in-
tervention). In 50% of the traps, the reduction in the egg collections varied
over all three types of control intervention. The best result was observed in
areas with the combined effects of the two control activities (CC + NEB).
The reduction in the number of eggs was maintained over three weeks
after application of insecticide. There was a reduction by approximately
75% for eggs collected in 50% of the traps compared to the model's predic-
tion. The effects of NEB intervention alone caused the highest decrease in
the number of collected eggs versus what was predicted. The reduction in
the number of eggs was 79.82% in the week following the treatment
(t + 1). There was a 100% reduction in 25% and 50% of the traps. This ef-
fect remained att + 2 and t + 3 with a significant reduction in the 25th
and 50th quartiles. The CC is the only treatment that showed a progressive
improvement over time in terms of overall effects on the number of eggs
collected. A similar result was found when analyzing the reduction in the
number of eggs collected in 50% of the traps (reductions of 25.55%
(t + 1), 43.65% (t + 2), and 47.64% (t + 3)).

5. Discussion

The domestic form of Ae. aegypti is well-adapted to using artificial
habitats for reproduction [7]. The major oviposition habitats of the domes-
tic form are man-made recipients of several sizes and material [9,47].
Considering the adaptation of the species and its impacts on public health,
monitoring its infestation in urban landscapes is demanding and important
[48]. In addition, knowledge on the biology, ecology, and behavior of
Ae. aegypti is necessary to tailor interventions and monitor reductions in
mosquito population density [49].

The use of ovitraps as a tool in mosquito surveillance has advantages be-
cause they have a low implementation cost with less investment in training
field personnel. This allows for allocation of financial resources to both test-
ing and treating patients with arboviruses. Considering this premise and the
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Table 2
Results in the train and test dataset.

Model E o Test dataset
t 0.0015 0.0008 0.0006
ty 0.0027 0.0009 0.0018
t3 0.0028 0.0007 0.0027

sensitivity of the ovitraps in mosquito egg sampling, this study employed
two analytical approaches to investigate the impact of the control activi-
ties—particularly from Ae. aegypti [33,34,50]. Field collections using
ovitraps helped verify the dynamics of the mosquito oviposition weekly fol-
lowing the implementation of control measures.

Spatial analysis was used to verify the spatial correlation between con-
trol activities and their respective effects on the female population using the
number of eggs found in the ovitraps as a proxy. The mosquito control mea-
sures adopted (CC, NEB and CC + NEB) presented negative spatial correla-
tions with the number of eggs collected. In other words, there was a trend
towards a smaller number of eggs collected in places where control actions
occurred more frequently. The spatial maps generated in this study clearly
show that the control activities displaced Ae. aegypti from the most critically
infested areas in both space and time.

The superposition of this mapping information and correlation with the
control activities in each town block produced asymmetric histograms.
They showed that the distribution of the number of eggs collected in the
ovitraps was smaller in blocks exposed to control than areas not exposed
to any control. The control of Ae. Aegypti is a complex activity [51,52]
that requires targeted actions involving entomological, health, economic,
and social approaches. The anthropophilic behavior of Ae. aegypti requires
strong participation of the communities and robust public policies aimed
at management, for example, from recyclable materials that can represent
a source of income for the population [47]. Ae. aegypti control does not de-
pend on complex strategies, but rather on the use of already existing and
largely tested methods with a combination of effective techniques and a
constant sharing of information between scientific findings and vector con-
trol programs [49].

Similar results were also found using mathematical modeling. The treat-
ments using CC, NEB, and CC + NEB caused a significant reduction in the
number of eggs collected versus the number predicted by the mathematical
model. Only the activities carried out to control the larval habitats pro-
duced a reduction of 43.56% at t + 1, 44.21% att + 2, and 52.79% at
t + 3. This type of control showed a progressive reduction in the number
of eggs collected in the ovitraps during the three weeks. Controlling breed-
ing sites is one of the most costly and difficult activities to control Ae. aegypti
because the best results require a significant removal of all potential habi-
tats [53]. The absence of residents in the homes—as well as the refusal of
owners to allow control personnel to search for and remove all larval hab-
itats from their household—are major challenges that must be overcome
by the vector control program. CC can lead to an increase in the number
of eggs collected in ovitraps due to the partial removal of available breeding
sites in an area [54], but that was not seen here. The CC reduced the num-
ber of eggs collected in relation to what was predicted by the mathematical
modeling in the three weeks following.

NEB had the greatest impact at t + 1 with a 79.82% reduction in eggs rel-
ative to the models' prediction. The NEB has an immediate impact on adult
populations of Ae. aegypti, thus reducing potential risks of transmission of

Dialogues in Health 1 (2022) 100003

pathogens by mosquitoes in the area and influencing the dynamics of eggs
collected in the weeks following control [55,56] as occurred here. The
main advantage of this method is its fast implementation, but it is also envi-
ronmentally destructive because it requires the application of non-selective
insecticides in domestic environments [51].

The use of both CC + NEB showed the best cumulative result in the
analysis of the quartiles. In 25% of the traps, this treatment reduced egg
counts by 100% versus the values predicted by the mathematical modeling.
In the 50th quartile, the association of CC + NEB reduced the number of
eggs by 81.20%, 79.15%, and 75.02% in the first, second, and third week
following treatment, respectively. There is a need to monitor the control
methods used in day-to-day activities to deal with the existing vectors in
each municipality because the effects may be different in each location,
and the strategy for coping depends on these results to achieve their
goals. The use of ovitraps is an effective way to monitor Ae. aegypti in the
urban area [50]. This method was previously applied and there was spatial
correlation between recyclers and Ae. aegypti infestation in urban areas
[47]. Our results also indicate that ovitraps can be continuously employed
to verify the effectiveness of vector control actions. The development of a
mathematical model to verify the effect associated with the adequate instal-
lation of ovitraps allows for a better understanding of the results of each
control approach. In the future, the most suitable period for each type of ac-
tivity can be defined.

Limitations in financial and human resources are one of the biggest
challenges in controlling Ae. aegypti. In this sense, our results demonstrate
that the method of monitoring urban infestation through ovitraps along
with control through fogging and removal of breeding sites can maximize
available resources and produce an impact. Chemical control always results
in environmental risk and human health, but the risks can be controlled if
the methods used meet the technical recommendations. The products
used in the control should be scientifically adequate. The joint application
of CC + NEB treatments is the most efficient way to reduce Ae. aegypti in-
festation [51], but NEB alone can be an initial coping strategy immediately
followed by CC. It is important to emphasize this issue because CC is more
expensive and slower than NEB because it requires home visits with active
search for breeding sites. This is expensive and time-consuming.

Machine learning can evaluate the routine activities of the vector con-
trol programs. The ovitraps require few financial and human resources.
Likewise, the development of mathematical models can optimize actions
to eliminate arboviruses. This is important for public health authorities be-
cause as it offers a very important tool for dealing with the vector and eval-
uating control strategies. This provides a more accurate decision-making
intervention regarding what type of action will be used to control mosqui-
toes, thus minimizing the risk of outbreaks and epidemics and allowing one
to establish the time that this particular type of control maintains its effect
in the area affected by arboviruses.

6. Conclusions

Our results demonstrate that new spatial analysis tools and mathemati-
cal models are extremely important methods in vector control activities.
They can lead to integrated solutions to problems that impact public health.
The implementation of a monitoring system with ovitraps is sensitive and
agile and can be used in areas with few resources to control Dengue. This
type of trap is associated with the development of spatial and predictive
models, and it allows one to evaluate control methods, thus aiding

Table 3
Impact of interventions to control Aedes aegypti.
CcC CcC CcC CC + NEB CC + NEB CC + NEB NEB NEB NEB
t+1) (t+2) (t+3) t+1) (t+2) (t+3) t+1) (t+2) (t+3)
count 85 85 85 69 69 69 31 31 31
mean (%) —43.56 —44.21 —-52.79 —68.72 —55.59 —55.10 —79.82 —43.41 —61.83
std 44.25 42.09 45.91 33.60 44.76 45.23 35.37 47.49 41.64
25% —100.0 —95.22 —100.0 —100.0 —100.0 —100.0 —100.0 —92.49 —100.0
50% —25.55 —43.65 —47.64 —81.20 —79.15 —75.02 —100.0 —9.96 —52.59
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decision-making by health authorities and reducing health risks while im-
proving the use of public resources.
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