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Abstract

In this work we prove existence of global attractors for reaction-diffusion problems 
with nonlinear boundary conditions in fractional power spaces.

Introduction

Let H be a bounded smooth domain of Rn. In this paper we consider reaction diffusion 
systems with dispersion of the form

du
ut = Div(aVu) - 53 Bjix)a------ + /(u)>

;=i axi
in

(i)
on cftl.

where u = (uj,• • • ,u/y)T, N > 1, a(z) = diag(aj(a;)}• • • ,a/v(x)), a,- € (^(ft), a,(:r) >• 
m0 > 0, x € H, 1 < i < N, = (aVu.nj, n is the outward normal, A is a 
positive constant and Bj = diag(6j, • • •, b^) is continuous in A, j = l,***,n. Let 
/ = (/i, • ■ •, Jn)t : Rn —» Rn, 9 = (gi, • ■ ■,9n)t • be smooth functions.

It has been shown by Pao [12] that if / is a source of heat and if g = 0 then we have 
blow up in finite time. Our aim is to control the increase of heat by means of a dissipative 
flux through the boundary. To accomplish this goal we need to introduce some kind of 
“competition” between / and g ( see condition H2 below for the precise condition). In 
fact one of the basic questions is: If g dissipates heat through the boundary, can we find 
a relation between the dissipation g and the source of heat / in such a way that we can 
assure the existence of global attractors?

In [2] the existence of the global attractor is proved for n = 2, assuming only dissipative 
properties on / and g. The key idea is to restrict the space of initial data in such a way 
that no growth assumptions are needed for local existence of solutions for (1)

Our goal here is to extend this result to arbitrary dimensions. To accomplish this we 
work in Lp spaces for a suitable choice of 1 < p < oo, instead of T2(fi), and then follow the 
general approach developed by Amann [1]. The main difference is that, in our approach, 
instead of working in the Sobolev spaces Wfc'p(fi), we work in the fractional power spaces 
associated to the operator defined by the linear part of (1) with homogeneous boundary 
conditions. These fractional power spaces turn out to be the so called “Lebesgue Spaces” 

(see Triebel [14], for a general discussion about these spaces and their relation 
with differential operators and interpolation theory). In this way we are able to use the
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well developed theory of sectorial operators as described, for example, in Henry [5]. This 
approach leads, in our opinion, to a considerable simplification in Amann’s arguments. 

We will only sketch the argument here. Detailed proofs can

Hypotheses
In this Section we fix the hypotheses to be used throughout this paper.

be found in [10].

(HI)
lim sup,,Hoo ^ < c?; lim sup|,H<x> ^ < <*? 

Moreover, if f,g satisfy (HI), and given the eigenvalue problem
(2)

flu *
—Div(aVvj) + &i(x) + Av,- — cju,- =

j=i axi

1st = $Vi
we will assume the following,

(H2) c° and ct- are such that the first eigenvalue (in the sense defined by Remark 1), fi\, 
of the problem (3) is positive.

Finally, as mentioned before, we will assume that

(H3) A is such that the linear part of the operator in (1), with Neumann Boundary con­
dition, is a positive operator (the operator A will be defined precisely in the next section). 
If B = 0, then A can be any positive value.

Remark 1 From the results of Protter & Weinberger [11], and Krein & Rutman [7], we 
have that the first eigenvalue of (3) is always real. Here, we mean first, in the sense that 
all the others have greater real part. See Carvalho, Oliva, Pereira and Rodriguez-Bernal 
[2] for a proof of this in our case.

Remark 2 To avoid notational complications we will treat only the case N = 1, but the 
results remain true in higher dimensions and the same arguments apply if we assume (HI) 
(see [10]).

Remark 3 (HI) is the dissipation condition on the equation. Note that we allow either 
co or do to be positive. In other words, we allow either f or g to be a source of heat.

Remark 4 (H2) is a precise formulation of the “competition” between f and g that we 
mentioned in the Introduction. Notice that we cannot have both Co and do positive. More­
over this condition states that our problem “behaves” as an intermediate case between the 
Dirichlet case (do = oo) and the Newmann case (do = 0J.

Negative Fractional Power Spaces
Here we define the fractional power spaces related to the operator defined in (1), 

including negative powers. Let us mention that if we work in L2, these negative frac­
tional powers can be easily defined using duality and Fourier transforms (see for example, 
Rodriguez-Bernal [13]), but in LA things are more delicate.

in fl,
(3)

on d$l
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Denote by B the boundary operator Bu — and let H2^By(Q,) be the Lebesgue 
space with boundary condition B (see [14]).

Consider A = diag(/li, • • •, A/v) in LP(Q; CN), the operator defined by 
D{Ai) = ^p2i{B}(n); Am = -Div(aiVu) + £?=1 b)(x)g- + Au.

Let A! — diag{A\, • • •., A'N) (the dual operator) be the operator in L/ (Cl;CN), where 
1 + 1 = 1, defined by D{A\) = •^p'i{c}(^)i A\v = —Div(a,Vv) — div(vBi) + Av,

where C is the boundary operator Cv = -f vB • n.

We have that (see Triebel [14], pag. 401) A' is an isomorphism from H2,^(D;CN) 
onto Lp'(HjC^); A" (the dual operator of A') is an isomorphism from Z^fijC^) onto 
(tfp\<c>(ft; C*))' and A" = A, in C*).

With this, let us define the operator A-\ in (#*, ^>(11; CN))' by 
D(A-i) = 1/(^1 ;CN); A-\U = A"u, for all u € 1^(0;CN). The following results hold 
(see [10] ).

Proposition 1 A-i is a sectorial operator, with p(A) = p{A-\). Moreover, given 6 > 0, 
if we define AT*j = D(A9_X) then is also a sectorial operator in Xtlf which we denote 
by Ao-1.

Theorem 1 Write Xe = D(Ae) Then, t/0 < 6 < 1 X°_+x = Xe = H2\B)

1—aNotation 1 Having this result in mind we will define, for all 0 < s < 1, X * — X-l

Local Existence

We observe that we can always consider the Lebesgue spaces as real Banach spaces, 
even though our functions are taking complex values. With this in mind, if (H3) holds 
then it follows from Proposition 1 and the results of Henry [5] that A-p generates an 
analytic semigroup in X~0 for 0 < fi < 1 which satisfies, for —fi < a < 1 — fi

< Me-'‘||Uo|U., i > 0, le-^L. < ||u0|U-», t > 0.Xa
(4)

for some e > 0, M >0.
Now, in order to use comparison arguments we need to choose a big enough so as to 

have X° C C(fi). We also need ft small enough to ensure that the boundary conditions 
are not incorporated in Xx~0, and finally we require a + (3 < 1, to be able to apply 
standard arguments of semilinear parabolic theory as developed for instance in ([5]). This 
can indeed be done if p is big enough.

Since we are going to use the linear operator A with homogeneous boundary conditions 
to define the abstract problem, we need to include the nonlinear boundary conditions in 
the equation. Furthermore since we are working with complex valued functions, we will 

* need to complexify f and g. This is done as follows.
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Notation 2 We denote by fc-CN —> CN, gc’CN —> CN the complexifications of f and 
g, respectively, where jFc(C) '■= r) + ^(C/)> C = Cr + *0 € RN + iRN = CN, for
any function F:RN -+ RN. Wow, let us consider the map g^ : X° —► X~0 defined by
(g^(u).,<j)) := I t(^c(«))7(^)> /or where 7 denotes the trace operator.

J dfl .
Similarly, we define fn'Xa —* X~(3 by {fn{u),<f>) := J^fc{u)(j)y for all <f> G 

We will also denote by h := /n + gy.

It is easy to show that /« and gy are well defined, and h is Lipschitz continuous in 
bounded sets of X°. From results in ([5]), the following existence result follows readily.

Theorem 2 Suppose that (Hi) and (H3) hold and ^ < a < 1 — /?<l--2^ = ^ + ^. 
Then the abstract parabolic problem

du
— + A.0U = h(u) 
u(0) = u0 G Xa

(5)

has an unique solution for any Uo G X°, which is given by the variation of constants 
formula

T{t)u0 = e-A-*‘u0 + f e-'4-»(,-I)A(T(s)Uo)^. 
Jo (6)

Moreover, if the maximal interval of existence of the solution T(t)uo is [0,<mai[ then 
either tmax = +00 or ||T(*)u0||.y« —» 00 as t —* tmax-

Regularity Result
The solutions provided by theorem 2 turn out to be more regular. In fact, using results 

from [9] and [8], we obtain the following result.

Theorem 3 Suppose that (HI) holds and that a, (3 and p as in Theorem (2). Let u0 £ Xa 
and let u be the solution of (5). Then, there exists e > 0 such that u(t} •) G C2+c(£l), for 
all t > 0. Moreover, Re(u(t,•)) is a classical solution of (1), for any t > 0.

Remark 5 Now that we have local existence for (5) and since all functions and coeffi­
cients in the equation are real, we can take the real part of the solution, and we still have 
a solution. Thus from now on we will suppose that Xa is the real part of functions in
H*p°(n).

Existence of Global Attractors

Hypothesis (H2) allows to use a comparison argument to obtain estimates of solutions 
in the uniform norm. Then, with the help of a ‘bootstrap’ argument based on the variation 
of constants formula we can prove:

Lemma 1 If V is a bounded subset of Xa then [J T(t)V is also a bounded subset of Xa.
t> 0
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Now, taking into account the regularization properties of the semigroup the existence 
of a global compact attractor follows from results in ([4]), once point dissipativiness is 
established. This last property is also achieved by using comparison and bootstrap argu­
ments.

To state our main result, we introduce some notation. Let be the first eigenfunction
of (3), m = minima;), and £ as in 2. Let also Eg = {u £ Xa : |u(z)| < Oip(x), for ail 

xefi :
x 6 fij. Then we have

Theorem 4 The problem (1) has a global attractor A in Xa. Furthermore A C Eg if 
9m > £.
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