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A B S T R A C T   

Rutherford Backscattering Spectrometry (RBS) is an important technique providing elemental information of the 
near surface region of samples with high accuracy and robustness. However, this technique lacks throughput by 
the limited rate of data processing and is hardly routinely applied in research with a massive number of samples 
(i.e. hundreds or even thousands of samples). The situation is even worse for complex samples. If roughness or 
porosity is present in those samples the simulation of such structures is computationally demanding. Fortunately, 
Artificial Neural Networks (ANN) show to be a great ally for massive data processing of ion beam data. In this 
paper, we report the performance comparison of ANN against human evaluation and an automatic fit routine 
running on batch mode. 500 spectra of marker layers from the stellarator W7-X were used as study case. The 
results showed ANN as more accurate than humans and more efficient than automatic fits.   

1. Introduction 

Ion Beam Analysis (IBA) comprises a set of well established analyt
ical techniques for material analysis [1]. Even though some of these 
techniques are decades old, IBA techniques can still keep their relevance 
due to many important features hardly found on competing techniques. 
The IBA technique Particle Induced X-ray Emission (PIXE), for instance, 
can be performed with an excellent Lower Detection Limit (LDL) when 
compared to its direct competitor: X-ray Fluorescence (XRF). Rutherford 
Back-scattering Spectrometry (RBS) provides excellent depth informa
tion for thin-film characterization, but its real strength lies in its accu
racy, which under certain circumstances, can be close to 1% [2]. On top 
of that, we can add the fact that RBS has the potential to be a primary 
standard, i.e. no reference sample is necessary, and absolute quantifi
cation is achievable [3]. 

The point is that these techniques are exceptional and unique. They 
can provide valuable information on many sorts of samples with 
essential results for many fields of sciences. However, the analysis of 
measured data is a problem: Besides the fact that it requires a not so 
simple personnel training, it is also challenging to keep the high stan
dards of quality and traceability when the number of samples and/or 
measured spectra reaches the scale of hundreds or thousands. For a 

skilled person, it is evident how to perform the high-quality standard 
analysis for just a few measurements. However, the protocols to handle a 
massive number of samples are not entirely clear and raise questions on 
how to keep consistency along with the whole dataset. 

Of course, performing the data processing by a fitting procedure 
running in batch mode is always a way to go for solving this issue. There 
are some problems, however, when the analysis requires some level of 
learning process, which is not possible to solve with typically used fitting 
algorithms. Additionally, data processing in batch mode always requires 
some computing time necessary for the fit to converge. This computing 
time is independent of the number of samples already analyzed. 
Therefore, the adoption of algorithms capable of learning from experi
ence can, in principle, make the analysis more efficient (especially for 
similar types of samples) and at the same time, can be a way to ensure 
the same quality standards for the entire dataset, i.e. the same correct
ness and bias. 

In this study, we compare the performances of human-made evalu
ations and automatic fits running in batch mode with the performance of 
an Artificial Neural Network (ANN) when evaluating the same dataset. 
For this, we took the real problem of the analysis of marker layers 
deposited on tiles for the internal walls of the W7-X fusion reactor vessel. 
This dataset consists of 500 spectra from 132 samples analyzed by RBS, 
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which is a number already significantly hard to process. The ANN per
formance can excel human performance either in processing time or in 
the quality of the results, and can be a serious candidate for processing 
large amounts of data, thus improving the RBS throughput. 

2. Methods 

Algorithms are attractive due to their ability to automate and 
improve performance in tedious and time-consuming tasks. Algorithms 
can be divided into two categories: the first comprises computer codes 
directly coded by a human to perform some task; the second has artifi
cial intelligence that delivers a substantial amount of inference derived 
from observations and training [4]. 

The popularity of artificial intelligence has increased considerably in 
the past decade as more and more areas have introduced this concept. 
Among the many algorithms, ANN has been around for quite some time. 
It consists of a system composed of many simple processing elements or 
units, operating in parallel and whose function is determined by the 
architecture, connection strengths (synaptic weighs), and the processing 
performed at each node [5]. The massively parallel distributed processor 
has a natural propensity for acquiring, storing experiential knowledge 
and making it available for further use [6], with each element only 
operating on local information and asynchronously [7]. 

A few works reported the use of ANNs applied to RBS spectra pro
cessing [8–10], showing that it is possible to analyze RBS spectra with 
neural networks. ANN can thus be useful to substitute the task of 
analyzing data and tackle in both ways a time-consuming task and as
suring consistency for every analysis (See Fig. 1). 

Almost 500 spectra from samples of marker layers deposited on tiles 
for the W7-X stellarator are used in our case study. These are composed 
of a 5–10 µm thick carbon film on top of a 200 nm thick molybdenum 
film, all on top of a carbon bulk substrate. This layer structure is 
designed for an experiment targeting the analysis of erosion due to 
plasma exposure in the stellarator. By measuring the thickness of the top 
carbon film before and after the plasma exposure the erosion pattern is 
revealed [11]. Here, we focus on the analysis procedure of the 500 
samples before the plasma exposure as a case study for checking the 
performances of ANNs against the human evaluation and fitting in batch 
mode. 

3. RBS and ANN 

RBS is an analytical technique that employs mono-energetic ion 
beams, typically within a 0.3–3 MeV/u energy range, to determine the 

atomic composition of materials. Since the incident beam energy is well 
known, measuring the energy ratio of the back-scattered particles (Eout/ 
Ein) gives information about the species of the target nuclei. The pre
vious knowledge of cross-sections (scattering probabilities) enables the 
determination of the atomic density in the material. Since the ion 
continuously looses its energy as it penetrates deeper into the target, it is 
also possible to determine at which depth the collision occurred and thus 
produce a composition profile in depth of the sample. 

The physics involved in RBS can be modeled with excellent precision 
[12] using first principles and assuming only classic scattering with a 
central force field [13]. SIMNRA is a software that simulates theoretical 
RBS spectra given the sample description and setup parameters. Because 
it is analytical, it can run several orders of magnitude faster than Monte- 
Carlo based codes, showing excellent agreement for small and medium 
energy losses [14]. The description of physics models involved in 
SIMNRA is available in previous works [15] as well as its application to 
self-consistent analysis while minimizing an objective function [16]. 

The problematic point is that, even with a relatively simple physics 
model, the interpretation of an RBS spectrum is not simple: ambiguities 
and signal overlap often lead to difficulties understanding or even to 
misinterpretations. Thus, the analysis of a complex RBS spectrum is a 
challenge to an experienced analyst and also to ANNs. In this study, we 
target testing the ANN features as a tool to be used to analyze samples 
with some level of complexity. The large number of samples processed 
here offers an interesting view on ANN performance compared to other 
data processing methods. 

The high roughness of the layers introduces the complexity here. In 
the analyzed samples, the roughness stays between 15% and 50%. Even 
for a trained human, roughness can introduce additional difficulty in 
interpreting RBS spectra since it affects the shape in different ways and 
multiple locations. For instance, a top layer’s roughness affects its sig
nal’s shape and the signals’ shape from deeper layers. Thus, roughness 
strongly correlates the outputs, and the correct prediction of the layer 
thicknesses by the ANN depends on the correct interpretation of the 
roughness effects on the spectra. 

We used SIMNRA to generate the training and validation sets for an 
ANN designed to process the data from the W7-X tiles. The dataset 
consists of many spectra uniformly distributed within specified ranges 
for each parameter of interest. The aim is that the ANN learns by ex
amples generated with SIMNRA what is the influence on the RBS spectra 
of the variation of each parameter, and after training, make predictions 
within acceptable levels of accuracy for each of them. Carbon layer 
thickness, molybdenum layer thickness, oxygen content of the carbon 
layer, and its roughness are the principal parameters to be learned by the 
ANN. 

Fig. 1. A typical SIMNRA generated spectra of a carbon layer on top of a 
molybdenum layer over a substrate of carbon. The region of interest is marked 
by dashed lines. 

Fig. 2. Reduced and scaled spectra, following the formula presented at Eq. (1) 
and a dataset of 300,000 samples. 
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3.1. Input and training data 

The experimental RBS spectra are histograms of counts with 1024 
channels. The first hundred channels always have the same shape for 
every spectrum as this part of the spectrum originates from ions scat
tered in the carbon bulk. This part can thus be discarded because it 
contains no information on the layer structure. The higher energy part of 
the spectrum can also be discarded due to the lack of signal (see Fig. 2), 
yielding roughly 800 channels with information regarding the sample 

layer structure. It is essential to remove the region with no information 
content from the spectra to simplify the network, reduce the size of the 
training set, and optimize the training time. 

It has been shown in previous works that a re-binning of RBS spectra 
within certain limits may be performed without significant loss of in
formation with the advantage of reducing the complexity of the network 
and the size of the training set [8,9]. Therefore, we re-binned the spectra 
by every two channels to decrease the size of the first layer in our neural 
network, yielding approximately 400 channels sized reduced spectra. 

After generating the training set with SIMNRA (more details ahead in 
the text), we added Poisson noise to each spectrum and implemented the 
same cuts and re-binning as mentioned above. A scaling transformation 
is also necessary; thus, the average (Xi) and standard deviation (σi) for 
each channel are calculated, and the scaling of the data according to Eq. 
(1) is performed. One should notice that since the height of the spectra 
contains information about the deposited charge during the measure
ments, normalizing all spectra by area could be performed as a form to 
mitigate its influence in the ANN training. The typical reduced spectra, 
after scaling and re-binning, may be seen in Fig. 3. 

xnew
i =

xold
i − Xi

σi
(1) 

It is important to notice that once the scaling is performed and the 
mean and standard deviation of the channels are calculated, the same 
transformation, with the same values, shall be used for scaling the 
experimental data. 

3.2. ANN architecture 

It has been shown that any continuous function within an n-dimen
sional cube may be approximated by the superposition of functions of 
one variable and by sums of functions [17]. A discussion how this the
orem is reproduced by multi-layer perceptrons to approximate any given 
function to an arbitrary precision has been done in [18]. It was also 
shown that the lack of success is linked to inadequate learning, insuffi
cient number of hidden layers or lack of deterministic relationship 

Fig. 3. Loss function (squared-loss) of neural networks trained in different 
architectures. Each network learned from the same data set, split randomly into 
75–25% for training and validation, respectively. The training termination 
criteria was the loss function not improving by 10-4 for 10 consecutive itera
tions. The orange represent the chosen architecture, the legend shows the 
amount of neurons in each hidden layer, not considering the input or output 
layers. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 4. Schematic for the automated cycle of ANN training and data processing.  

R.S. Guimarães et al.                                                                                                                                                                                                                          



Nuclear Inst. and Methods in Physics Research, B 493 (2021) 28–34

31

between input and desired output. 
Thus, we performed some experiments in an attempt to determine 

what is the best architecture for the ANN suited to this particular RBS 
spectra. The quality was defined not just in terms of accurate prediction, 
but also in terms of how fast an architecture can be trained. For a general 
purpose ANN there is no constraint for m ≤ n (with m being the number 
of parameters in the output and n the number of input variables), but one 
should note that the network’s ability to represent an m-dimensional 
vector as output will necessarily be architecture dependent. 

As a rule of thumb, every test was performed having the same 
amount of nodes in the first layer as the number of channels in the 
spectra, then gradually decreasing it until reaching the desired number 
of outputs. A proportion of 1, 1/2, and 1/4 times the input array was 
fixed once it presented the fast learning curve (see Fig. 3) and used for 
further research. The two hidden layers architecture presented a slower 
learning curve and the four hidden layer architecture presented some 

oscillations in the learning curve, probably due to some problem in the 
implementation of the training algorithm. 

The Loss function presented in Fig. 3 represents the deviation be
tween the predictions done by the network and the validation set 
accordingly to the training step (epoch). This can be interpreted as the 
lower the loss the higher the learning by the ANN. 

3.3. Automation 

A Python routine developed by us to control SIMNRA through its OLE 
functionality is schematically depicted in Fig. 4. Using MPI4py module 
we parallelized the generation of spectra, with one SIMNRA instance per 
available computing thread. Simple spectra consisting of a carbon bulk, 
a molybdenum intermediate layer and a carbon/oxygen surface layer 
were generated at a rate of roughly 60 spectra/second. Including surface 
roughness the generation time decreased to about 12 spectra/second. 

Fig. 5. Carbon and Molybdenum prediction without considering surface roughness of ANN (y-axis) versus Human Evaluation (x-axis). The solid line represents y = x, 
i.e. the expected outcome assuming no bias from the human agent and full reproduction by ANN. (Training set size: ~300.000). 

Fig. 6. Carbon and Molybdenum prediction considering surface roughness of ANN (y-axis) versus Human Evaluation (x-axis). The solid line represents y = x, i.e. the 
expected outcome assuming no bias from the human agent and full reproduction by ANN. (Training set size: ~300.000). 
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The samples used for training and validation were generated by 
SIMNRA uniformly distributed within the specified range for each 
parameter. About 300,000 spectra were generated for the final run of the 
ANNs, with and without surface roughness, taking over a week of 
computer time on a Ryzen 5 2600 processor (six cores and twelve 
threads). This large amount of samples were generated to study how the 
training set size influences the final result, Our findings, however, 
indicate that no significant improvement is obtained with training set 
sizes larger than 10,000 for this particular case study. 

Once the theoretical spectra had noise added, they were reduced and 
scaled. The ANN training took about 45 min with a custom class 
employing the Scikit-Learn library [19], and to save the ANN state, 
training and validation set. At the end of the routine, we inserted the 
ANN prediction back into each SIMNRA file and saved as a prediction 
file, creating a summary with all said predictions. 

4. Results and discussion 

In order to assess the ANN performances, we compared its pre
dictions to the results of a fit performed by a trained student and by an 
automatic fit routine. Both methods, the human evaluation and the fit by 
classical algorithms, are the two widely accepted and promptly 
approved by any referee. The human evaluation consisted of an eye 
search of agreement between experimental spectra and simulation. The 
automatic fit was implemented by successive repetitions of the Nelder- 
Mead Simplex algorithm as implemented in SIMNRA. 

As mentioned, it is not clear what are the protocols to manually keep 
consistency and the quality standards over an entire dataset with a large 
number of samples. Our results show that ANN can indeed be consistent. 
In Fig. 5 we noticed a constant offset between the ANN and the human 
predictions, even though the network, in this case, was trained with a 

Fig. 7. Carbon and Molybdenum prediction considering surface roughness of ANN (y-axis) versus results of an automatic fit routine evaluation (x-axis) working in 
batch mode. The solid line represents y = x, i.e. the expected outcome assuming no bias from the automatic fit and full reproduction by ANN. (Training set 
size: ~300.000). 

Fig. 8. Distribution of the differences between the ANN predictions and the automatic fit evaluation. A small bias is still present and the corrected distributions 
are presented. 
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simplistic model that does not consider roughness in the carbon layer. 
However, it is possible to observe that this offset is reasonably constant. 

When the model considers roughness, and the roughness parameter 
is included as an ANN output, the offset referred to the manual evalu
ation is reduced considerably. This effect is shown in Fig. 6. Thus, 
learning the roughness features in the spectra improved the ANN pre
dictions for both carbon and molybdenum. 

It is worth to mention that the manual evaluations for the amounts of 
molybdenum are distributed in vertical lines in both Figs., 5 and 6. This 
is an evidence of bias in the human evaluation of the data, which is not 
present in the ANN predictions. 

The comparison of the ANN evaluation with the automatic fit routine 
is more revealing. The crossing of the cloud of points by the y = x line 
evidences the excellent agreement of the methods. It is possible to 
observe a few outliers that are not present in the ANN evaluation nor in 
the manual evaluation. This is probably because the automatic fit can 
sometimes get stuck in local minima, while the ANN and the humans 
have a complex inference ability to recognize and avoid such a situation. 

The histogram of the differences between the ANN predictions and 
the automatic fit evaluations indicate that a small bias is still present: 2% 

for carbon and 4.8% for molybdenum. The distribution presents a 
Gaussian-like distribution with a standard deviation of 2% for carbon 
and 4.8 for molybdenum. 

The differences are positively correlated. We observed a correlation 
factor 0.37. This indicates that the error in evaluating one leads to the 
error on the evaluation of the other. One also notices the outliers pre
dicted by the ANN for carbon occur for the same sample as the outliers 
for molybdenum. 

Since during the training, the ANN initializes weights with random 
numbers on its connections, we determined the training error for sixty 
networks trained with the same dataset and architecture. We also 
checked the influence of the size of the training set by increasing the 
number of examples used in the various trainings. Fig. 10 presents the 
result (See Figs. 8 and 9). 

Despite some spikes in the root mean squared (rms) of the error for 
the molybdenum, it stays close to 1%. The rms error for the carbon layer 
thickness can be even lower. However, the situation is entirely different 
for the oxygen content: with rms errors reaching 100%, the network is 
unable to make reasonable predictions for this parameter. The main 
reason for that is the signal-to-noise ratio for the oxygen signal, which 
lies between the channels 225 and 275 in Fig. 3. Thus, the noise damages 
the ANN evaluation of trace elements, i.e. of elements with bad signal- 
to-noise ratio. 

5. Conclusions 

We evaluated the performance of ANN to process a massive number 
of RBS spectra. Almost 500 spectra were used as a study case to validate 
the use of artificial intelligence by comparison with other methods: 
human evaluation and automatic fit routine running in batch mode. 
These two methods are widely used and promptly accepted. The ANN 
faces some preconceptions regarded as “black boxes”. 

The ANN showed to be more accurate than humans and more effi
cient than automatic fits with classical algorithms, with comparable 
results. The better accuracy than humans became evident with Fig. 6. 
The efficiency issue becomes evident by comparison of the total time 
spent in the analysis. While the ANN cycle (training set generation, 
training and data evaluation) took 8 h of processing, the cycle of auto
matic fits (convergence of the optimization algorithm) took 4 days. 

The evaluation of the error with repetitive training and with different 
sizes of training sets is important for a complete evaluation of the 

Fig. 9. Scatter plot indicating the correlation of the differences presented in 
Fig. 7. A positive correlation is observed. 

Fig. 10. Mean training error evolution of 60 ANNs trained for different training-set sizes, with learning truncated at 30 interactions. Solid lines represent the mean 
error while the filled portions represents its root mean squared. 
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uncertainties associated to the use of artificial intelligence. The ANN 
uncertainty could be evaluated as approximately 1% for this case, and if 
this method of data processing is used, this should be considered in the 
uncertainty budget. 
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