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Abstract

We study the entropy production rate in systems described by linear Langevin
equations, containing mixed even and odd variables under time reversal. Exact
formulas are derived for several important quantities in terms only of the means
and covariances of the random variables in question. These include the total
rate of change of the entropy, the entropy production rate, the entropy flux rate
and the three components of the entropy production. All equations are cast in
a way suitable for large-scale analysis of linear Langevin systems. Our results
are also applied to different types of electrical circuits, which suitably illustrate
the most relevant aspects of the problem.

PACS numbers: 68.43.De, 05.10.—a, 05.70.—a

(Some figures may appear in colour only in the online journal)

1. Introduction

Non-equilibrium systems have been the subject of intensive research for several decades.
This is partly motivated by their broad range of applications in, e.g., physics, chemistry and
biology. However, and most importantly, further progress in these areas is still hampered
by more fundamental questions. Unlike equilibrium statistical mechanics, which is by now
a well-established theoretical framework, in non-equilibrium statistical mechanics, several
questions remain unanswered. Particularly challenging is the microscopic definition of entropy
production. For, in the context of non-equilibrium thermodynamics [1], it provides the pathway
through which irreversibility is described.

Suppose a certain system undergoes a change of state from state A to state B. If done
reversibly, the total change in the entropy S of the system is AS = [ dQ/T, where T is the
temperature and Q is the heat poured into the system. Hence [ dQ/T is defined as minus the
entropy flux from the system to the environment. If the process is irreversible, we have instead
AS > [dQ/T. The difference, being a positive quantity, is called the entropy production :

do
AS—/?_‘B>O.
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It is customary to divide by Ar and write, instead

s _ (@) — () ey
e '
In this equation, I1(¢) is the entropy production rate of the system, which is always non-
negative, and ®(¢) is the entropy flux rate from the system to the environment. For systems in

a non-equilibrium steady state (NESS), we have dS/d¢ = 0, which implies
Iy = &y = 0.

It is only in thermodynamic equilibrium that the inequality in this equation becomes an
equality.

Traditionally, non-equilibrium thermodynamics was founded on the basis of conservation
equations. Nowadays, however, it has been realized that there are several advantages in using
stochastic processes instead. For instance, by comparing forward and backward experiments,
it enables one to relate the entropy production directly to the stochastic trajectories of the
system [2-5]. When describing a non-equilibrium system in terms of stochastic processes,
much of the focus has naturally been on Markovian dynamics, in particular using the master
equation [2, 3, 6-8] or the Fokker—Planck approach [4, 9, 10], which will be the choice for this
paper. We also note that non-Markovian dynamics have also been recently investigated [11].

Several formulas for the entropy production rate have been derived for both
representations. In all cases, however, these are written in terms of integrals involving
probability currents (cf section 3). Thus, they are not easily computed in most situations.
In this paper, we will focus on linear Langevin systems; i.e., where all terms appearing in
the stochastic differential equations are linear in the independent variables. First of all, one
must always emphasize the importance of linear systems in view of the many circumstances
in which they appear in nature. Moreover, we will show that, for such systems, it is possible
to obtain exact formulas for the entropy production rate in terms of the means and variances
of the independent variables. This enables one to study more complex situations, which are
prohibitive for nonlinear systems. In fact, with the scheme to be derived below, it is possible
to implement extremely efficient numerical procedures to study the entropy production even
in large-scale systems.

The entropy production gives an insight into the properties of systems out of equilibrium.
And with the formulas developed in this paper, it becomes simple to compute the entropy
production even for the most complex linear systems. Moreover, these results are not restricted
to the steady state as in most recent papers, but also naturally include the time dependence.
We thus hope that these results are of value to deepen our understanding of non-equilibrium
physics.

When discussing entropy production, it is paramount to distinguish between variables
that are even and odd under time reversal. With this in mind, we shall illustrate our results by
applying them to electrical circuits. These are excellent platforms for this type of problem,
since they contain mixed even (charge and voltage) and odd (current) variables. These studies
trace back to the works of Landauer [12], and the discussion about the differences between
the minimum entropy principle and the maximum entropy principle. They were also recently
discussed in [13] using the Onsager—Machlup Lagrangian [14].

The problem and the basic underlying equations will be stated in section 2. General
remarks about the entropy production rate will be given in section 3 and the derivation of the
formulas for linear systems will be carried out in section 4. Some of the lengthier calculations
were postponed to the appendix. The applications in electrical circuits are contained in section 5
and the conclusions in section 6.
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With the exception of section 5, we shall try to maintain the following notation. Vectors are
denoted by lower-case letters, such as x = (xi, ..., X, ) and matrices by upper-case letters such
as A and B. The exception will be random variables, such as X, which will also be in upper-case
letters. All vectors are treated as column vectors, with xT representing the corresponding row
vector. Scalars and scalar functions are denoted by calligraphic letters, such as S or P (the only
exception being IT and & in equation (1)). The gradient of P with respect to x is abbreviated
as 0P /ox.

2. Systems described by Langevin equations

2.1. The Langevin equation

Let X = (Xi, ..., X,) be a vector of random variables satisfying
X = f(X.t) + BE(1). (2)

In this equation, f(x,t) is an arbitrary n-dimensional function of x and the time ¢. £(¢) are
m-independent standard Wiener processes and, therefore, B is an n x m matrix'. In this paper,
we shall focus mainly on linear systems, for which we write

flx, t) = —Ax+ b(2), 3)

where A is n x n and b(¢) is an arbitrary n-dimensional function of time. We shall also
make the reasonable assumption that all eigenvalues of A are in the open right-plane, thence
guaranteeing the stability of the solutions.

The expectation of x is denoted by x = (X), both notations being used interchangeably.
The equation for the time evolution of X is obtained directly by taking the expectation of
equation (2):

3—? = (% 1) = —AF + b(0). (4)

Next, we obtain the equation describing the time evolution of the second moments. The
latter can be constructed from the outer product (XXT), which gives a matrix whose (i, j)th
entry is (X;X;). The result—obtained, for instance, by discretizing time, taking the outer
product and then averaging—is

d(xx?

dxx7) = ) _ XfT+ X" + BB". ®)
For linear systems, it is more convenient to work with the covariance matrix:

O = (XX") — (X)(X)". (6)

Note that ® is symmetric by construction. Moreover, being a covariance matrix, it is also
positive definite. Using equations (4) and (5) and assuming linearity, as in equation (3), we
find that

do T
EZ_(A(H)_'_@A )+ 2D (7
which is a matrix differential equation giving the time evolution of the covariance matrix.
Here, D is the n x n diffusion tensor defined as

D = BB". (8)

If B has full row rank, then D is positive definite; otherwise, it is positive semi-definite.

! Choosing B to be n x m is convenient because it includes the possibilities that a variable contains more than one
source of noise or that the same noise is shared with more than one variable.



J. Phys. A: Math. Theor. 46 (2013) 395001 G T Landi et al

Equation (7) shows an important property of linear systems of Langevin equations, which
is seldom discussed in the literature: all terms involving the external forcing term, b(z),
are dropped out. This means that the variability of the random variables in question is not
influenced by external forces. In other words, we could say linear systems are not amenable
to synchronization.

If b(¢) = b, a constant, then the system will eventually reach equilibrium. (We are making
the explicit assumption that A is stable.) The equilibrium value of x is read immediately from
equation (4): Xp = A~'b. Similarly, setting ®y = 0 in equation (7), we obtain the matrix
equation

AB + ©,AT = 2D. )

This is a very important equation. It appears frequently in the literature of electrical engineering
and control systems where it goes by the name of continuous time Lyapunov equation. It is
also a particular case of the broader class of Sylvester equations.

It seems appropriate to stop now to briefly discuss the solution methods of equation (9).
For algebraic solutions, we can transform it into a linear system of equations as follows. Let
A ® B denote the Kronecker product of two matrices A and B and define the operation vec(A)
as that of creating a vector by stacking the columns of A. Then equation (9) can be written as

[ ®A) + (A ® I)]vec(®g) = 2vec(D). (10)

Given that ® is symmetric, several equations will be repeated and, in the event that A is sparse,
several equations will be of the form 0 = 0, thence simplifying somewhat the computations.
On the other hand, this approach should never be used for numerical calculations. The
computational complexity of equation (10) is O(n)°. However, specialized algorithms have
been developed which reduce this to O(n)?, a substantial improvement [15].

2.2. The Fokker—Planck equation

Let P(x, t) denote the probability density function corresponding to the vector of random
variables X. The Fokker—Planck equation for P(x, t) associated with the general Langevin
equation (2) reads

= Z [f,(x t)P]-i—Z

It is also convenient to write this equation in the form of a continuity equation. For this, let us
define the probability current

ik Pl. an

0P (x,t
g, 1) = fx, )P (x, 1) — D%. (12)
Equation (11) can then be written as
oP d
— =g 13
or ~ ox ® (13

where the operation in the right-hand side denotes the divergence of g.
The Fokker—Planck equation for linear systems satisfies the very important property that
its solution must be of the form of a multivariate normal distribution’:

_ [ D A
Px,t) = (271)"|®|6Xp{ 2()c X) O (x x)}, (14)

2 This can be understood intuitively by noting that, upon discretizing time in equation (2), x,;; is formed by
summing normally distributed random variables (A& and x;). But sums of normally distributed random variables must
also be normally distributed and so will x;4 ;.
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where x and © are given by equations (4) and (7) (both being, in general, functions of time,
which has been omitted for clarity). Here |®| denotes the determinant.

In the event that b(¢) is a constant, the system will reach a steady state whose distribution
is

1
Po(x) = —(x— %) 0, (x — aa))} : (15)

1
= expl-—
Jaare { 2
where Xy = A~!'b and Oy is given by equation (9).
Throughout this paper, we will make frequent use of the fact that both P (x, ) and 9P /dx
vanish at the boundaries of the probability space, so that cross terms appearing when integrating
by parts can always be neglected.

2.3. Distinction between variables that are even and odd under time reversal

In studying the entropy production, it is important to distinguish between odd variables,
which reverse sign under time reversal, and even variables, which do not. Examples of even
variables include the position in mechanical systems and charges or voltages in circuits, their
odd counterparts being velocities and currents. Following [4] and [16], let us define, for each
variable x;, a quantity €;, such that ¢; = =1 if x; is even or odd, respectively. Moreover, let
us define a diagonal matrix £ = diag(ey, ..., €,). Then, time reversal is achieved by the
operation x — Ex.}
Let us also divide f(x, ¢) in equation (2) into irreversible and reversible parts:

f ) = "0 + < (x1), (16)
where

) =31 (1) + Ef(Ex,0)] = Ef™(Ex, 1)

[ 1) = 3[f (6 1) — Ef(Ex, 1)] = —Ef* (Ex, 1). (17)

It is convenient to separate even and odd variables by writing x = (x1, x»), where it is
agreed that x| contains all even variables and x, all odd ones (the dimensions of x; and x;,
depending on the problem in question). We then have that

Ex = (x1, —x2). (18)
Let us also define
Ay Ap
A= , 19
|:A21 A22j| (19)

where the block matrices A;; have dimensions compatible with those of x; and x,. Then,
according to equation (17), we may write

A=A A, (20)

ir _ |An O ev | 0 A
R R T o

Finally, we divide the external forcing term b(¢) as b(t) = (b, (t), b»(t)) with by and b, having
the same dimensions as x; and x;. It then follows again from equation (17) that

b™ = (b1,0), b =(0,b). (22)

where

3 The matrix E satisfies E~' = E. Moreover, while this will not be necessary in this paper, it is interesting to note
that the operators %(1 =+ E) may be used to select the even and odd variables, respectively.
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Explicit examples of this separation are given in section 5 for several types of electric circuits.
It will also be important to distinguish the irreversible and reversible parts of the probability
current:

g=48"+g%, (23)
where

g0t = T (x, OP(x, 1) — D% 24)

g1 = P, 1). (25)

2.4. Conditions for equilibrium

In the steady state, Py = 0 and thence %{ - 8o = 0. Moreover, the probability currents go(x)
should be such that even components change sign under time reversal, whereas odd components
do not, i.e.,

80(x) = —Ego(Ex). (26)
Using the definitions in equations (23)—(25), we find
TeV irr 87)0 (Ex)
8o(Ex) = [f™(Ex) + T (Ex)]Po(Ex) — D———
With the aid of equation (17), this may be written as
. Py (E
80(Ex) = E[—f*"(x) + f" ()] Po(Ex) — DE$.
Whence,
80(X) + Ego(Ex) = f* (x)[Po(x) — Po(Ex)] + £ (x)[Po(x) + Po(Ex)]
pP@ o OR(EN)
dx dx
=0. 27

If Py(Ex) = Py(x) (the distribution is an even function of the odd variables), the first term in
equation (27) vanishes. Moreover, if EDE = D (which is generally true if D is diagonal or
block-diagonal), then by comparing equation (27) with definition (24), we conclude that

4 = TPy (x) — Dap";x)

i.e., the irreversible portion of the current is zero in the steady state. This condition has already

been discussed in the context where D is diagonal [16]. For the more general case presented

here, we see that the two conditions for this to happen are that Py(Ex) = Py(x) and EDE = D.
Being this the case, we find from aa_x - go = O that

d 9 IP
RS () |:a_ _erV(x)i| PO 4 [frev(x)]T_O —0.
X dx

=0,

0x
In most physical systems, the reversible part of the force, ™" (x), is divergence less:

d
o T =0. (28)
X
In this case, we may use equation (24) to write % = D7 fiT(x) Py (x) so as to finally arrive
at
/S @I'D™ ()] = 0. (29)

This is the required condition for equilibrium. It says that the vectors ™" and f™ should be
orthogonal in a space whose metric is D~!. In the event that D is semi-definite, then by D!
we mean the pseudo-inverse of D.

6
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3. Entropy production: general statement

The following calculations follow closely those of [9], but generalize it in two ways. First, it
includes systems with arbitrary combinations of even and odd variables and second, it includes
non-diagonal Ds.

The entropy is defined as

8:—/7310g73dx. (30)
Differentiating With respect to time, using equation (13) and integrating by parts, we find
P dx
—logPdx=— | T ——. 31
/ 0g / 85 P €2

Separating g as in equatlon (23) we find for the term involving g"" after integrating by parts

/(greV)T ap dx |:i 'frevi| de — O,

ox
since we are assummg fVis dlvergence less [cf equation (28)]. Hence, equation (31) becomes
T 0P aP dx
32
/ g ax P (32)

Next, we use equatlon (24) to write

P : :
8 = —l[fll‘f(x’t)'])_glﬂ’(x’t]
X
and obtain
dS T o ipdx T
— D lT__ IT D 11T .
= s = [ (33

The first term is a quadratic form. Since, D is positive definite, it is always non-negative and
can thence be identified with the entropy production rate:

. . dx
ne = / gD (34)
Consequently, the entropy flux rate is found to be
() = — f T D AT Ay, (35)

Using a different approach, equation (34) was further separated in [4] into three terms.
These, unlike equation (34), hold only for diagonal D. They also assume that a steady-state,
time-independent, configuration exists. Usually, we will simply take this to mean that b(¢) = b,
a constant. In our present notation, the formulas are

B P Px,1)
(1) = — W1og Pot) (36)
_ irr T 1T irr T P(x’t)
My (1) = / [g6" (Ex)] D™ (g5 (Ex)] PoEsR 37)
M) = — [ 22 10g 200 (38)

0g s
ot Po(Ex)
where P is given by equation (15) and g is obtained from g™ in equation (24) by replacing
‘P with Py. The first contribution, termed nonadiabatic, is related to the relaxation processes of
the system and should be zero at a NESS. On the other hand, the second contribution, termed
adiabatic, is directly related to the absence of detailed balance in the system and will be the
sole contribution to IT when a NESS is reached. Both IT; and I1, have been shown [4] to obey
integral fluctuation theorems. However, the same is not true of the third term, IT5.
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4. Entropy production for linear systems

The last section summarized a series of results valid for general Langevin systems. In this
section, we shall specialize them to linear systems, as in equation (3), and obtain formulas for
all relevant quantities. The major advantage of considering linear systems is that all results
can be expressed in terms of x and ®, thus avoiding the necessity of performing the several
integrals involved in those expressions.

4.1. Rate of the change of the total entropy

We begin with the total rate of change of the entropy. Substituting equation (14) for log P in
equation (30), we find

S = %/[(x—X)TG’I(x—i) +log(27)"|O[1P dx.

The last term is simply log(27)"|®|. To compute the first term, we proceed as follows.
Since © is symmetric positive definite, we can construct its square, triangular Cholesky
factorization ® = QQT. Now, consider the transformation x = Qz + x. It transforms
x —0TO'(x — ¥) = z'z. Whence, we see that this transformation produces a standard
multivariate normal, where all variables are statistically independent. Hence, the first term
acquires the form (z'z) = n. We thus obtain

S(t) = %mg 10@)| + glog(27re). (39)

Differentiating equation (39) with respect to time and using a known formula of matrix
calculus yields

s 1 ,d®
— =-ule'—). 4
" 2tr<® dt) (40)

From equation (9), we have
1 de —1 T —1
e E:—[@ A® +A 1+207'D.

The matrices AT and ®'A® are similar, and thence share the same trace. Thus, equation (40)
becomes

ds _ tr(®~'D — A) (41)
dr ’

where ®~! is generally a function of time. This is the required formula. It gives the rate of
change of the total entropy of the system, which is seen to be a function of only the inverse of
the covariance matrix, ®~!. Note, as before, that Sis entirely independent of b(¢). (The same
will not be true for IT and ®.)
In the steady state, we set S=0in equation (41) to find
(©5'D — A) = 0. (42)

This relation can also be derived directly from the steady-state solution, equation (9), by
multiplying both sides by ® ! and then taking the trace.
4.2. Entropy production rate and entropy flux rate

We now derive formulas for IT and ®. The formulas for I1;, IT, and IT5 are derived by similar
methods in the appendix. Before we proceed, let us establish a convenient mathematical

8
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operation which will be used extensively, specially in the appendix. We will frequently
encounter quantities of the following form:

/(Fx + u)"(Gx + v)P(x, 1) dx

which correspond to an average over P(x,t) of a quadratic form; here, F, G, u and v are
arbitrary matrices and vectors. When we expand the product, there will be only one term that
is of second order in x, which will have the form x" FTGx. Taking the expectation of this term
yields

(TFTGx) =Y " (FTG)yj(xixj).
ij
Next, we use equation (6) to write (x;x;) = ©;; + X;x;, which results in
XTFTGx) = tr(FTGO) + i"FTGx.
The last term is again a quadratic form and may thus be reincorporated into the original
product. We thus arrive at the following relation:

/(Fx + ) (CGx+v)P(x,t)dx = tr(FTGO) + (FXi+ w)T (G + v).  (43)

That is, whenever we average a quadratic form, there will be a trace term containing ® and
the original term inside the integral, with x replaced by x.

With this result, it is now straightforward to compute the entropy production rate in
equation (34). From equation (14), we have

oP
= -0 (x —D)P(x,1). (44)
Using this in equation (24), we find
. . . 0
glrl‘ — (_Alrrx + blrr)P _ Da_P
X
= [(DO~' —A™)x 4+ HT — DO FP (45)

=Fx+u)P,
where we have defined F = DO~! — A™ and u = ™ — DO~'x. By applying the method
described in equation (43), we obtain

@) = f(Fx +u)"' D7V (Fx + u)P dx
=tr(FTD7'FO®) + (Fi+ u)"D™" (Fi + u).

Using that FX 4 u = b™ — A"™x and expanding the matrix product inside the trace, we finally
find that

M(t) = (DO~ — A™) + (A D~ATO — A™) + (A"% — H™)TD~ (AT — HiT),  (46)
which is the required result.

We can identify the first term in equation (46) as being simply dS/d¢ in equation (41).
Hence, from equation (1), we immediately find

B (1) = (AT DTIAITO — AI™) 4 (AlTF — pm) TP (ATE — pim). (47)

This result can also be easily derived from equation (35) using the same method.
In the steady state, making use of equation (42), we find

H() — CD() — tr(AirrTD—]Ail’r@O _Airr) _|_ (Airl‘)zo _ birr)TD—l (Airr)zo _ birr)' (48)
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We can also use the same approach to derive formulas for the three contributions to
the entropy production rate defined in equations (36)—(38). These calculations, however, are
somewhat lengthier. Thus, we will simply state the results here and postpone the details to
the appendix. We emphasize, once again, that these results are valid only for diagonal D and
constant b.

First, the result for I (¢) is

(1) = DO —A) + r(AT0;'0 — A) + (& — %) "0, DO, (¥ — %). (49)

The nature of IT;, as being related to the relaxation of the system, becomes quite visible from
the structure of this formula. Next, we obtain for IT,

(1) = (A" D1 AT®) — tr(ATEQ;'E®) + (A™x — bi")TD—1 (A% — b'™)

— (A% — b)"E®, ' (EX — X)). (50)
Finally, the result for 5 is
M3(1) = w(A"E®,'E® — A) — r(AT©,'® — A) + (AX — b)"E®, ' (EX — %)) (51)
- (F—%)"0,' DO ( — X). (52)

5. Application to electrical circuits

Henceforth, we will soften our previous notation of vectors and matrices and use the usual
nomenclature of electrical circuits. We shall consider electrical circuits connected to different
heat baths. The coupling constant is, in this case, the resistance R. The fluctuations will be
assumed to correspond to white noise with spectral density given by the Jonhson—-Nyquist
formula +/2RT, where T is the temperature of the bath.

5.1. RL circuit in series

We begin by considering a simple, yet very instructive, example of a resistor R and an inductor
L in series with a battery providing a constant emf £. The independent variable is the current
I through the resistor, which is odd under time reversal. The equation for the time evolution
of I is obtained from Kirchhoff’s voltage law:

d/ R & 2RT . 53

a -ttt >3)
Making reference to the notation of section 2.1 (all matrices are now 1 x 1), we have A = R/L,
b=E&/L,B=.2RT/L? and D = (1/2)BBT = RT/L?. For simplicity, we will assume
I(t = 0) = 0. The expectation of [ as a function of time is obtained by solving equation (4):

I(t) = %(1 — e RULy, (54)

The steady-state current is clearly seen to be Iy = ER. The covariance ‘matrix’ is © = (I?) —I?
and satisfies the differential equation [cf equation (7)]
d® 2R 2RT

w10t 43
whose solution is
T
Q) = Z(1 — e 2RLy, (56)

10
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Figure 1. Entropy production as a function of time for an RL circuit with £ = 2V, R = 1,
L = 1H and kgT = 1/2]. (a) dS/dt (blue, dotted), O (¢) (red, dashed) and I1(¢) (black); the dotted
line indicate the NESS value ITy = T, = £2/RT. (b) The different contributions to the entropy
production rate, Iy (blue, dotted), I3 (red, dashed) and IT (black). Again, I, is given by the
dotted horizontal line.

The current is an odd variable under time reversal. Thence, we have from equation (21)
that A" = A = R/L and from equation (22), b = 0. With this in mind, the entropy production
rate is readily computed from equation (46):

g2 . R e—2Ri/L
— 2 (l—e®/2, — ~
@) = RT(l e )"+ [ R (57)
If we take the limit 1 — 0o, we obtain for the NESS entropy production rate
& RE
My=®)=— =2 58
0 0=2r =T (58)

This formula shows that, in the NESS, there is a constant production of entropy due to the
dissipation in the resistor.
The formula for the total rate of change of the entropy is
dS R 1
dr - LRI —1°
The entropy flux rate is then simply ® = IT — dS/dr. These quantities are illustrated in
figure 1(a) for arbitrary values of the parameters.
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Figure 2. Scheme of the circuit studied in section 5.2. Each resistor is connected to a heat bath at
a different temperature.

If we had instead studied an RC circuit then the independent variable would be the voltage
through the resistor, which is even under time reversal. In this case, the formulas would be
quite similar, except that now the emf would be a part of 5. The resulting expression for
the entropy production would now go to zero as t — 00, since, in an RC circuit, the current
(which is responsible for the dissipation) goes to zero as t — 0o.

Continuing further, we may now compute formulas for the three parts of the entropy
production rate, equations (49)—(51):

£ R e 2Ri/L
_ & omp R
M) = pre 0+ Lamm
2
M) = —
2(1) RT

E _mn
(1) = —2—e XL,
3(1) RT

These formulas are physically very rich. Note that IT,, which is exactly the contribution related
to the absence of detailed balance, is simply the steady-state entropy production rate I1j in
equation (58). Graphs for these quantities are illustrated in figure 1(b).

5.2. Mixed RC and RL circuits

Let us now turn to the circuit denoted in figure 2, which was also studied in [13]. We now
have, as independent variables, the voltage U through resistor R; and the current / through
the resistor R;; i.e., we have mixed even and odd variables. Using Kirchhoff’s voltage law, we
find the equations

v=L_-2 4 2D (59)
~Cc RC \RcC"
. E—U—-RI 2R, .
I = J . 60
I T & (60)

In our usual matrix notation, we have from equation (21)

ir __ l/CRI 0 rev __ 0 _I/C
A _[ 0 R2/L:|’ A _[1/L 0}

and from equation (22)
i 0
1T Wa%
b =0, b _b_|:5/L]'

12
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The diffusion matrix, equation (8), is
T\/R,C? 0
D = 21
0 RT/L

The formulas for the time dependence of the entropy production rates are now somewhat
cumbersome. Thus, we will illustrate their time dependence numerically and provide formulas
only for the steady-state quantities. The equilibrium values of U and I are

Oo= -1 g =
Ri+R; Ri+R;
The steady-state values of the covariance matrix are obtained by solving equation (9) (the
notation Var and Cov meaning variance and covariance, respectively):

o
Var(U) = E[L(Rl + Ry))Ty + CRiR, (R, T1 + R 15)]

Var(l) = %[L(RlTl + Ry 1) + CRIR (R, + Ry T>]
Cov(U,I) = a[R1R:(T> — T7)]
o :=[(Ry +R)(L+CRR)".

From these results, we may now compute the steady-state entropy production rate from

equation (48):

Uy | Ry RiRy (> — T1)?

RiTy Ty  (Ri+R)(L+CRR)NT,
The structure of this result is worth noticing. The first two terms are similar to those appearing
in equation (58), each one corresponding to a resistor. They stem from the absence of detailed
balance, related to the presence of the batteries. In addition to these, however, there is now a
second term related to the lack of detailed balance due to the presence of two heat baths. We
see that it depends only on (7} — 7»)2. It is thus zero when both temperatures are equal and
shows that it is irrelevant which temperature is the largest.

It is worth comparing equation (61) with a similar result obtained for the same circuit
in [13]. There, the third term was not present. This follows because, in the formalism of the
Onsager—Machlup Lagrangian [14], the entropy production rate is related to the extremum of
the Lagrangian with respect to the independent variables. Since the last term in equation (61)
is independent of U and I, it does not appear in that formalism.

In figure 3(a), we show the total rate of change of the entropy, the entropy production
rate and the entropy flux rate as a function of time, for arbitrary choices of the parameters.
Figure 3(b) then shows the three contributions to the entropy production rate.

My = dy =

(61)

5.3. Inductively coupled RL circuits

Next, we turn to the interesting example of two inductively coupled RL circuits, each connected
to a different heat bath. Let the suffixes 1 and 2 denote the quantities pertaining to the two
circuits and let m denote the mutual inductance. Then, the corresponding dynamical equations
are

Lljl +m12 = —RiI; + & + V2R T, .1

mly + Lyl = —Robls + & + 2Ry Tht.
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2

15 20

Figure 3. Entropy production as a function of time for the circuit in figure 2, with € = 2V, R = 2Q,
R, = 1Q,L = 1H, C = 0.2F, kgTy = 1J and kT, = 21J. (a) dS/dt (blue, dotted), ®(¢) (red,
dashed) and T1(¢) (black). (b) The different contributions to the entropy production rate, Iy (blue,
dotted), I, (red, dashed) and I3 (green, dash—dotted); I1(z) is again shown in black.

Let us define the matrix

Ll m
w=[0 )

Then, in the notation of equation (2), we have

R0
a=u[0 )

R

and

D:Ml[

—1
LI

In this case, we see that the diffusion matrix D is not diagonal, so formulas (49)—(51) are not
applicable. We will thus restrict our discussion to the steady-state expression for the entropy

production rate. The steady-state currents are simply

ho=l
10 R19 20

The steady-state covariance matrix is computed from equation (9). It reads

mRy (T —T»)
LyRi+L1Ry M—l

T
O = | R, (B-1)
LR\ +LR>

14

&
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On noting that both variables are odd under time reversal, we obtain from equation (48)

&2 &2

My = —— + = 62
0= Ry + Rl (62)
n m*R\R, (T — 1)?
(LiLy —m*) (LR + LiRy) T,

Again, we arrive at a structure compatible with the two sources of disorder: the first two terms
come from the batteries and the last from the presence of two heat baths. As expected, the
last term goes to zero when m — 0, since the mutual inductance is the sole mechanism of
coupling in the system.

Finally, it is also illustrative to consider three inductively coupled RL circuits. For
simplicity, we will make the assumption that all mutual inductances and self-inductances
are the same, being m and L, respectively. The result is then
8.8 g . wo
=R +R2T2 +R3T3 +W[a1 1(I —T3)

(63)

I

+ o (Ty — T3)? + a3 T3(Ty — 1)

IVLYLY
where
W = (L — m)(L+ 2m)[2m*R\RyR3 + L(L + m)(R; + R>) (R, + R3) (R, + R3)]
and
a) = RoR3[2mRT + LRy + R) (Ry + R3)]

with similar expressions for o, and «3. Again, the results depend only on the temperature
differences, as expected.

6. Conclusions

In conclusion, we have studied the entropy production rate in systems of linear Langevin
equations. Linearity and its consequences enabled us to compute formulas for (i) the total rate
of change of the entropy, (ii) the entropy production rate per se, (iii) the entropy flux rate
and (iv) the three contributions to the entropy production stemming from different physical
sources. All these formulas were expressed in terms of the mean and covariance matrix of the
random variables in question. This makes their implementation in large-scale systems quite
easy. Our results were applied to electrical circuits of various types. For instance, we have
shown that two circuits which are coupled only via their mutual inductance have a steady-state
entropy production rate related to the difference in temperature between the two circuits.
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Appendix. The three parts of the entropy production rate

In this section, we describe the steps to obtain formulas (49)—(51) from equations (36)—(38).
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A.l. Equation for 1, (t)

We begin with I1; in equation (36), which can be written as
ds
Hl(t):E‘i‘Fl, (A1)
where dS/dt is given by equation (41) and
P
@ = / o log Po(x) dx. (A.2)

Using the FP equation (13) and integrating by parts, we find

ad dx
F] = /gT PO(X) .
ax Po(x)
Similarly to equation (44), we have 9Py(x)/dx = —O, Tx = %0)Po(x). Using also

equation (45), but with g instead of gj”; ie,with F = DO ! —Aand u = b — DO},
we find

— /(Fx +u)" Oy (x — Xo)P(x, 1) dx.
Using the method of equation (43), we obtain
I = —tr(FTOu0) — (Fx+ u)TO (X — Xp).
This can be simplified to read
T =u(A"0,'0 —A) + A% — )"0 (& — ). (A.3)

The last term in equation (A.3) can also be modified as follows. Multiplying both sides
of equation (9) by ® !, we find

0,'A+ATe;" =20,'DO;". (A4)
Now, let y be an arbitrary vector. Noting that y'My = yTMTy, we find
yT@)alAy n yTAT®a1y _ zyTAT@)aly
=2y'0,'De,"y.
Using this and recalling that b = Axy, we may write
(AX— D)0, (¥ — %) = (T — %) ATO, ! (¥ — %)
= (x—%)"0,'DO;" (x — %)
Using this result in equation (A.3) and substituting in equation (A.l), we finally obtain
equation (49).
A.2. Equation for T15(t)

Let us next compute I3 in equation (38). It can be written as
3() =) — ' (1), (A.5)
where I"| (¢) is given by equation (A.2) or (A.3) and

() = fap(x AP ) o Py (Ex) dx

/ . BPO(Ex) dx (A6)

T ax Po(Ex)”
16
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‘We now have

Oy (E
w — —EO; ' (Ex — 50)Po(Ex).
X

Using again the definitions F = DO®~! — A and u = b — DO~'%, we find
M =— /(Fx +u)"E®, " (Ex — %)P(x, 1) dx.

Using the method of equation (43), we obtain
[, = —tr(FTE@®E®) — (FX + u)TE®y(EX — Xy).

The first term reads
—tr(FTE®)E0) = r(A"E®;'E® — ©'DE®,'E®).

For the last term, we may use the cyclic property of the trace to write it as tr(EDE® .
However, since D is diagonal, we have that EDE = D. Whence, the last term is simply
(DO, Y =tr(A), according to equation (42).

Collecting our results, we finally conclude that

N2(t) = r(ATE®, 'E® — A) + (A% — ) TE®; (EX — X)). (A7)
Using this and equation (A.3) in equation (A.5), we finally obtain equation (51).

A.3. Equation for T1,(t)

Finally, we turn to I, in equation (37). We begin by writing
o (Ex) = [(DOy'E — A™E)x + b — DO, ' | Po(Ex)
= (Fx+ u)Py(Ex). (A.8)
We then have
M, = / (Fx+u)"D™" (Fx + u)P(x, 1) dx

=t(F'D7'FO) + (Fx+ u)' D" (Fx + u). (A.9)

Let us first simplify the trace term

w(FTD7'FO) = u[E®; ' (DO;" — 24™)E®] + tr(EA™ D™'A"E®). (A.10)
The first term can be simplified as follows. First, we note the following relation stemming
from equations (19)—(21):

A" = 1(A+ EAE). (A.11)
Using this in the first term of equation (A.10), we find
u[E0, ' (DO —2AME®] = u[E®, ' (DO;' — A)E®] — r(E©, 'EA®).
Similarly to the first term in equation (A.7), the last term in this equation can be written as
tr(ATE Y 'E®). Moreover, the first term is zero, which may be shown by substituting

DO, = 1(A+ ©ATO, ).
Finally, the last term in equation (A.10) can be written as tr( i =1 gire ®). This is a direct
consequence of the structure of A" in equation (21) and the fact that we are assuming D to

be diagonal. In fact, for a non-diagonal D, this simplification would not occur and this term
would not correctly match its counterpart appearing in equation (46). Thus, we conclude that

w(FTD'FO) = r(A™ D~'A"@) — tr(A"E®,'E®). (A.12)

17
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For the second term in equation (A.9), we now have

Fi+u= DO, (EX — X)) + b — A"EX.

Expanding the quadratic form, using equation (A.11) and simplifying finally yields the required
corresponding term in equation (50).
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