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ABSTRACT

In the present paper we study Gelfand—Tsetlin modules defined in terms
of BGG differential operators. The structure of these modules is described
with the aid of the Postnikov—Stanley polynomials introduced in [PS09].
These polynomials are used to identify the action of the Gelfand—Tsetlin
subalgebra on the BGG operators. We also provide explicit bases of the
corresponding Gelfand—Tsetlin modules and prove a simplicity criterion
for these modules. The results hold for modules defined over standard
Galois orders of type A—a large class of rings that include the universal
enveloping algebra of gl(n) and the finite W-algebras of type A.

1. Introduction

The category of Gelfand-Tsetlin modules of the general linear Lie algebra
gl(n,C) is an important category of modules that plays a prominent role in
many areas of mathematics and theoretical physics. By definition, a Gelfand-
Tsetlin module of gl(n) is one that has a generalized eigenspace decomposition
over a certain maximal commutative subalgebra (Gelfand—Tsetlin subalgebra) I'
of the universal enveloping algebra of gl(n). This algebraic definition has a
nice combinatorial flavor. The concept of a Gelfand—Tsetlin module generalizes
the classical realization of the simple finite-dimensional representations of gl(n)
via the so-called Gelfand—Tsetlin tableaux introduced in [GT50]. The explicit
nature of the Gelfand-Tsetlin formulas inevitably raises the question of what
infinite-dimensional modules admit tableaux bases—a question that led to the
systematic study of the theory of Gelfand-Tsetlin modules. This theory has
attracted considerable attention in the last 30 years of the 20th century and
has been studied in [DOF91l, [DFO94, Maz98, [Maz01, Mol99, [Zhe73], among
others. Gelfand—Tsetlin bases and modules are also related to Gelfand—Tsetlin
integrable systems that were first introduced for the unitary Lie algebra u(n)
by Guillemin and Sternberg in [GS83|, and later for the general linear Lie alge-
bra gl(n) by Kostant and Wallach in [KW06a] and [KWO06D].
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Recently, the study of Gelfand—Tsetlin modules took a new direction after the
theory of singular Gelfand—Tsetlin modules was initiated in [FGR16]. Singular
Gelfand-Tsetlin modules are roughly those that have basis of tableaux whose
entries may be zeros of the denominators in the Gelfand-Tsetlin formulas. For
the last three years remarkable progress has been made towards the study of
singular Gelfand-Tsetlin modules of gl(n). Important results in this direction
were obtained in [FGR15, [FGR16l [FGR17, [Zad17, [Vis18| [Vis17, [RZ1§]. In par-
ticular, explicit constructions of a Gelfand—Tsetlin module with a fixed singular
Gelfand—Tsetlin character were obtained with algebro-combinatorial methods
in [RZI8] and with geometric methods in [Vis17]. One notable property of
these general constructions is their relations with Schubert calculus and reflec-
tion groups. As explained below, this relation is brought to a higher level in the
present paper and new connections with Schubert polynomials and generalized
Littlewood—Richardson coefficients are established. We hope that these new
connections, combined with combinatorial results on skew Schubert polynomi-
als, will allow us to better understand the structure of simple objects in the
category of Gelfand—Tsetlin modules (a classification of simple Gelfand—Tsetlin
modules was recently announced in [KTW+19| [Web19]).

The study of Gelfand—Tsetlin modules is not limited to the cases of gl(n, C)
and sl(n,C). Gelfand—Tsetlin subalgebras are part of a uniform algebraic the-
ory, the theory of Galois orders. Galois orders are special types of rings that
were introduced in [FO10] in an attempt to unify the representation theories
of generalized Weyl algebras and the universal enveloping algebra of gl(n, C).
In addition to the universal enveloping algebra of gl(n,C) examples of Galois
orders include the n-th Weyl algebra, the quantum plane, the Witten—Woro-
nowicz algebra, the g-deformed Heisenberg algebra, and finite W-algebras of
type A (for details and more examples see [Harl).

The representation theory of Galois orders was initiated in [FOI4]. In partic-
ular, the following finiteness theorem for Gelfand—Tsetlin modules of a Galois
order U over an integral domain I' was proven: given a maximal ideal m of T’
there exist at least one but only finitely many non-isomorphic simple Gelfand—
Tsetlin modules M such that m annihilates some element of M. This theorem
generalizes the finiteness theorem for gl(n, C) obtained in [Ovs02]. Other impor-
tant results of the Gelfand-Tsetlin theory of gl(n,C) were extended to certain
types of Galois orders in [EMV18| [Harl Maz99]. One such important result is the
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construction of a Gelfand—Tsetlin module with any fixed Gelfand—Tsetlin char-
acter over an orthogonal Gelfand—Tsetlin algebra obtained recently in [EMV18].
Another notable contribution is the new framework of rational and co-rational
Galois orders established in [Har]. Examples of co-rational Galois orders are the
universal enveloping algebra of gl(n), restricted Yangians of gl(n), orthogonal
Gelfand—Tsetlin algebras, finite W-algebras of type A, among others.

The first goal of the present paper is to establish a closer connection of the
singular Gelfand—Tsetlin theory with the theory of Schubert polynomials and
reflection groups. We study a natural class of I'-modules that consists of dif-
ferential operators related to the polynomials introduced in [BGGT3]. These I'-
modules are denoted by D(£2,v) parameterized by a base of roots Q and an
element v in the vector space V. The BGG differential operators have nu-
merous applications in the cohomology theory of flag varieties. In the present
paper, we use a particular aspect of these applications—the Postnikov—Stanley
operators. Postnikov—Stanley polynomials were originally defined in [PS09] in
order to express degrees of Schubert varieties in the generalized complex flag
manifold G/B. The polynomials are given by weighted sums over saturated
chains in the Bruhat order and have intimate relations with Schubert polynomi-
als, harmonic polynomials, Demazure characters, and generalized Littlewood—
Richardson coefficients. One of our main theorems can be written in the fol-
lowing non-technical terms.

THEOREM A: The space of BGG differential operators D(€2, v) is a I'-submodule
of I'* and the action of T on D(£),v) is given explicitly in terms of Postnikov—
Stanley operators.

Using the explicit action of I" we prove the following useful result.

COROLLARY B: Let v € V be standard and let v € I'. Then the Jordan form of
the endomorphism of D(2, v) given by the action of vy consists of Jordan blocks
of size at most ¢(wy) + 1 and eigenvalue y(v). Furthermore, there is at most
one block of this maximal size, and for a generic element v of I there is exactly
one such block.

It turns out that to each v € V and each co-rational Galois order U we can
associate a module spanned by certain BGG operators, which we denote by
V(Q,T(v)). Since the action of I' on BGG operators is locally finite this is a
Gelfand—Tsetlin module. We summarize our main results regarding this module
in the following (minuscule elements are defined prior to Proposition [7.2)).
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THEOREM C: IfU is a co-rational Galois order then the module of BGG differ-
ential operators V (2, T(v)) is a Gelfand—Tsetlin module over U. Furthermore,
under mild conditions on v, an explicit basis of BGG operators for V (2, T (v))
can be provided. Finally, if U is generated by minuscule elements, then the
matrix coefficients coming from the U-action of the generators on this basis are
rational functions expressed in terms of Postnikov—Stanley operators.

The detailed statements that are included in Theorem C are Theorem [(.4]
Proposition [l and Proposition[[.21 All the examples given in [Har] are gener-
ated by minuscule elements, so Theorem C applies to a large class of algebras.
The explicitness of the bases and the action is in the spirit of Gelfand and
Tsetlin’s original paper and will be useful when Gelfand-Tsetlin character for-
mulas are studied. In particular, we use this explicitness in our very recent
work [FGRZ20|, where the Gelfand—Tsetlin support of simple Gelfand—Tsetlin
modules and Verma modules of gl(n) are described.

One further application is our last result, Corollary [[.3] which is a sufficient
condition for our U-modules to be simple in certain special cases. This simplicity
criterion generalizes the criterion for orthogonal Gelfand—Tsetlin algebras ob-
tained in [EMVIS]. It is worth noting that, as an immediate corollary, our result
provides new examples of simple modules of any finite W-algebra of type A.

The organization of the paper is as follows. Preliminary results on reflection
groups, BGG differential operators, and Postnikov—Stanley differential opera-
tors are collected in Section 2. Definitions and properties of Galois orders and
Gelfand—Tsetlin modules are included in Section 3. In Section 4 we discuss gen-
eralities on rational Galois orders. The I'-module of BGG operators is defined
in Section 5, where we study its structure with the aid of Postnikov—Stanley
operators. In this section we also give an upper bound for the size of a Jordan
block of any = of I' considered as an endomorphism of the I'-module of BGG
differential operators. The U-action on the U-module of (a larger space of)
BGG differential operators is studied in Section 6. In Section 7 we provide a
basis of this U-module, prove that it is a Gelfand—Tsetlin module, and provide
a sufficient condition for its simplicity.

We finish the introduction with a few notational conventions, which will be
used throughout the paper. Unless otherwise stated, the ground field will be C.
By N we denote the set of positive integer numbers. A reflection group will
always be a finite group isomorphic to a subgroup of O(n,R) for some n € N
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and generated by reflections. Given a ring R and a monoid M acting on R by
ring morphisms, by R#M we denote the smash product of R and M, i.e., the
free R-module with basis M and product given by

rimy - r2mg = T1m1(7’2)m1mz
for any r1,72 € R and any my, ms € M.
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tions that improved the quality of the paper. V. F. is supported in part by
CNPq grant (304467/2017-0) and by Fapesp grant (2018/23690-6). D. G. is
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ported in part by Fapesp grant (2018/17955-7). P. Z. was supported by Fapesp
fellowship (2016-25984-1) and is a CONICET Postdoctoral fellow. Parts of this
paper were written during P. Z.’s stay at the MPIM in Bonn, and he thanks
the institute for the working environment and resources.

2. Preliminaries on Schubert calculus

We recall some basic facts and fix notation on root systems and reflection groups.
Our definition of root system is slightly different from the classical one, but is
easily seen to be equivalent.

2.1. ROOT SYSTEMS AND REFLECTION GROUPS. Let V be a finite-dimensional
complex vector space with a fixed inner product which we denote by (—, —).
We use this inner product to identify V' with its dual V* and for each a € V'*
we denote by v, the unique element of V' such that a(v') = (v/,v,) for all
v € V. Given a € V* we denote by s, the orthogonal reflection through the
hyperplane ker o, and by s}, the corresponding endomorphism of V*. In this
article a finite root system over V will be a finite set ® C V* such that for
each a € ® we have

(R1) 2NCa = {zxa} and

(R2) s5(®) C ©.
In classical references such as [Hum90] and [Hil82] root systems are defined as
subsets of a Euclidean vector space Vg with R instead of C in (R1). Taking
V = C ®g Vg for an adequate Vg our definition is equivalent to theirs. We use
the definition above since we work with complex vector spaces endowed with
the action of a reflection group.
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We now review the basic features of the theory of root systems. For more
details we refer the reader to the two references above. Fix a root system ®.
The Weyl group associated to @ is the group W(®) generated by {so | o € ®}.
Since we do not assume that the root systems are reduced or crystallographic,
nor that ® generates V3, the group W(®) is a finite reflection group which may
be decomposable, and its action on V may have a nontrivial stabilizer. Any
reflection group G C GL(V) is the Weyl group of some root system ® C V*
[Hil82 §1.2].

Just as in the case of root systems for Lie algebras, for each root system ®
we can choose a linearly independent subset ¥ C ® which is a basis of the R-
span of ® such that the coefficients of each root of ® in this basis are either all
nonnegative or all nonpositive. Such sets are called bases or simple systems,
and their elements are called simple roots. Each choice of a base defines a
partition ® = ®T U —®T, where &7 is the set of all positive roots, i.e., those
whose coordinates over ¥ are nonnegative. If we fix a base ¥ then the set S
of reflections corresponding to simple roots is a minimal generating set of the
reflection group W = W (®), and hence (W, S) is a finite Coxeter system in the
sense of [Hum90, 1.9]. Each s € W of order two is of the form s, for some
a € & [Hum90, Proposition 2.14], and given s € W of order two we denote
by «s the corresponding positive root.

Fixing a base ¥, or equivalently, a minimal generating set S C W, we define
the length £(o) of o € W as the least positive integer ¢ such that o can be
written as a composition of ¢ reflections in S. Any sequence s1, ..., 54, such
that o = s1--- 544 is called a reduced decomposition; notice that reduced
decompositions are not unique. The group W acts faithfully and transitively
on ®. Furthermore,

(o) = lo(@F) N -7,
so W has a unique longest element whose length equals |®|. We will denote this
element by wo (W), or simply by wy if the group W is clear from the context.

For the rest of this section we fix a root system ® with base ¥ and denote by
(W, S) the corresponding Coxeter system.

2.2. SUBSYSTEMS, SUBGROUPS AND STABILIZERS. In this subsection we follow
[Hum90l 1.10], where the reader can find most proofs. Given 2 C ¥ we denote
by ®(2) the root subsystem generated by €. We will call such subsystems
standard. If ¥ C ® is an arbitrary subsystem, then we can choose a base Q@ C ¥
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which can be extended to a base Q of ®. By [Hum90, 1.4 Theorem] W acts
transitively on the set of all bases of ®, so for some 0 € W we have o(Q) = X
and hence o(¥) is standard.

Let 6 C S and denote by Wpy the subgroup of W generated by 6. Then (Wy, 6)
is also a Coxeter system and it determines a standard root system &y C ® with
simple roots Xy = {as | s € 0}. We will refer to subgroups of the form Wy as
standard parabolic subgroups. A parabolic subgroup is any subgroup of W
that is conjugate to a standard parabolic subgroup.

If 0 € Wy, then we can compute its length as an element of W with respect
to the generating set S or as an element of Wy with respect to the generating
set 0. Both lengths turn out to be equal and will be denoted by ¢(c). Since Wy
is also a Coxeter group it has a unique element of maximal length which we will
denote by wg(6). The set

WY ={oecW |l(os) > (o) for all s € §}

is a set of representatives of the classes in the quotient W/Wp, and for each
o € W there exist unique elements o? € W9 and oy € Wy such that ¢ = %0y
with £(c) = £(c?) + £(0g). The element o is the element of minimal length in
the coclass cWj. It follows that (wp)g = wo(f) and therefore w§ = wowo(f) L.

Given v € V we denote by ®g(v) the set of all roots in ® such that a(v) =0,
which is clearly a root subsystem of ®. We also denote by W, the stabilizer of
v in W. We will say that v is ¥-standard, or just standard when ¥ is fixed
or clear from the context, if ®g(v) is a X-standard subsystem of ®. It is easy
to check that v is standard if and only if W, is a standard parabolic subgroup,
and W, = W (®¢(v)). Since Wy(,) = cW,o ™! and ®(o(v)) = o(®o(v)) for all
o € W, it follows that for every v € V there exists ¢ € W such that o(v) is
standard and hence W,y is a standard parabolic subgroup. If v is standard,
then we denote by W the set of minimal length representatives of the left
coclasses W/W,,.

2.3. DIVIDED DIFFERENCES. From this point on V is a fixed finite-dimensional
complex vector space, A = S(V), and L is the fraction field of A. Note that
following the convention of [PS09], we write S(V') for Sym(V*). Also, we fix a
finite root system ® with base 3, and set W = W(®) to be the corresponding
reflection group with minimal generating set S. Thus W acts on A and L, and
we set ' = AW and K = L.
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Since W acts on L we can form the smash product L#W. Recall that the
product in this complex algebra is given over generators by fo-gr = fo(g)ot for
all f,g € Landall 0,7 € W. Dedekind’s theorem on linear independence of field
homomorphisms implies that the algebra morphism L#W < End¢(L) defined
by mapping lo € L#W to the endomorphism f — lo(f) is an embedding. We
identify L#W with its image, and so must be careful to distinguish the result
of applying the endomorphism lo to f, whose result is lo(f), and the product
of lo and f in L#W, which is lo - f = lo(f)o.

For s € W we set

Vs = ! (1—s) e L#W.

S

It is easy to show that for each f,g € L,

Vi(fg) =Vs(f)g+s(f)Vs(g)

so V, is a twisted derivation of L. Notice that ker V is exactly L) and so V
is L{*)-linear. Also it follows from the definition that V(A) C A.

Example: Suppose V =C? and let {z,y} C (C?)* be the dual basis to the canon-
ical basis. Let s be the reflection given by s(z1,22) = (22,21), 80 as = x — y.
Then for each f(z,y) € C[z,y] we have

_ f@y) = fy,2)
vs(f)(xvy)_ T —y .
Notice that this quotient is always a polynomial, since f(z,y) — f(y,z) is an

antisymmetric polynomial and hence divisible by x — y.

Given o € W we take a reduced decomposition o = s1 - - - sy and set
aazvslo"'ovse;

this element is called the divided difference corresponding to o and does not
depend on the chosen reduced decomposition [Hil82 Chapter IV (1.6)]. Notice
though that the definition of 0, does depend on the choice of a base ¥ C ®.

By definition, an L#W-module Z is an L-vector space endowed with a W-
module structure such that the action of L on Z is W-equivariant. A simple
induction on the length of ¢ shows that the divided difference J, defines a K-
linear map over any L#W-module Z. In particular L is such a module, and
since V4(A) C A for any s € S, it follows that A is closed under the action of
divided differences.
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2.4. COINVARIANT SPACES AND SCHUBERT POLYNOMIALS. The algebra A
is Z>o-graded with Ay = V* and I' is a graded subalgebra of A . We de-
note by Iy the ideal of A generated by the elements of I' of positive degree. By
the Chevalley—Shephard-Todd theorem I is isomorphic to a polynomial algebra
in dim V' variables and A is a free I'-module of rank |WW|. Also, a set B C A
is a basis of the I'-module A if and only if its image in the quotient A/Iy is
a C-basis. Furthermore, A/Iy is naturally a graded W-module isomorphic to
the regular representation of W with Hilbert series D .y tY(?) For proofs we
refer the reader to [Hil82, Chapter II, Section 3].

We now recall the construction of the basis of Schubert polynomials of A/Iyy.
This construction is due to Bernstein, Gelfand and Gelfand [BGG73| and De-
mazure [Dem74] in the case when W is a Weyl group, and to Hiller [Hil82
Chapter IV] in the case of arbitrary Coxeter groups. Set

A@) =[] e
aedt

and for each 0 € W set

1
62 = |W|agflw0A(<1>).

[oa

We will often write &, instead of &2 when the base X is clear from the context.
Notice that by definition deg S, = £(c). The polynomials {S, | ¢ € W} are
known as Schubert polynomials, and they form a basis of A as a I-module,
so the projection of this set is a basis of A/Iy as a complex vector space.
With a slight abuse of notation, we will denote the projections of the schubert
polynomials by the same letters. Since K = L we know that L is a K-vector
space of dimension |[W| and so {&, | ¢ € W} is also a basis of L over K. Given
J € L we will denote by f(,) the coefficient of &, in the expansion of f relative
to this basis, so f = >y f(0)Go-

Since Schubert polynomials form a basis of A/Iy, for all o,7,p € W there
exists ¢f . € C defined implicitly by the equation

6,6, =) -6,
pEW

The coefficients ¢ ;. are the generalized Littlewood—Richardson coeffi-
cients relative to the base 3. It follows from the definition that cf . = 0 unless
l(o) +4(t) = L(p). If @ C S, then the space of Wy-invariants (A/Iy)"e is
generated by the set {&, | 0 € W} [Hil82, Chapter IV (4.4)]. In particular, if
o,7 € WY then cb - # 0 implies that p € we.
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2.5. POSTNIKOV—STANLEY OPERATORS. Throughout this paragraph we fix a
root system ® with base ¥ and Weyl group W. All references to Schubert
polynomials are with respect to these data.

We denote by A° the algebra of polynomial differential operators on A. If we
fix an orthonormal basis z1,...,z, of V* then

0 0
Oxy’ " Oz, 1
There is a natural pairing (—, —) : A° x A — C given by (D,p) = D(p)(0),

A=Clxy,...,2,] and A°=C

which allows us to identify A° with the graded dual of A. Furthermore, with
this identification the coproduct of A° is the adjoint of the multiplication of A.
For every graded ideal I C A we write

Hr={De A |(D,f)=0forall fel}.

Since the pairing (—, —) is non-degenerate, the space H; is naturally isomorphic
to the graded dual of A/I. We denote by ©, the unique element in Hy,, such
that (D,,6;) = .. It follows that the set {D, | ¢ € W} is a graded basis
of Hrp,,, dual to the Demazure basis of A/Iy . Also, for each § C S the set
{D, | 0 € W is a graded basis of the dual of (A/Iy)"e.

In [PS09], Postnikov and Stanley introduce new operators indexed by pairs
of elements o, 7 € W and given by

Do = D,
peEW

Notice that D, , = D, that D, , = 1, and that ®, , = 0 unless 7 < ¢ in the
Bruhat order of W. These operators have the property that

A(QG) = ZQT,O‘ XD, = ZQT ® 9770

which can be checked by evaluating A(D,) in the set {6, ® &, | 0,7 € W}.

Given D € A° we denote by D° the map (D,—) : A — C. The formula
for the coproduct of the Demazure operators is equivalent to the fact that for
any f,g € A

D0(fg)=>_ D9, (£D%g) =D 22D, (9)-

It follows from the definition that each operator D% is A" -linear. By a slight
abuse of notation, we denote by D9 the extension of this operator to the alge-
bra L of rational functions regular at 0.
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PROPOSITION 2.1: Let f € L be regular at zero and let o € W. Then

9,(£)(0) = (95 f)(0).

Furthermore, if g € L is also regular at 0 then

D(f9) =D _ Dy, (HDY(9) = Y _Dp(H)D},(9)-
p<o p<o

Proof. Let us first prove that the result holds when f,g are polynomials.
Let I,-1 be the operator adjoint to d, with respect to the pairing (—, —). As
shown in [PS09, Theorem 6.5] D, = I,-1(1), so (Do, f) = (1,0, f) = 9,(f)(0).
We have already discussed the product formula in the preamble to this Propo-
sition. Let A = I,;'T. We have seen that the differential operators ©Y and
the divided differences 0, are I'-linear, and hence they are also A-linear. Since
L = AT the result follows.

3. Galois orders and Gelfand—Tsetlin modules

Throughout this section I' is a noetherian integral domain, K is its field of
fractions, and L is a finite Galois extension of K with Galois group G. Hence
K=1L¢.

3.1. GALOIS ORDERS. We first recall the notion of a Galois ring (order), that
was introduced in [FO10]. Let M be a monoid acting on L by ring automor-
phisms, such that for all t € M and all ¢ € G we have c ot oo~ € M. Then
the action of G extends naturally to an action on the smash product L#M.
We assume that the monoid M is K-separating, that is, given m,m’ € M, if

m|g = m/|kg then m =m’.

Definition 3.1: Set K = L#M.

(i) A Galois ring over I is a finitely generated I'-subring U C (L#M)%
such that UK = KU = K.

(ii) Set S = '\ {0}. A Galois ring U over T' is a right (respectively,
left) Galois order, if for any finite-dimensional right (respectively left)
K-subspace W C U[S™1] (respectively, W C [SYU), the set WNU is
a finitely generated right (respectively, left) I-module. A Galois ring is
Galois order if it is both a right and a left Galois order.
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We will always assume that Galois rings are complex algebras. In this case
we say that a Galois ring is a Galois algebra over I'.

3.2. PRINCIPAL AND CO-PRINCIPAL GALOIS ORDERS. Notice that L#M acts
on L, where for each X = > _\(l,ym € L#M we define its action on f € L by

X(f) =D Lum(f).
As an example of a Galois order, Hartwig introduced the standard Galois
I'-order in K defined as
Kr={XeK|X({T)cTl}

see [Harl, Theorem 2.21]. In this article the term “standard Galois order” has
a different meaning, and for sake of clarity will refer to the algebra above as
the left Hartwig order of K. A principal Galois order is any Galois order
U C Kr. By restriction I is a left U-module for any principal Galois order, and
hence its complex dual I'* is a right U-module.

Denote by M~! the monoid formed by the inverses of the elements in M.
Following [Har], we define an anti-isomorphism —1 : L#M — L#M~! by

(Im)T =m=t - l=m Y(l)ym™?
for any | € L,m € M. The right Hartwig order is thus defined as
rK={Xek|X(')cT},

and a co-principal Galois order is any Galois order contained in pK. Thus I'*
is a left U-module for any co-principal Galois order, with action given by

X'X:XOXT
for any X € U and x € I'*.

3.3. GELFAND—TSETLIN MODULES. Let U be a Galois order over I'" and let M
be any U-module. Given m € Specm I we set

Mm] = {z € M | m*z =0 for k> 0}.

Since ideals in SpecmI' are in one-to-one correspondence with characters
x : I' — C we also set

Mx]={z € M| (y—x(7))fx=0forall y € I and k > 0}.

If x is given by the natural projection I' — I'/m = C, then M[m] = M|x].
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Definition 3.2: A Gelfand—Tsetlin module is a finitely generated U-module M
such that its restriction M|r to I' can be decomposed as a direct sum

M= € Mm]
méeSpecm I
A U-module M is a Gelfand—Tsetlin module if and only if for each z € M the
cyclic I'-module T - z is finite dimensional over C [DFO94] §1.4], which easily
implies the following result.

LEMMA 3.3: A U-submodule N of a Gelfand—Tsetlin module M is again a
Gelfand—Tsetlin module. If v € N, then its projection to N[m] lies in N for
each m € Specm I

For every maximal ideal m of I" we denote by ¢(m) the number of non-
isomorphic simple Gelfand—Tsetlin modules M for which M[m] # 0. Sufficient
conditions for the number ¢(m) to be nonzero and finite were established in
[FO14].

Consider the integral closure I of I' in L. It is a standard fact that if ' is
finitely generated as a complex algebra, then any character of I' has finitely
many extensions to characters of I'. Let m be any lifting of m to I', and M,
be the stabilizer of m in M. Note that the monoid My, is defined uniquely up
to G-conjugation. Thus the cardinality of M., does not depend on the choice
of the lifting. We denote this cardinality by |m|.

THEOREM 3.4 ([JFO14, Main Theorem and Theorem 4.12]): Let I' be a com-
mutative domain which is finitely generated as a complex algebra and let

U C (L#M)C

be a right Galois order over I'. Let also m € SpecnI' be such that |m| is finite.
Then the following hold:

(i) The number ¢(m) is nonzero.
(ii) If U is a Galois order over T, then the number p(m) is finite and uni-
formly bounded.
(ii) If U is a Galois order over I' and T' is a normal noetherian algebra,
then for every simple Gelfand—Tsetlin module M the set dim M[m] is

uniformly bounded.
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4. Rational Galois orders

Recall that V' is a complex vector space with an inner product. We set
A=S5(V) and L =Frac(A).

Recall that an element g € GL(V) is called a pseudo-reflection if it has finite
order and fixes a hyperplane of codimension 1. By definition every reflection
is a pseudo-reflection, and the converse holds over R but not over C, which is
why finite groups generated by pseudo-reflections are called pseudo-reflection
groups or complex reflection groups. We fix G C GL(V) a pseudo-reflection
group. As usual the action of G on V induces actions on A and L, and we denote
by T the algebra of G-invariant elements of A and set K = LC.

4.1. Let L — Endc(L) be the C-algebra morphism that sends any rational
function f € L to the C-linear map my : f' € L — ff’ € L. Although
Endc(L) is not an L-algebra, it is an L-vector space with f - = my o ¢ for all
© € End¢(L). Also, G acts on Endc(L) by conjugation and

o-mfzoomfooflzmg(f)

for each o € G, so the map f — my is G-equivariant. For simplicity we will
write f for the operator my¢.
Given v € V we define a map a, : V. — V given by

a,(v') =7 +v.
This in turn induces an endomorphism of A, which we denote by t,, given by

tv(f) = foay;

we sometimes write f(z + v) for t,(f). Each map ¢, can be extended to a C-
linear operator on L and ¢, 0t = t,4,/, so V acts on L by automorphisms and
we can form the smash product L#V. Once again there is an algebra morphism
L#V — Endc¢(L), and the definitions imply that this map is G-equivariant.

LEMMA 4.1: Let G, V, and L be as above, and let Z C V be an arbitrary
subset. Then the set {t, | z € Z} C Endc(L) is linearly independent over L,
and the map L#V — Endc(L) is injective.
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Proof. Put
N

T=7) fit.

i=1
where f; € L™ and each z; € Z, and assume T' = 0. Given p € A it follows from
T(p) =0 that

PY i = Yl + 2) — pla)lfi

Let v € V be arbitrary and choose a polynomial p of positive degree such that
p(v) = p(v + z;) for all j # i but p(v) +1 =p(v+ 2). Then 0 = p(v + 2) fi(v)
so fi(v) = 0. Since v is arbitrary this implies that f; = 0 so the set {¢t, | z € Z}
is L-linearly independent. Since the morphism L#V — Endc(L) is L-linear
and sends an L-basis of L#V to a linearly independent subset, it must be
injective.

4.2. CO-RATIONAL GALOIS ORDERS. Given a character y : G — C* the space
of relative invariants

G _ —
Ay ={feA|o-p=x(o)pforallc e G} CA

is a A%-submodule of A. By a theorem of Stanley [Hil82, 4.4 Proposition] A{

is a free A9-module of rank 1. Furthermore,

dy = H (am)™

HeA(G)

is a generator of AS

, where A(G) is the set of hyperplanes that are fixed point-
wise by some element of G, each ay is a linear form such that keray = H,
and ag € Z>¢ is minimal with the property det[s};]*# = x(su) for an arbitrary
generator sy of the stabilizer of H in G. Note that ay is independent of the

choice of sy, and that if G is a Coxeter group then ay is either 1 or 0.

Definition 4.2 ([Harl Definition 4.3]): A rational Galois order, resp. co-
rational Galois order, is a subalgebra U C End¢(L) generated by I and
a finite set of operators X C (L#V)Y such that for each X € X there exists
x € G with dy X € A#V, resp. Xd,, € A#V

As shown in [Har] every rational Galois order is isomorphic to a co-rational
Galois order, and for technical reasons we will restrict to the latter. Examples
of co-rational Galois orders include the enveloping, quantized enveloping and
W-algebras of gl(n,C) for all n > 1.
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4.3. Given X € L#V we define its support as the set of all v € V such that ¢,
appears with nonzero coefficient in X. Note that the support is well-defined
since the set {t, | v € V} is free over L. We denote the support of X by
supp X. Given a co-rational Galois order U C (L#V )% we denote by Z(U) the
additive submonoid of V' generated by the supports of all its elements. By [Harl,
Theorem 4.2] U is a co-principal Galois order in (L#Z(U))%.

Let v € V, let ev, : ' — C be the character given by evaluation at v, and
let m = kerev,. Then the cyclic U-module U - ev, C I'* is a Gelfand—Tsetlin
module [Harl Theorem 3.3], and since ev, € U - ev,[m] we have a new proof
that ¢(m) # 0 for rational Galois orders. In the following sections we show that
this module is spanned by BGG operators, and give an explicit presentation in
special cases including all of Hartwig’s examples.

5. Structure of I'-modules associated to BGG operators

Throughout this section we fix a complex vector space V and a root system ®.
We also fix a root subsystem U C ® with base Q C ¥. We denote by G the Weyl
group associated to ® and by W the one associated to . Like before, A = S(V),
L = Frac(A), T = A%, and K = L¢. Since W C G, the group W also acts
on the vector spaces A, I', etc. All Schubert polynomials, Postnikov—Stanley
operators, standard elements, etc. are defined with respect to the subsystem ¥
and the base 2 unless otherwise stated.

5.1. For every v € V and any 0 € W we denote by ©¢ the differential operator
sending a rational function f to D, (f)(v), whenever the latter is defined. We
denote by DY the restriction of this differential operator to I'. If v is Q-standard
then we set

D(Qv)= (DL | o€ W)c CTI™.

We call D(Q2,v) the I'-space of BGG differential operators associated to
and v.

LEMMA 5.1: Let v € V and let 7V : A — A/Iyw be the natural projection.

(a) " (t,(I)) = (A/Tw )"
(b) Ifv is Q-standard then the set {DY | o € W'} is a basis of D(,v).
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Proof. Recall that K is the fixed field of G in L, and hence the fraction field
of I'. Since the extension L" C L is a Galois extension with Galois group W,
the field LW¢,(K) C L must be the fixed field of a subgroup W C W. For
o € W we have that

g Ot'u|K = to(v) @] O’|K = ta(v)|K-
Since o € W if and only if o o t, = t,, it follows that W = W,. Thus
LYt (K)=L1""

which implies that AW¢,(I') = AW,

Since all non-constant polynomials in A" are in the kernel of 7V we see that

FW(Ath(F)) =" (tu ('),

so this last space equals 7"V (AW+) = (A/Iw)"». This proves the first part of
the lemma. It follows that for each 0 € W there exists 7, € I' such that

WW(tv("YU)) = G,,

so DY(vs) = 00,7, and hence the set in the statement of part (b) is linearly
independent.

As we saw before, the set {DY | o € W'} is a basis for the dual of the algebra
A = (A/Iw)">. Now A* has the structure of an A-module, and hence I' acts
on A* through the map 7%V ot, : I' — A. The element DY - v is by definition
the map a — D%(t,(v)a), so using Proposition 21 we have

Do(t(Ma) = D D0,(1(1)D7(a) = ¥()Dg(a) + 3 D7, (1)D%a),
<o T<0o
where we have used that D% ot, = DY. Since a = t,(v’) for some 7/ € T, we
can rewrite this as

(v- D) =v@)DL(Y) + D DY (MDY

T<Oo
This shows that D(Q,v) is a [-submodule of T'*, isomorphic to the pullback
of A* as A-module through the map 7" o t,. The above discussion implies
Theorem A, and more precisely, the following theorem.

THEOREM 5.2: Let ve V. Then D(Q2,v) is a'-submodule of I'* and for eachy €T
v DY =~)Dy + Y DY, (7)DL.

T<0o
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5.2. THE STRUCTURE OF D(€,v) As I'-MODULE. The modules D(Q,v) will
appear as ['-eigenspaces of certain Gelfand—Tsetlin modules, so it is important
that we record some facts regarding their I'-module structure. We thank the
reviewer for the observation that this structure is given by the action of a Frobe-
nius algebra on its dual, which allowed for a more streamlined presentation.

Recall that by definition a finite-dimensional algebra A is Frobenius if its
dual is isomorphic to A as a right or left A-module. By [Lam99 (16.55)], a
commutative Frobenius algebra has a non-degenerate symmetric bilinear form.
Also recall that a finite-dimensional graded algebra

A=A 1@ & Ay

is said to satisfy the hard Lefschetz condition if there exists an element | € A;
such that for each i < d/2, multiplication by [9~2!
between A; and A4_;.

Recall that WV is the set of minimal length representatives of the left W,,-

induces an isomorphism

cosets.

LEMMA 5.3: Let v € V be Q-standard, let A = (A/Iw)"*, and let wy be the
longest element in W". Then A is a Frobenius algebra with the hard Lefschetz
property. Furthermore, the non-degenerate bilinear form of A is given by

(a,b) € A x A DY, (ab) € Cu.

Proof. The hard Lefschetz property is a classical result in the case when W is a
Weyl group, and for all finite Coxeter groups is established in [MNW11| McD11].

The following argument was suggested by D. Speyer in [Spel7]. By the
Chevalley—Shephard-Todd theorem A" and A"+ are polynomial algebras, gen-
erated by algebraically independent sets pi,...,p, and q1,...,qs respectively.
Clearly p; € A"v and

A=Clq,...,qs)/J,

where J is the ideal generated by the p;’s. This implies that A is a finite-
dimensional complete intersection, hence a graded artinian self-injective ring,
and hence a commutative Frobenius algebra. Since its top degree component
is spanned over C by &y, this bilinear form is given by sending (a,b) to the
coefficient of &,y in the product ab, which is equal to 923 (ab).
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PROPOSITION 5.4: Suppose that v € V is Q-standard and let
T = Z a,D}.
ceWv

(a) The element x is a cyclic generator of D(Q2,v) if and only if a,y # 0.
(b) The element z is an eigenvector of T" if and only if a, = 0 for all o # e.

—~
o
~

For each v € T the element v — (v) acts as a nilpotent operator on
D(Q,v). Its nilpotency order is at most

r=0wh) + 1,

and generically equals r.
(d) Let v' € V.. The space D(Q,v) N D(Q,v") is nonzero if and only if v’ is
in the G-orbit of v. Furthermore, if v' is in the W-orbit of v then

D(Q,v) = D(Q,v).

Proof. Set
A= (A/IW)Wv.

By construction D(£,v) is isomorphic as T-module to the pullback of A* as
A-module through the map 7" o t,. It follows from Lemma that A is
isomorphic to A*, and the isomorphism maps a to a - @gg. Since A is cyclically
generated by any element whose projection to Ay is nonzero, A* is cyclically
generated by any element whose projection to the top component is a nonzero
multiple of D%, Part (@) is a restatement of the latter in terms of the action
of I' on D(Q,v). Also, since the only eigenvector of A acting on itself is G,

the only eigenvector of the action of A on A* is DY, and this is equivalent to

e
part (B).

Since A & A*, an element of A acts by zero on A* if and only if it is zero.
Clearly for any a € A>1 we have a” = 0. Now the elements such that a"~1 =0
form a Zarisky closed subset of A, and again by Lemma there is an element
| € Ay such that ["=! # 0. It follows that the elements a € A>; such that
a” # 0 are a dense open Zarisky set of A. Since

V(o (y = 7(v))) € Az,
it follows that (v —~(v))" acts by zero on D(2, v), and generically (y—~(v))"~*
acts by a nonzero linear transformation. This proves part (@).
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Each element in D(Q, v) is a generalized eigenvector of v with eigenvalue ~(v).
Thus if D(Q2,v) N D(Q,v") # 0 we must have y(v) = v(v) for all v € T' which
implies that v' € G - v. Now if v/ = 7(v) for some 7 € W then

Dy = Dg ot lr=Dgorot,or ! [r=DYorot, |r.

Since DY o 7 lies in Hyy, for each p € W there exist ¢, € C such that
0 0
Dyo7 = Z oD,
P

Hence, D) = >, ¢ Dy, which proves part (d).

Part (@) of the last proposition implies Corollary B in the Introduction.

6. Action of a co-rational Galois order

In this section G is a reflection group acting on V, and hence on A = S(V') and
on its field of rational functions L = Frac(A). We fix a co-rational Galois order
U C (L#V)% and denote by Z C V the additive monoid generated by supp U.
The algebra L#V has an anti-automorphism, given by (ft,)’ = t,f for each
f € Land v € V. The action of U on I'* is given by

X~<,0:900XJf

for each X € U and each ¢ € I'*. Thus U acts by composition with elements
XT € L#V such that d, XT € A#V for some y € G.

We assume again that ® C V is a root system with base ¥ and G = W (®).
We denote by ¥ a standard subsystem with base Q@ C ¥ and set W = W ().
All Schubert polynomials, BGG and Postnikov—Stanley operators appearing in
this section are defined with respect to €2 unless otherwise stated.

6.1. Recall that for each ¢ € G we introduced a divided difference operator as
an element of the smash product L#G. Since Endc(L) is an (L#G)-module,
given X € End¢ (L) and o € G, we obtain a new operator on L by taking d,(X).
For example, if s € S then

1

0s(X)= (X —s0Xos 1)

Qs
Notice that, in general, this operator is different from the composition of 0,
(regarded as an element of Endc (L)) and X. In the following lemma we collect

some properties of these operators.
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LEMMA 6.1: Let X € Endc(L).

(a) For each o € G we have 0,(X)|x = 05 0 X| k.
(b) Let v € V be Q-standard. If o € W* and 7 € W,, then

DY ifl(oT) =L(0) + (7);

D00, =
0 otherwise.

(c) Let U C W be a standard subsystem, Wy C W be the corresponding
parabolic subgroup, wg be the longest word in W, and

A(R)? = A(T)/A(D).
If X € Ende(L)We, then

Do X = [Wylde (XA(R)),
oceW

Proof. Ttem (@) is clear for o = s from the formula for d5(X) given above. The
result follows by a simple induction in ¢(o).

We now prove part (Bl). The fact that 7 € W, implies that ¢, 0 8, = 0, o t,.
Now recall from Proposition 2] that D% = evg 0d,, so

D00, =200, ot,

evp 0y, ot, =DV if L(oT) = l(0) + £(T);

0 otherwise.

=evgod, 00, 0ty =

Finally we prove part (@). The statement of [Hil82) Chapter IV (1.6)] implies
that
1
60.;0 = Z (_1)“0)0‘
A(Q) oG

as operators on L, and since the map L#G — Endc(L) is injective, the identity
holds in L#G. Using that and the fact that o-A(®) = (—1)““)A(®) we deduce
that

oceCG

for any X € Endc(L). Certainly, the analogous identity holds if we replace G
by any subgroup and ® by the corresponding root subsystem.
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Let wp and wy be the longest elements of W and Wy, respectively. Then
wow; + € woWy and its length equals £(wp) — £(w1), the smallest possible length
of an element in the coset woGp. Thus wf§ = wow; * and

Z o-X= awo (XA(@)) = 60.;880.11 (XA(E/)A(\I/)G)
occW

Now both A(¥)? and X are Wy-invariant, so the last expression equals
Oug (XA(D)°0,, (A(D))) = [Wo| 0 (X A(T)"),
which completes the proof.

The following lemma shows that the span of the BGG operators is stable
under the action of certain elements of L#V .

LEMMA 6.2: Let v € V be Q-standard, let 0 € VY, 7 € W, and let F, € L be
regular at v. Then

Yv<or D or (F2)D*if L(oT) = £(0) +£(7);

DY -0 (Fut,) =
0 otherwise.

Proof. As mentioned above, the fact that 7 € W, implies that t, 0 9, = 0, ot,,.
Thus using parts (@) and (D)) of Lemma 6.1 we get

DY 00, (F.t.) |r=2% 0 9; o (to(F.)tysz) Ir

D0, 0 (tu(E)toss) I i o) = £(0) + £(7);

0 otherwise.

The result now follows by evaluation at « € I using Proposition 211

6.2. U-SUBMODULE OF I'* ASSOCIATED TO v. Recall that to each v € V we
associate the character ev, : I' — C given by evaluation at v. Since I' consists
of G-symmetric polynomials, ev, = ev,(,) for any o € G, so we can assume that
v is -standard. Furthermore, note that ev, = D? in D(Q,v) C I'*.

Definition 6.3: Let v € V be standard. We denote by V (€, T(v)) the complex
vector subspace of I' spanned by the set {D?"* | 2 € Z(U), 0 € W}. We call
V(,T(v)) the U-module of BGG differential operators associated to Q
and v (see Theorem [6.4]).
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Recall from part (d)) of Proposition [5.4] that DY** is a linear combination of
(=) With (v + 2) the unique Q-standard element in the WW-orbit
of v+ z. Since two -standard elements can be G-conjugates, the generating

operators D,

set given above is not necessarily a basis.

Recall that ®g(v) is the set of all roots in ® such that a(v) = 0. The
following theorem shows that under certain conditions the space V(Q,T(v)) is
a U-module. This theorem generalizes [EMV18, Theorem 10] and [RZ18 5.6
Theorem]| to rational Galois orders.

THEOREM 6.4: Let v € V be standard and assume that ®o(v+z) C ¥ for each
z € Z. Then V(Q,T(v)) C T* is a Gelfand—Tsetlin U-module.

To prove this theorem, we will first show that the generators of U can be
expressed as operators of the form presented in Lemma in a suitable way.
Recall that for each z € V there exists some {2-standard element in the orbit
W . z. Thus, given Z C V that is stable by the action of W, we can choose a
set of Q-standard representatives of Z/W.

PROPOSITION 6.5: Let X € (L#V )% and assume that there exists x € G such
that Xd, € A#V.

(a) For each z € supp X there exists f, € A= such that
I=
X = Z dz tz’
z€supp X X

where d7, is the product of all o € ®F dividing d,, such that a(z) # 0.

(b) Let Y be a set of Q-standard representatives of supp X/W, and for
eachy € Y denote by w§ the longest element in WY, and by A(V)Y the
product of all roots in ¥+ with a(y) # 0. Then

L hAw)
X = 8, .
3wy % (M 0)

Proof. Fix z € supp X and let h be the coefficient of ¢, in X, which is well
defined by Lemma L1l Since X is G-invariant we know that o - X = X for any
o€ G.,s00a(h)=nh. Writing h = ! we have

X

g g o9
o- =

dy dy  x(9)dy
Therefore, o - g = x(0)g for all 0 € G..
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Denote by x’ the restriction of x to G,. Observe that G, is the reflection
group generated by the reflections fixing z and it acts on A by restriction. Thus,
by Stanley’s theorem, the space of relative invariants AS,Z is generated over A=
by d,, and this polynomial is the product of all roots o € ®* dividing d,, such
that a(z) = 0. Therefore, g = f.d, for some f, € A%, which implies that

g f= I=

dy  dy/dy  di

This proves part (@).
Since X is G-invariant, it is clear that

_ 1 x-S ! Ner )
X W] ag‘/o X y;/lvm U;VU (d%ty .

As we mentioned before, the coefficient of ¢, is Gy-invariant, and hence it is
Wy-invariant. After applying Lemma [6.1l@) to W, we obtain

fy fyA(T)Y
occW X X
and the result follows.
Proof of Theorem By Theorem[5.2 the action of I on V(Q, T'(v)) is locally
finite, so we only need to show that it is a U-submodule of I'*. Since

V(Q,T(v+2)) = V(Q,T())

for each z € Z(U), it is enough to show that DY - XT lies in V (2, T(v)) for any
generator X of U.

Set W = Wy, and denote by T the corresponding parabolic subgroup, by Qits
base and by wp the longest word in w. According to part (b)) of Proposition [6.5]
XT can be rewritten as a sum of operators of the form Oy (Fyty), where

F, = f,A(0)Y/dY
and y is Q-standard. Thus it is enough to show that
D - 95y (Fyty) € D(2,v)

for y a Q-standard element. By Lemma it is enough to show that Fj is
regular at v.
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Recall that dy is the product of all roots a, such that x(s) = —1 and
as(y) # 0. If one of this factors is such that as(v) = 0, then as € Py(v).
Since ®g(v) C ¥ by hypothesis, it follows that ®o(v) C ¥, and hence a; is
also a factor of A(U)Y. Thus the term A(¥)Y in the numerator cancels out
all the linear terms in the denominator which are zero at v and hence F} is
regular at v.

7. Explicit bases and formulas for BGG modules

As mentioned earlier, our original aim was to produce modules over co-rational
Galois orders containing an arbitrary character ev,. In the previous section
we showed that the module U - ev, is contained in the span of certain BGG
operators and the action of the generators of U can be described in terms of
Postnikov—Stanley operators. We now show how in some cases we can give
a basis for these spaces and produce explicit formulas for the action of the
generators of U. In particular, the next two propositions give bases and explicit
formulas for all modules V(€Q,T(v)) over the co-rational orders presented in
[Harl Sections 4, 5].

We fix a co-rational Galois algebra U and denote by Z = Z(U) the monoid
generated by its support. As in the previous paragraph, we fix a subset of
simple roots 2 C ¥ and denote by ¥ the corresponding standard parabolic root
system and by W the corresponding standard parabolic subgroup of G.

7.1. We begin by finding a basis for some modules of the form V(Q, T (v)).
Since Z is stable by the action of G and acts on V' by translations, the smashed
product G#Z acts on V' and we say that v € V is a seed for Z if it is 3-standard
and its stabilizer in G#Z is equal to G,,. We denote by D(G,,,Z) the set of all
elements z € Z such that a(z) > 0 for all roots in the root system associated
to Gy, that is, z lies in the positive chamber of G,.

PropoSITION 7.1: Suppose W C G contains all elements 0 € G acting non-
trivially on Z, and let v be a seed with respect to Z. Then we have a direct sum
decomposition

VQ,Tw)= @ DO v+2)
2€D(Gy,2Z)

In particular, the set {DY"* | z € D(Gy,Z),0 € W7} is a basis of V(Q,T(v)).
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Proof. Given 2z’ € Z there exists a unique element z € G, - 2’ lying in the
positive chamber of G,; furthermore, z € W, 2’ since W contains all elements
acting nontrivially on Z. Thus by part (d)) of Proposition 5.4l for each o € W
the BGG operator Dg“, lies in the space D(Q,v + 2).

Given z,w € D(G,, £) and ¢ € G such that v+z = o(v+w), the fact that v is
a seed implies that o € G,,. Since there is a unique element in G, - zND(G,,, L),
it follows that z = w. Again by Proposition 5.4] if 2 # w the corresponding
BGG operator spaces are eigenspaces of I' with different eigenvalues, and hence
the sum in the statement is direct.

This proposition raises the question of how common the seeds for a given Z
are. We leave as an exercise to the reader the following statement: if W is
a crystallographic group and the projection of Z to V/V& covers the weight
lattice of W, then for every v € V there is a seed in (G#Z)v. Thus in this case
every module V(€,T(v)) is covered by the proposition.

7.2. Let us say that e € V is minuscule if a(e) € {1,0,—1} for every root a.
This is analogous to the minuscule weights in Lie theory. Given f € A and
minuscule e € V| we set

X(f,e) =symy, (teA(J;>e).

All the examples of co-rational Galois orders from [Har, Sections 4, 5] are gen-
erated by elements of this form. In particular, Z is generated by minuscule
elements and hence «(Z) C Z for any root . In this case we have explicit
formulas for the action of X (f,e) on a module of the form V(Q,T(v)) in the
basis given by Proposition [T

PROPOSITION 7.2: Suppose W C G contains all elements 0 € G acting non-
trivially on Z, and let v be a seed with respect to Z. Suppose furthermore that
a(Z) CZ for all a € 0.

Let f € A and let e € V' be a minuscule element. Then for all z € D(G,, Z)
and all 0 € W7 we have

X pyt = 30 3 v (N o

)y
yey ‘rgawg
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where U is the root system corresponding to W, . and wy is its longest element,
and Y is the set elements in W - e lying in the positive chamber of W, , and
such that

lowl) = L(o) + L(w]).
The BGG operators on the right-hand side are in the basis presented in Propo-
sition [Z1l

Proof. The set Y in the statement is a choice of representatlves of supp X
modulo the base 2 C  of the standard parabolic root system \I/ so the proof
follows the same reasoning as the one of Theorem 6.4

To see that v + z + y lies in the positive chamber of W, notice that if o € ¥
is such that a(v + z) > 0, then the fact that e is minuscule implies that
a(v+z+y) >0 for all y € Y. On the other hand, if a(v + z) = 0, then
by the choice of y we have

a(v+z+y) =aly) 20.

7.3. We conclude this article with a simplicity criterion for modules over a
special class of Galois orders. Again, this covers the examples given above.
This criterion was originally formulated for OGZ algebras by Early, Mazorchuk
and Vishnyakova in [EMV18, Theorem 4.5]. With the aid of Propositions [5.4]
[T and [T2 the proof reduces to the same combinatorial argument given in the

reference so we omit it.

COROLLARY 7.3: Suppose that
V=C"®...¢C"
and that
G =S5p, X+ XS,

with n; € N. Let ey ; be the i-th element in the canonical basis of C™ and let
U be the co-rational Galois order generated by elements

Xi=X(fi,ex1); Yi=Y(gisern,) (1<i<k<r).

If v is a seed and f;, g; are never zero in v + Z, then V(Q,T(v)) is a simple
module.

For a refined version of this corollary for U = U(gl(n,C)) see [FGRZ20,
Section 4].
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