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Abstract

Random walks find extensive applications across various complex network domains, includ-

ing embedding generation and link prediction. Despite the widespread utilization of random

walks, the precise impact of distinct biases on embedding generation from sequence data

and their subsequent effects on link prediction remain elusive. We conduct a comparative

analysis of several random walk strategies, including the true self-avoiding random walk

and the traditional random walk. We also analyze walks biased towards node degree and

those with inverse node degree bias. Diverse adaptations of the node2vec algorithm to

induce distinct exploratory behaviors were also investigated. Our empirical findings demon-

strate that despite the varied behaviors inherent in these embeddings, only slight perfor-

mance differences manifest in the context of link prediction. This implies the resilient

recovery of network structure, regardless of the specific walk heuristic employed to traverse

the network. Consequently, the results suggest that data generated from sequences gov-

erned by unknown mechanisms can be successfully reconstructed.

Introduction

Network science has emerged as an interdisciplinary field for modeling and understanding

complex phenomena across diverse domains. Many intricate systems can be effectively repre-

sented and modeled through complex networks, this includes biological and physical systems

[1], textual content [2–5], epidemics [6], human mobility [7], among others [8]. Characterizing

the elements of such systems—nodes and edges—are a crucial task in the field, and many mea-

sures have been developed to account for that [8]. These measures are vital in executing vari-

ous tasks such as classification and prediction, particularly when dealing with real data that

may contain partial, missing, or noisy information in the network.

Prediction of network edges requires the adoption of metrics and models that capture not

just local pairwise relationships, but also the local and global characteristics of the network.

Nodes within the same community, for example, may exhibit similar patterns and are more

likely to connect [9]. Furthermore, network models that encapsulate the dynamics of real-

world systems, such as the BA, geographic, or gravity models, can be harnessed to predict con-

nections [8]. The prediction task essentially involves determining the likelihood that two
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distinct nodes connect [10], which can be derived from a similarity or distance metric associ-

ated with nodes embedded in a particular space.

Many different techniques have been designed to embed nodes from a network to a space

in which distances or similarities can be defined [11], including approaches such as LLE [12],

Laplacian Eigenmaps [13], and graph factorization [14]. Nonetheless, these traditional meth-

ods often struggle with large graphs due to costly calculations and approximations that com-

promise their efficacy. Recently, neural network embeddings of graphs have emerged as an

excellent trade-off between performance and computational speed for link prediction tasks

[15, 16].

Neural network graph embeddings aim to represent the network in a lower-dimensional

space while preserving key attributes such as proximity and community structure [17, 18]. A

few successful examples of incorporating random walks and embeddings in downstream tasks

include Deepwalk [19], LINE [20], Grarep [21], node2vec [22], and struc2vec [23].

Despite the successes, several open questions persist, particularly regarding the optimiza-

tion of these models and the role of random walks in information extraction from networks.

Previous work has compared different random walks for knowledge acquisition [24] and net-

work reconstruction tasks [25], among others [26]. Our research primarily focuses on the

information extraction process from node sequences generated by random walks. We primar-

ily explore two questions: (1) Do different random walks exhibit distinct performances when

used as input to an embedding model in a link prediction task? (2) Do different walks extract

similar node similarity information from the network? We investigated these research ques-

tions by employing four established classical random walk techniques [25]. We used the tradi-

tional random walk (RW), the true self-avoiding walk (TSAW), degree-biased walk (DG), and

inverse-degree-biased walk (ID). Furthermore, we explored five distinct node2vec parameter

settings across a total of 37 networks.

Our findings indicate that different walks perform similarly, exhibiting only a slight 3% and

4% difference in terms of AUC and AUC PR, respectively, when assessing the median link pre-

diction performance. The pattern persists even when different walks are compared within the

same graph. Regarding node similarities, embeddings generated by different walks displayed a

robust positive Pearson correlation. Our dataset revealed the lowest correlation (0.85) between

the degree-based walk (DG) and inverse-degree-based walk (ID), two walks operating on

opposing principles.

Our findings suggest that graph embedding techniques can reconstruct the network struc-

ture independently of the walk heuristic. This insight is valuable when reconstructing net-

works from datasets where only sequences (walks) are known. This is the case of textual or

mobility data. In these examples, the underlying network structures can potentially be recov-

ered from sequences of words or geographical changes, regardless of the specific walk method

used.

Related works

Several random walk techniques have been documented in the last years [8]. Among these,

DeepWalk [19] is a model known for its ability to acquire latent representations of nodes that

encode structural information within a network, enabling their utilization in statistical models.

DeepWalk leverages the conventional random walk methodology, wherein the selection of the

next node is based on an equal probability among the neighboring nodes of the current node.

Network traversal produces sequences of nodes analogous to textual sentences composed of

word sequences. In the training process, the Skip Gram neural network architecture is

employed, wherein a one-hot vector representing a word is given as input, and the network
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aims to predict the surrounding words within a specified window. Computationally, evaluat-

ing the probability function for a single node against the others incurs significant expense. To

address this, an optimization technique involving hierarchical softmax was proposed. This

approach constructs a binary tree of probabilities, leading to a reduction in computational

complexity to the logarithm of the network size (O(log(|V|)) for calculating only the probabili-

ties along the path from the root to the leaf.

Asynchronous stochastic gradient descent (ASGD) has been used as the optimization

method to improve scalability for large networks. Some works demonstrated outstanding per-

formance when applied to multi-label classification tasks, surpassing alternative approaches

such as SpectralClustering [27], EdgeCluster [28] and Modularity [29]. DeepWalk proved to

be a very efficient framework, being easy to scale for large networks and resulting in great pre-

diction results. Particularly in this work, we adopted the same optimization strategy.

With the same goal as DeepWalk, LINE [20] is a network embedding model designed to

transform extensive information networks into low-dimensional embedding vectors. Its

approach focuses on preserving both local and global structural information by leveraging first

and second-order proximities. In unweighted networks, the first-order proximity simply indi-

cates whether nodes are connected or not, represented as binary values (0 or 1). In weighted

networks, the first-order proximity encompasses the weight of the connection, reflecting the

strength or intensity of the link between nodes (wuv).

Consider a scenario where two nodes lack a connection, resulting in a first-order proximity

value of zero. To address this situation, the second-order proximity is leveraged by taking into

account the presence of common neighbors between the nodes. Let us denote the set of first-

order similarities for node u as pu = (wu1, wu2, . . ., wu|V|), and likewise, pv represents the set of

first-order similarities for node v. Second-order proximity, in this case, refers to the indirect

similarity between nodes u and v, calculated by the dot product between pu and pv, and its

magnitude increases with a greater number of shared connections between the two nodes.

Similar to DeepWalk, LINE encounters computational complexity issues while calculating

probabilities. As a solution, it utilizes the Negative Sample technique [30] which instead of cal-

culating the probability for all |V| nodes, each positive edge is compared against a negative

sample produced by a noise distribution having a size of K that is proximate to 10. Moreover,

LINE proved to be very efficient in tasks such as word analogy, document classification, link

prediction, and network visualization, being able to scale for large networks. Compared with

DeepWalk, the probability approximation method is even faster since it does not calculate a

path on a tree but just a few negative examples. Also, the walk is not just based on the node

connections but on the first and second-order proximity, improving local and global structural

awareness of the embeddings.

One of the most well-known walk-based graph embeddings is node2vec [22]. It combines

the pros of the two previously presented models achieving state-of-the-art performances in

many link prediction and node classification tasks. One of the main contributions of this

model was the usage of two parameters that control the bias to walk through the networks and

collect the node sequences being possible to seek node homophily and structural equivalence.

Node homophily, arising from social relationships, posits that individuals belonging to the

same community exhibit a tendency to be correlated and associated, so nodes from the same

community should be embedded closely. In terms of structural equivalence, nodes with identi-

cal roles within a network, such as hubs, bridges, and isolated nodes, are expected to have

short distances between them. It is important to note that these nodes can be located in differ-

ent parts of the network but still maintain the same functional role.

In order to incorporate this information into the embedded vectors, the node2vec algo-

rithm combines two well-known search strategies: depth-first sampling (DFS) and breadth-
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first sampling (BFS). The inclusion of DFS in node2vec enables it to exhibit exploratory behav-

ior by traversing the network in depth and preventing redundant visits to the same node. This

capability allows node2vec to effectively map communities while being cautious about

homophily.

Conversely, BFS, due to its local behavior centered around the starting node, provides the

ability to effectively map the structural role of nodes. Similar to DeepWalk, node2vec employs

Skip Gram and, like LINE, uses Negative Sampling to minimize computational costs. Addi-

tionally, it uses asynchronous Stochastic Gradient Descent (ASGD) as the optimization algo-

rithm. Ultimately, node2vec represents a scalable model that outperforms other walk-based

and classic models across various tasks, offering an efficient architecture with enhancements

on the utilized walk bias.

Regarding traditional random walk, similar studies compare random walks in terms of

node coverage speed. In [24], the authors analyzed four random walks when applied to differ-

ent artificial network models to evaluate the learning curve and knowledge acquisition tasks.

The walks used were the traditional random walk (RW), the degree-biased walk (DG), the

inverse-degree biased walk (ID), and the true self-avoiding walk (TSAW), and the four net-

work models were Erdős–Rényi, Barabási-Albert, Waxman, and Modular Networks.

The comparison focused on the percentage of network coverage achieved at each walking

step. In this task, the results indicated that the TSAW outperformed other walks by reaching

unknown nodes faster, followed by the traditional random walk, while both DG and ID walks

exhibited the poorest performances, irrespective of the network model. The key distinction

was in the efficiency of acquiring knowledge through the exploration of new nodes.

Another experiment involved comparing the random walks in the context of network recon-

struction [25]. Using the network models from [24, 31], the same set of random walks was

employed to traverse the network and gather sequences of visited nodes. The adjacency informa-

tion of these nodes in the sequences was utilized to reconstruct a new graph. As the walk pro-

gressed, various structural metrics were collected, including the number of nodes, edges, average

degree, average shortest path length, average clustering coefficient, and degree assortativity.

As the length of the random walk increased, various metrics were collected and machine

learning models were trained to predict both the specific walk and network model used. The

results showed that with shorter sequences, it was possible to achieve good accuracy for pre-

dicting the walk, whereas predicting the network models required longer sequences. Using a

random forest model, an accuracy of 78.1% was achieved for predicting the network model

with a sequence length of 500 steps, while an accuracy of 98.6% was acquired for a sequence

length of 5000 steps. In terms of predicting the random walk used, a 72.9% accuracy was

achieved with a sequence length of 500 steps, increasing to 98.8% accuracy for a sequence

length of 5000 steps. These findings demonstrate the potential to reconstruct both the network

and the random walk that generated a given sequence of nodes.

In contrast to previous studies, this paper explores the characteristics of unbiased and

biased random walks in generating embeddings. The sequence of visited nodes is used to train

an embedding model resulting in the creation of vector representations. The resulting embed-

dings are then applied to the link prediction task and the performance of different random

walks is compared.

Methodology

We leveraged random walk algorithms to gather node sequences from graphs. For these

graphs, after preprocessing we intentionally removed a fraction of the edges, and taking the

same amount of non-edges we created a labeled dataset with positive and negative edges
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samples respectively. With the gathered sequences, we utilized a skip-gram model to generate

node embeddings, designed to preserve the inherent similarities among nodes. These embed-

dings were then employed to predict the missing edges in a link prediction task, thereby

addressing our two principal research questions. Our primary objective was to probe the

effects of varying the walk biases on link prediction performance and to compare the similari-

ties across different walks. The methodology employed in this paper is illustrated in Fig 1. It

comprises the following steps:

1. Graph Preparation: we divided the first step into two parts: graph selection and preprocess-

ing. For the graph selection, we opted for diverse graphs that exhibit various structural

properties and sizes. As for the preprocessing, we randomly removed a portion of the edges

from each graph to form our positive sample, while an equal number of non-edges were

selected as the negative sample. Finally, we designated the giant component of each graph

as the final selected graph

2. Random walk: we implemented and applied nine distinct random walk strategies to gener-

ate node sequences for each graph: traditional Random Walk (RW), Degree-Based Random

Walk (DG), Inverse Degree-Based Random Walk (ID), True Self-Avoiding (TSAW), and

node2vec with five different parameter settings.

3. Embeddings: We utilized the node sequences as input for an embedding model to generate

the node embeddings. For the four classic network walks (RW, DG, ID, TSAW), we

employed the Word2Vec framework, while for Node2Vec, we utilized Skip-Gram. The

hyperparameters of the embedding model were set according to the specifications in [19].

4. Link Prediction: The links between nodes are predicted by leveraging the similarities of

their embeddings. To assess the performance of each random walk in the link prediction

task, we evaluated ROC AUC (AUC) and Precision-Recall AUC (AUC PR). Additionally,

we analyzed the distribution of embedding similarities produced by the different random

walk strategies.

Dataset

The graph selection process was carried out utilizing the Netzschleuder network repository

[32]. Specifically, we constrained our selection to only unweighted, undirected, and unilateral

networks within a node size range of 150 to 5000. We placed an emphasis on the

Fig 1. Methodology used in the work. The main steps applied are a) graph preparation, which includes graph selection and preprocessing; b) random
walk application and node sequences collection; c) node embeddings process through the Skip-Gram model; and d) link prediction and similarity

analysis.

https://doi.org/10.1371/journal.pone.0312863.g001
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connectedness of the nodes and the diversity of the network origins including social, transpor-

tation, biological, and other types. From an initial pool of 45 networks meeting the selection

criteria, 8 were excluded due to having an insufficient number of edges to predict, resulting in

a final set of 37 networks. The statistics of the used networks after preprocessing are provided

in Table 1.

Table 1. Graphs names and the number of nodes and edges for the utilized networks.

Graph Name Nodes Edges

Power 3787 4423

Interactome Vidal 2460 4468

Kegg Metabolic Hsa 1784 4318

Urban Streets Cairo 1286 1530

Collins Yeast 925 6038

Kegg Metabolic Lmo 893 1984

Copenhagen Fb Friends 795 4814

Dnc 766 7787

Copenhagen Bt 689 59648

Wiki Science 663 4885

Kegg Metabolic Buc 576 1149

Celegans Metabolic 448 1519

Sp Colocation Sfhh 403 55168

Eu Airlines 401 2215

Urban Streets London 399 490

Ugandan Village Friendship 16 369 1029

Ugandan Village Friendship 8 368 1315

Sp High School Proximity 327 4364

Ugandan Village Friendship 4 320 1557

Facebook Friends 316 1461

Malaria Genes Hvr 1 305 2109

Malaria Genes Hvr 5 296 2013

Kegg Metabolic Uur 284 533

Urban Streets Paris 271 333

Malaria Genes Hvr 8 266 2949

Contact 248 1593

Urban Streets New York 239 314

Ugandan Village Health Advice 11 220 395

Sp Colocation Invs15 219 12544

Ugandan Village Friendship 1 198 411

Jazz Collab 195 2057

Sp High School New 2012 180 1665

Sp High School Facebook 156 1078

Urban Streets San Francisco 152 201

Urban Streets Brasilia 135 147

Interactome Pdz 126 145

Student Cooperation 124 183

https://doi.org/10.1371/journal.pone.0312863.t001
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Preprocessing

The networks underwent a series of preprocessing procedures, as illustrated in Fig 2. To ensure

the connectedness of the graphs, we used only the largest connected component and removed

self-edges, as demonstrated in Fig 2.

We generated a labeled dataset comprising an equal number of positive edges (existing

edges that were removed) and negative edges (non-existing edges). This was achieved by

randomly selecting and removing 25% of the edges from the network resulting in the forma-

tion of the first positive-edges sample (indicated by the green-dashed edges Fig 2(c). The

same amount of negative edges was then chosen to compose the negative edges dataset.

Finally, we used the same amount of positive edges to randomly select non-edges and label

them as our negative samples, ending with the same number of samples for each class. The

complete dataset containing positive and negative edges is depicted in Fig 2(d). Positive

edges are represented by green dashed lines, while negative edges are indicated by yellow

dashed lines.

Random walk

A random walk is a sequence of nodes visited during a random traversal of a network. While

this paper focuses on random walks with a finite number of steps, in general, the sequence of

nodes can be infinite. Therefore, in our context, a random walk involves a starting node, a

probability function, and a maximum walk length. The probability function employed to cal-

culate the probability of transitioning from node u to v can incorporate various types of bias.

The main features of random walks used in this paper are described below:

• Starting node: Two main techniques can be employed to determine the starting nodes for

generating a set of random walks. The first technique involves predefining a maximum num-

ber of sequences and randomly selecting a starting node each time a new walk is initiated.

Probabilities can be uniformly assigned or based on node attributes, such as node degree

[33]. The second technique, employed in this paper, involves fixing a number of walks per

node, denoted by β, where we used 40 walks per node as the starting node.

• Probability function: Different probability functions can be employed to establish the transi-

tion probability between node pairs in a random walk. The transition probability P(v|u) of a

node u at iteration it to transition to a specific neighbor v in the subsequent iteration it+ 1 is

Fig 2. Example of the preprocessing steps applied to the networks. We began with the original graph (a) and used the largest connected component

(b). Next, we removed a small portion of edges to create the labeled dataset (c). The removed edges, which represent the positive samples, are indicated

by the green-dashed lines. To complete the final dataset, an equal number of non-edges (i.e., negative edges sample) are randomly selected and

represented as dashed yellow lines in (d).

https://doi.org/10.1371/journal.pone.0312863.g002
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determined proportionally by the transition weight τuv:

Pðitþ1 ¼ v j it ¼ uÞ ¼
tuv=Zu; if v 2 GðuÞ and Zu ¼

P
z2GðuÞtuz

0; otherwise

(

ð1Þ

To determine the probability, we normalize the transition weight τuv using the normalization

factor Zu, which is the sum of all transition weights from node u to its neighbors in Γ(u). In

this paper, nodes that are not connected to node u are always assigned a probability of zero.

However, other techniques, such as a random walk with restart [34, 35] may assign a proba-

bility of returning to the initial node. Other techniques such as Lévy flight [36] can jump

into a random node.

• Maximum walk length: For the maximum length of the walk, denoted by α, some studies

have utilized a variable number proportional to the node degree in order to limit the walk

length and facilitate the mapping of hubs and well-connected nodes in large-scale networks

[37]. However, other works have employed a fixed number, demonstrating that a lower

number may not be sufficient to capture all the information necessary for optimal perfor-

mance [22]. Additionally, a higher number of walks can lead to increased computational

costs and memory usage. Studies suggest that performance is limited for walk lengths

between 10 and 100, with performance improving as the length increases up to around 150

[22]. To obtain a stable value, we chose α to be 200. The dimension of the set of walks is the

product of the total number of walks and the walk length, denoted as (|V| � β) × α = (|V| � 40)

× 200, and is dependent on the number of nodes per graph.

We employed four types of random walks. The first type utilizes only the number of neigh-

bors as bias. The next two types use the network structure as bias, with one being the inverse of

the other. Finally, the last type incorporates the memory of visited nodes as an attribute param-

eter for probability calculation. Besides the four classical walks, we also utilized five variations

of the node2Vec framework. The classical random walks used are:

1. Traditional random walk (RW): This is the simplest (unbiased) and most well-known ran-

dom walk [38–40]. In this approach, the probabilities of transitioning to neighboring nodes

are distributed uniformly, and the probability of transitioning from a node u to a node v is

simply the inverse of the degree of node u, in other words, each neighbor will have a transi-

tion weight of 1:

tuv ¼ 1: ð2Þ

2. Degree biased random walk (DG): The degree has been used as a walk bias to discern the

nodes that possess greater importance in terms of their connectivity [37, 41]. In this work,

we have adopted a strategy where the transition weight is directly proportional to the degree

of neighboring nodes:

tuv ¼ jGðvÞj: ð3Þ

By following this approach, nodes with higher degrees have a higher probability of being

selected as the next node to traverse, thereby increasing the likelihood of identifying hubs

as opposed to less connected nodes.

3. Inverse degree-biased random walk (ID):
An alternative approach to the degree-biased random walk can be achieved by utilizing the
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degrees of neighboring nodes to limit the exploration of hubs and prioritize nodes with

lower degrees. The transition weights in this strategy are computed as:

tuv ¼ jGðvÞj
� 1
: ð4Þ

Previous studies have shown analytically that the inverse degree-biased walk outperforms

other degree-biased walks in terms of time efficiency when exploring nodes in a network

[41–43].

4. True self-avoiding random walk (TSAW): In contrast to other random walks, the True

Self-Avoiding Random Walk (TSAW) exhibits a nonstationarity probability function.

The probability of transitioning from node u to v may vary through the course of the

walk, requiring recalculation of the probabilities at each step. This phenomenon occurs

because the transition probability in TSAW depends on the frequency with which a node

is visited, which changes at each new walk step. As a result, TSAW is the most computa-

tionally expensive in terms of both memory and time. Two parameters are used for its cal-

culations, the decay factor λ and the frequency fv that node v was visited [44, 45]. Because

of the decay factor, the probability of transitioning to v decreases while increasing the fre-

quency at which v is visited. In this study, we use a decay factor λ = ln(2) [24]. The transi-

tion weight is computed as

tuv ¼ e� lfv : ð5Þ

where fx refers to the absolute number of times node x has been visited.

For unvisited nodes, the numerator in Eq 5, e� lfv ¼ 1. This value subsequently decreases

by half with each new visit to that node. i.e. it becomes 0.5, 0.25, and so on for 1 and 2

visits, respectively. This exploratory behavior results in TSAW achieving the best learn-

ing curve, outperforming other walk biases in terms of new nodes visited per iteration

[24].

5. Node2Vec: Node2Vec is an algorithmic framework inspired by a combination of breadth-

first search (BFS) and depth-first search (DFS) [22]. In BFS search, the walk starts with the

root tree and aims to explore all nodes at the current depth before moving to the next depth

level until reaching the leaves. On the other hand, DFS seeks to delve as deep as possible

until it needs to backtrack and explore other unvisited paths.

When comparing BFS and DFS, the former exhibits a local and cautious behavior, whereas

the latter acts as an explorer. Drawing inspiration from these characteristics, Node2Vec

aims to incorporate both behaviors into the transition probabilities. The probability of visit-

ing the last visited node will be determined by a return parameter p. A lower value of p
increases the likelihood of a local walk, which tends to stay close to the initial node. Nodes

that are not the last visited node or not directly connected to it are considered outward

nodes, with probabilities determined by an in-out parameter q. A lower value of q corre-

sponds to a shallower walk, increasing the chances of outward exploration. The neighbors

of the latest visited node will have a fixed transition probability equal to 1, independent of

the values of p and q. In Fig 3, we can observe that the current node it can transition back to

it−1 with a transition weight of 1/p, move to a neighbor of the latest visited node with a

weight proportional to 1, or explore outward with a weight of 1/q.

In order to compare different scenarios, we employed various combinations of p and q. As

a nomenclature convention, we will refer to these combinations as N2V(p, q). The first

combination is N2V(1, 1), which serves as a baseline for comparison with the traditional

random walk (RW). We also utilized N2V(1.5, 0.5), representing an explorer behavior that
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avoids visited nodes, akin to TSAW. Furthermore, we considered a local walk, the inverse

of the previous one, referred to as N2V(0.5, 1.5). Finally, by combining the two behaviors,

we obtained N2V(2.0, 1.5) and N2V(0.25, 0.5).

Node embedding

To analyze the four classical walks, we first gathered the node sequences. Next, we applied the

Skip-Gram model within the Word2Vec framework, treating the sequence of visited nodes as

a sequence of words, and generating their vector embeddings. After generating the node

sequences using a predefined walking strategy, we again employed the Skip-Gram model to

create node embeddings.

The primary objective of this node embedding phase is to transform the graph’s nodes into

a data structure capable of embedding information from the surrounding nodes and the graph

structure. This transformation aims to represent each node v 2 V in a dense vector space of

dimension d, resulting in a mapping G ¼ ðV;EÞ ! RjVj�d
, where |V| is the number of nodes

in the graph and d is the dimensionality of the embedding vectors.

Fig 3. Example of transition weights for the Node2Vec over a simple subgraph. We can see the current blue node in the iteration it, being possible to

return to the previous visited yellow node it−1, or continue an outward walk through the green ones.

https://doi.org/10.1371/journal.pone.0312863.g003
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The Word2Vec [30, 46] is a deep learning model imported from natural language process-

ing. This method is able to transform words into vectors, embedding their semantic and syn-

tactic information, and allowing algebraic operations like addition and subtraction. Each word

is initially embedded as a one-hot encoding, used as input and output in the training phase.

One-hot vectors have the length of the vocabulary size, with all values being zero except the

column of the corresponding word, which will be one.

The Word2Vec model can employ two network architectures to learn the final embedding:

the continuous bag-of-words (CBOW) and the Skip-Gram architecture. In CBOW, the model

is trained using the surrounding words as inputs and the central word as the expected output.

The name “bag-of-words” refers to the fact that similarly to the traditional bag-of-words

approach [47], the order and distance of the surrounding words from the central word do not

have any impact on the final embedding.

In the Skip-Gram architecture, used in this paper for all walk types, the input is the central

word, and the expected output is the surrounding words. Increasing the context window can

improve the performance of the model, but it also requires more computational power. To

account for the decreased relevance of more distant words, Skip-Gram assigns less weight to

those words by sampling them less frequently during the training phase.

During the skip-gram model, the goal is to maximize the average logarithmic probability

for every sequence of words w1, w2, . . ., wT:

1

T

XT

t¼1

X

� c�j�c;j6¼0

log pðwtþjjwtÞ: ð6Þ

Here p represents the conditional probability function, wt the context, c is the context size and

T denotes the length of the sentence.

The probability distribution p(wo|wi) for word embeddings is initially calculated by apply-

ing the softmax function to the vector representations (w) of the input i and output o words.

These vector representations are obtained from the one-hot vectors used to train the neural

network and learn the embedding representation. p(wo|wi) is computed as

pðwojwiÞ ¼
expðv0Two

vwi
Þ

PW
w¼1

expðvT
wvwi
Þ
; ð7Þ

where W is the vocabulary size, vw is the vector representation of word w, vwi
is the vector of

the input word wi, and v0wo
is the produced output vector. Computing the denominator of this

function, which involves all words in the vocabulary W, is computationally infeasible. To

address this challenge, negative sampling has been proposed as a solution [30]. Negative sam-

pling aims to distinguish the target word wo from noise distribution words by replacing the

softmax function with a logistic regression calculation that involves only k negative samples

for each word. This significantly reduces the computational requirements during training, as k
can range from 2-5 for large datasets and 5 to 20 for small ones, which is substantially lower

than the size of the vocabulary W, which can range from 105 to 107.

After the training, the neurons in the hidden layer will contain the weights necessary to rep-

resent each word. Simply multiplying by the one-hot vector is enough to take as output the

embedding format.

Link prediction

Link prediction has been widely employed across various domains to estimate the likelihood

of missing (or future) connections between two nodes [48]. Several techniques rely on
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quantifying the similarity between nodes, which is subsequently utilized for prediction pur-

poses [48]. In [10], weighted and unweighted local similarities are compared to predict the

likelihood of future citation between two researchers. In this context, higher similarity scores

indicate higher probabilities for establishing a citation link.

Another illustrative instance can be found in [49], where the Node2Vec technique is

employed to encode graphs into node embeddings. Subsequently, a classification machine

learning model, namely LightGBM [50], is utilized to predict edges connecting human pheno-

types and genes.

In this study, we approached the link prediction task in a similar manner. We utilized the

node embeddings generated in the previous step to assess the similarity between nodes. After

obtaining the embeddings, we computed the cosine similarity for the edges present in the

labeled dataset. For simplicity, we will henceforth use the term walk similarity to refer to the

cosine similarity between embedding vectors produced by a specific random walk. This dataset

comprises two main components: the positive edges sample, which accounts for 25% of the

removed edges, and an equal number of non-edges in the form of our negative edges sample.

Cosine similarity is a commonly used metric that ranges from -1 to +1, with higher values indi-

cating a higher likelihood of connectivity between the two nodes, while lower values indicate a

lack of connection. In this study, we applied a normalization procedure to scale the walk simi-

larities between 0 and 1. The normalization was necessary since different walks produced dif-

ferent node similarity ranges.

Results

Quality comparison

Regarding the link prediction task, the primary objective of our study was to investigate

whether various random walks could lead to different outcomes. To accomplish this, for each

graph we used the labeled dataset containing the positive and negative edges instances and the

nine similarities, one for each random walk type. Comparing the similarity with its label made

it possible to determine the area under the ROC curve (AUC) and the area under the Preci-

sion-Recall Curve (AUC PR).

Both quality metrics do not require fixing a similarity threshold to establish whether a given

similarity indicates an edge or non-edge prediction. Consequently, each graph yielded nine

distinct performances, one for each walk.

The results of our study were presented in two ways. First, in Table 2, we arranged the

median quality metrics for each walk in order of AUC. The median quality is computed across

all 37 networks of the dataset.

A preliminary analysis of the results presented in Table 2 reveals proximity in the perfor-

mance scores of the tested random walk strategies. Specifically, the TSAW obtained the highest

AUC-ROC score at 0.864, while the Node2Vec algorithm with parameters p = 0.5 and q = 1.5

exhibited the lowest score at 0.84, with a difference of 0.024 (less than 3%). Furthermore, the

DG walk achieved the AUC-PR value of 0.860, while Node2Vec(0.5, 1.5) scored 0.825, indicat-

ing a tolerable difference of 0.035. Notably, the percentage differences between the highest and

lowest scores were minimal at 3% and 4%, respectively.

This is surprising, given that different random walk strategies lead to a very close perfor-

mance score suggesting that changing the walk bias does not significantly affect the link pre-

diction outcomes. A further examination of the top four performers revealed that TSAW and

N2V(1.5, 0.5), occupying the first and second positions, exhibit predominantly exploratory

behavior. N2V(2.0, 1.5) was ranked third, a hybrid walk, while the degree-based walk (DG),

which is biased towards hubs and well-connected nodes was ranked fourth.
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When examining the two worst-performing strategies, we can observe N2V(0.5, 1.5) with a

purely local behavior and the inverse-degree walk (ID) that prioritizes isolated nodes over

hubs. We can observe a trend as the best-performing strategies were those capable of exploring

the network in depth, avoiding isolated nodes, and aiming to visit new and well-connected

nodes. This approach had a higher probability of mapping relationships between nodes and

achieving better link prediction performances. Conversely, strategies with local behavior that

avoided exploring new nodes or hubs and prioritized isolated nodes yielded poorer results

when compared to other strategies. We also observe that N2V(1, 1) and RW ranked sixth and

seventh, respectively, with very similar results and a difference of only 0.001 and 0.002 in AUC

and AUC-PR, respectively. This finding is expected, as both strategies have the same underly-

ing setup. In Fig 4 we illustrate the performance metrics in box plots for each type of random

walk ordered by the best median AUC ROC. The background lines represent each graph, and

to distinguish them, we used colors ranging from purple to light orange based on their respec-

tive median AUC, from best to worst. The lines connecting the dots provide a view of how

much performance changes when transitioning from one type of walking to another.

The results show that the performance outcomes are predominantly influenced by the

underlying graph structure rather than the specific random walk employed. We observe that

the lines exhibit a consistent lack of significant deviations across different random walks, lead-

ing to the preservation of the color spectrum throughout the walks. However, variations hap-

pened under certain conditions, specifically with the DG walk, where a visible increase in the

slope is observed, and with the ID with a decrease. These findings align with the unexpected

patterns discovered in Table 2, where the outcomes consistently exhibit similarities across vari-

ous random walks.

When examining the box plots, it becomes evident that not only the medians are close one

to another, but also the upper quartiles. The primary discernible disparity lies in the interquar-

tile ranges, which vary across the different walks. The ID walk demonstrates the widest inter-

quartile range for both AUC and AUC-PR. This indicates that while the ID walk may yield

satisfactory performance outcomes for certain graphs, it can yield suboptimal results for oth-

ers, thereby diminishing its overall reliability. Apart from the ID walk with its broader range,

no discernible distinguishing features can be identified to differentiate between the various

walks, as their distributions exhibit high similarity.

In conclusion, we found that different random walks yield varying performance outcomes.

However, the disparities in terms of both AUC and AUC-PR medians are minimal, with a

mere 3% and 4% difference respectively. Furthermore, upon examining the distributions of

Table 2. Median quality metrics for the link prediction task within 37 graphs, ordered in descending order by

AUC. The metrics utilized were the area under the ROC curve (AUC) and the area under the Precision-Recall Curve

(AUC PR).

Walk Type AUC AUC PR

TSAW 0.864 0.845

N2V(1.5, 0.5) 0.864 0.859

N2V(2.0, 1.5) 0.861 0.842

DG 0.861 0.860

N2V(0.25, 0.5) 0.857 0.840

N2V(1, 1) 0.856 0.839

RW 0.855 0.841

ID 0.850 0.833

N2V(0.5, 1.5) 0.840 0.825

https://doi.org/10.1371/journal.pone.0312863.t002
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the performance metrics, it becomes apparent that the medians and upper quartiles exhibit sig-

nificant proximity, making it challenging to distinguish between the walks solely based on the

box plot visualization. Our finding suggests that the outcomes of link prediction are more

dependent on the intrinsic characteristics and properties of the network itself, rather than the

specific choice of the random walk applied.

Walk similarities correlation

In our previous analysis, we observed that distinct random walks demonstrated comparable

link prediction performances. Here, we aim to probe whether diverse random walks extract

different information from the underlying graph.

In the labeled dataset used in the link prediction we have nine cosine similarities for each

edge (see Fig 2(d)). Based on that, for each graph was possible to calculate the Pearson correla-

tion between the cosine similarity distributions for all combinations of walk pairs (e. g. DG vs

ID, or TSAW vs N2V(1, 1)).

In Fig 5, we show two examples of correlation plots. The edges in the graphs are categorized

into two groups, based on the edge label. We first show the results for the Celegans (C. elegans)

Metabolic graph, where the correlation between the walks ID and DG is the lowest (0.2). In

contrast, the second example in the figure shows the results for the Wiki Science graph, with

the correlation between N2V(2.0, 1.5) and TSAW being be the highest (1.0).

Fig 4. Box plot of the performance obtained for the 37 networks and considering different random walks. Each background line represents the

performance of the graph itself. The lines are colorfully displayed from purple to light orange based on their respective AUC median, from the best to

the worst.

https://doi.org/10.1371/journal.pone.0312863.g004
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For the correlation, when random walks extract similar information from a network, the

similarities should exhibit a proportional relationship, resulting in a distribution plot that

closely resembles an identity function with a correlation value close to 1. Contrariwise, when

the plot does not exhibit a clear upward or downward trend, the two random walks have low

or no correlation. It is also possible to observe a negative correlation when the similarities

decrease in one random walk while simultaneously increasing in the other. Consequently, we

can infer that the random walks extract opposite or contrasting information from the network.

The magnitude of the negative correlation, when closer to -1, indicates a stronger opposition

between the extracted information.

During the conducted experiment, no pairs of random walks demonstrated this opposing

behavior. This outcome aligns with our expectations, as all random walks yielded relatively

good link prediction results.

When observing Fig 5, it becomes apparent that the walks exhibit distinct expected output

histograms in the Celegans network. For the DG walk, two separate peaks can still be identi-

fied. However, in the ID walk, the distributions overlap, resulting in a negative impact on the

discrimination power.

In contrast, in the Wiki Science network, histograms display comparable shapes for both

walks, while their distributions exhibit a substantial degree of separation, resulting in a limited

intersection area. This divergence in distributions contributes to enhancing the discrimination

and thereby improves the accuracy in discriminating both classes.

In order to summarize the results, we generated a heatmap (see Fig 6) that depicts the

median correlations between pairs of random walks. The figure reveals that the random walks

exhibit strong values of correlation, with a minimum correlation coefficient of 0.85, which is

Fig 5. Two scatter plots representing the correlations between pairs of walks. Each figure is divided by the edges label, with the positive edges sample

in blue and orange for the negative edges sample. The distribution of labels is shown on the top and right sides of each figure. In (a), we can observe the

lowest correlation value of 0.2, which was observed in the Celegans (C. elegans) metabolic network between the inverse degree (ID) and the degree-

based random walk (DG). Contrarily, in (b), we observe the highest correlation value of 1.0, which was observed from the Wiki Science network

between Node2Vec(2.0, 1.5) and TSAW.

https://doi.org/10.1371/journal.pone.0312863.g005
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considered to be a high value and a maximum correlation coefficient of 0.99. The lowest corre-

lation is observed when pairing the DG and ID walks, which is expected since these walks

exhibit opposite behaviors. Moreover, DG and ID walks consistently exhibit lower correlations

when paired with other walks, which is also expected since they are the only degree-based

walks, contrasting with the other walks that incorporate other types of information. The DG

walk achieves a maximum correlation of 0.94 when paired with the N2V(1.5, 0.5) and N2V

(2.0, 1.5) walks, representing an explorer and a hybrid behavior walk, respectively. This result

indicates that the DG walk displays a walk style more akin to the explorer when seeking hubs.

We achieved the maximum correlation of 0.96 when pairing TSAW and ID. This finding

suggests that despite employing diverse walk styles, the retrieved information may exhibit a

high degree of correlation. Table 2 illustrates that ID achieved the second lowest AUC, with a

Fig 6. Median of the Pearson correlation distribution between the random walk pairs from the 37 graphs. This figure summarizes the distribution

of the correlations as presented for the minimum and maximum correlation on Fig 5.

https://doi.org/10.1371/journal.pone.0312863.g006
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value of 0.850, whereas TSAW attained the highest AUC of 0.864. This observation is particu-

larly interesting as it accentuates the notion that even highly correlated walks can yield dispa-

rate link prediction performances.

Excluding DG and ID from the analysis, we observe that the TSAW achieved its lowest per-

formance when paired with N2V(0.5, 1.5) and N2V(0.25, 0.5), corresponding to a hybrid and

a local walk, respectively, resulting in correlation coefficients of 0.95 and 0.96. Intriguingly,

TSAW, being a memory-wise variant of RW, exhibited the highest correlation of 0.99. Hence,

even though RW is part of the group with the lowest prediction performances and TSAW the

best, they still have similar similarity distributions.

All Node2Vec walks exhibited very correlated distributions among themselves. With the

lowest correlation of 0.95 between the two contrasting walks, N2V(1.5, 0.5) and N2V(0.5, 1.5),

and the highest of 0.99 between N2V(1, 1) and RW.

Fig 7 shows the scatter plot of the AUC performance for each pair of distinct walks denoted

as wx and wy. The color scheme in the plot reflects the range of correlations observed between

the two walks. The results validate the observations depicted in Fig 5, where walks exhibiting

higher correlations tend to demonstrate similar performance, while those with lower

Fig 7. AUC values for each graph G and pair of random walks wx and wy. The dots on the plot are color-coded according to the Pearson

correlation between the walks.

https://doi.org/10.1371/journal.pone.0312863.g007
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correlations do not. This pattern is visually evident in the plot, wherein highly correlated walks

display a linear relationship resembling an identity function, while walks with lower correla-

tions appear scattered. Furthermore, the histograms provide additional insights by illustrating

that the occurrences of high correlations are predominantly concentrated within the third

peak, corresponding to the best AUC values ranging from 0.85 to 1. Consequently, in graphs

exhibiting outstanding performance, random walks demonstrate correlation and converge

toward comparable outcomes. Conversely, for graphs with low correlated walks, results vary

among the walks.

To check if there are cases in which network properties seem to impact the performance of

link prediction, we conducted a detailed analysis of the correlation between link prediction

performance and various network topology metrics across the considered networks. Link pre-

diction performance was measured using the area under the ROC curve (AUC ROC), and net-

work topology was assessed using ten different metrics. As shown in the Fig 8, we identified

three main groups of metrics with varying levels of correlation to prediction performance.

Metrics related to basic network structures, such as node and edge counts, showed low or no

Fig 8. Correlation between prediction performance (in terms of AUC) and network properties.

https://doi.org/10.1371/journal.pone.0312863.g008
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correlation (-0.004 to 0.14). Metrics reflecting network randomness, like Shannon entropy and

diameter, exhibited moderate correlation (0.14 to 0.3). The highest correlation (0.38 to 0.61)

was observed with metrics related to local network structures, such as assortativity and cluster-

ing coefficient. These findings indicate that certain network properties can make the problem

of link prediction easier or harder, with local network characteristics playing a significant role

in the prediction accuracy.

Overall, we can conclude our second research question knowing that different walks do

extract very similar information, even the lowest median similarity was 0.85 and the maximum

0.99. We also observed that can see that walks with similar styles, explorer or local, tend to be

more correlated among themselves rather than the others. Also, walks based on node degree,

like DG and ID, still very correlated with the other walks and extracted similar information,

however, had the lowest correlations. And finalizing, we saw that for graphs where the walks

are very correlated, results tend to be similar, and the higher the correlation higher the changes

to have a good performance.

Conclusion

This research study aimed to analyze the behavior of various embedding information with

respect to different node sequence generations in the context of link prediction. The investiga-

tion involved the examination of four conventional random walks and node2vec with different

parameter settings on 37 networks. The study sought to answer two primary research ques-

tions: (1) the extent to which the performance of different random walks varies in embedding

models and downstream tasks, (2) the nature of information captured by different walks, spe-

cifically concerning node similarities in link prediction.

The results revealed that there was minimal variation in the performances of different ran-

dom walks for the link prediction. The median link prediction performance exhibited a differ-

ence of merely 3% to 4% in terms of AUC and AUC PR. Moreover, we also observed that

random walks characterized by exploratory behavior tended to yield better results than local

walks. Two explorer walks, TSAW and N2V(1.5, 0.5), achieved the highest AUC performance

of 0.864, while the lowest performance was obtained by ID and N2V(0.5, 1.5), two local walks,

with AUC values of 0.85 and 0.85, respectively.

Pertaining to the nature of the extracted information, our analysis of link prediction

revealed a robust positive Pearson correlation between node similarities derived from different

walks. This correlation held strong even when comparing node similarities obtained from fun-

damentally opposed walks, such as DG and ID, where the lowest median correlation across

networks was as high as 0.85.

In essence, our study underscores that distinct random walks exhibit remarkably similar

performance in embedding models for link prediction tasks and capture largely consistent

information about node similarities. These insights hold significant implications for practical

applications, particularly in scenarios where only the sequences (random walks) from a dataset

are known. Based on the dataset and random walks employed, our results suggest it is possible

to reconstruct network links irrespective of the specific walking type used. This opens the door

for future research to test the hypothesis in a more systematic way that different random walk

approaches may yield similar results in predicting network structure.

Our research has unveiled significant findings concerning the performance of various ran-

dom walks and their ability to extract node similarity information from graph embeddings.

However, there remains ample room for exploration. Future studies could examine the behav-

ior and performance of random walks and embeddings in a wider array of tasks beyond link
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prediction. This could include tasks such as community detection, anomaly detection, or net-

work evolution modeling.

Lastly, it would be intriguing to probe deeper into the nature of information captured by

different walks. For instance, future work could explore the kinds of structural or topological

properties that different walks are more sensitive to and how these properties impact down-

stream tasks. This could offer insights into how to choose or design the most suitable walk or

embedding technique for specific network types or tasks.
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