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Abstract
LetR be an alternative ring containing a nontrivial idempotent andR ′ be another alternative
ring. Suppose that a bijective mapping ϕ : R → R ′ is a Lie multiplicative mapping andD
is a Lie triple derivable multiplicative mapping from R into R . Under a mild condition on
R , we prove that ϕ andD are almost additive, that is, ϕ(a+b)−ϕ(a)−ϕ(b) ∈ Z(R ′) and
D (a+b)−D (a)−D (b) ∈ Z(R ) for all a, b ∈ R , whereZ(R ′) is the commutative centre
of R ′ and Z(R ) is the commutative centre of R . As applications, we show that every Lie
multiplicative bijective mapping and Lie triple derivable multiplicative mapping on prime
alternative rings are almost additive.

Keywords Additivity · Lie multiplicative maps · Lie triple derivable maps · Prime
alternative rings

Mathematics Subject Classification 17A36 · 17D05

1 Alternative rings and Lie multiplicativemaps

Let R be a ring not necessarily associative or commutative and consider the following con-
vention for its multiplication operation: xy · z = (xy)z and x · yz = x(yz) for x, y, z ∈ R, to
reduce the number of parentheses.We denote the associator ofR by (x, y, z) = xy ·z−x · yz
for x, y, z ∈ R. And [x, y] = xy − yx is the usual Lie product of x and y, with x, y ∈ R.

Let R and R′ be two rings and ϕ : R → R′ a map of R into R′. We call ϕ a Lie
multiplicative map of R into R′ if for all x, y ∈ R

ϕ
([x, y]) = [ϕ(x), ϕ(y)].
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And letR be a ring andD : R → R a map ofR into itself. We callD a Lie triple derivable
multiplicative map of R into itself if for all x, y, z ∈ R

D
([[x, y], z]) = [[D (x), y], z] + [[x,D (y)], z] + [[x, y],D (z)].

And if D ([x, y]) = [D (x), y] + [x,D (y)] for all x, y ∈ R we say that D : R → R is a
Lie derivable multiplicative map.

A ringR is said to be alternative if (x, x, y) = 0 = (y, x, x) for all x, y ∈ R. One easily
sees that any associative ring is an alternative ring. An alternative ring R is called k-torsion
free if k x = 0 implies x = 0, for any x ∈ R, where k ∈ Z, k > 0, and prime if AB �= 0
for any two nonzero ideals A,B ⊆ R. The nucleus of an alternative ring R is defined by

N (R) = {r ∈ R | (x, y, r) = 0 = (x, r , y) = (r , x, y) for all x, y ∈ R}.
And the commutative centre of an alternative ring R is defined by

Z(R) = {r ∈ R | [r , x] = 0 for all x ∈ R}.

Theorem 1.1 Let R be a 3-torsion free alternative ring. So R is a prime ring if and only if
aR · b = 0 (or a · Rb = 0) implies a = 0 or b = 0 for a, b ∈ R.

Proof See Theorem 1.1 in [4]. ��
Definition 1.1 A ring R is said to be flexible if satisfies

(x, y, x) = 0 f or all x, y ∈ R .

It is known that alternative rings are flexible.

Proposition 1.1 Let R be a alternative ring then R satisfies

(x, y, z) + (z, y, x) = 0 f or all x, y, z ∈ R .

Proof Just linearize the identity (x, y, x) = 0. ��
A nonzero element e1 ∈ R is called an idempotent if e1e1 = e1 and a nontrivial idempotent if
it is an idempotent different from the multiplicative identity element ofR. Let us considerR
an alternative ring and fix a nontrivial idempotent e1 ∈ R. Let e2 : R → R and e′

2 : R → R

be linear operators given by e2(a) = a − e1a and e′
2(a) = a − ae1. Clearly e22 = e2,

(e′
2)

2 = e′
2 and we note that if R has a unity, then we can consider e2 = 1 − e1 ∈ R. Let us

denote e2(a) by e2a and e′
2(a) by ae2. It is easy to see that eia · e j = ei · ae j (i, j = 1, 2)

for all a ∈ R. Then R has a Peirce decomposition R = R11 ⊕ R12 ⊕ R21 ⊕ R22, where
Ri j = eiRe j (i, j = 1, 2) [5], satisfying the following multiplicative relations:

(i) Ri jR jl ⊆ Ril (i, j, l = 1, 2);
(ii) Ri jRi j ⊆ R j i (i, j = 1, 2);
(iii) Ri jRkl = 0, if j �= k and (i, j) �= (k, l), (i, j, k, l = 1, 2);
(iv) x2i j = 0, for all xi j ∈ Ri j (i, j = 1, 2; i �= j).

The first result about the additivity of maps on rings was given by Martindale III [6]. He
established a condition on a ringR such that every multiplicative isomorphism onR is addi-
tive. Ferreira and Ferreira [3] also considered this question in the context of n-multiplicative
maps on alternative rings satisfying Martindale’s conditions. They proved the following the-
orems.
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Theorem 1.2 [3, Theorem 2.2.] Let R and R′ be two alternative rings. Suppose that R is a
ring containing a family {eα|α ∈ �} of idempotents which satisfies:

(i) If x ∈ R is such that xR = 0, then x = 0;
(ii) If x ∈ R is such that eαR · x = 0 (or eα · Rx = 0) for all α ∈ �, then x = 0 (and

hence Rx = 0 implies x = 0);
(iii) For each α ∈ � and x ∈ R, if (eαxeα) · R(1 − eα) = 0 then eαxeα = 0.

Then every n-multiplicative isomorphism ϕ of R onto an arbitrary ring R′ is additive.

Changjing and Quanyuan [1] and Changjing et al. considered also the investigation of the
almost additivity of maps for the case of Lie multiplicative maps and Lie triple derivable
maps on associative rings. They proved the following theorem.

Theorem 1.3 Let R be an associative ring containing a nontrivial idempotent e1 and
satisfying the following condition: (Q) If A11B12 = B12A22 for all B12 ∈ R12, then
A11 + A22 ∈ Z(R). Let R′ be another ring. Suppose that a bijection map � : R → R′
satisfies

�([A, B]) = [�(A),�(B)]
for all A, B ∈ R. Then �(A + B) = �(A) + �(B) + Z ′

A,B for all A, B ∈ R, where Z ′
A,B

is an element in the commutative centre Z(R′) of R′ depending on A and B.

and

Theorem 1.4 Let R be an associative ring containing a nontrivial idempotent e1 and
satisfying the following condition: (Q) If A11B12 = B12A22 for all B12 ∈ R12, then
A11 + A22 ∈ Z(R). Suppose that a map δ : R → R satisfies

δ([[A, B],C]) = [[δ(A), B],C] + [[A, δ(B)],C] + [[A, B], δ(C)]
for all A, B,C ∈ R. Then there exists a ZA,B (depending on A and B) in Z(R) such that
δ(A + B) = δ(A) + δ(B) + ZA,B.

It is noteworthy that the types of applications and the conditions usually vary according
to each problem.

The hypotheses of the Changjing and Quanyuan’s Theorem [1] and Changjing et al. [2]
allowed the author to make its proof based on calculus using the Peirce decomposition notion
for associative rings. The notion of Peirce decomposition for the alternative rings is similar
to the notion of Peirce decomposition for the associative rings. However, the similarity of
this notion is only in its written form, but not in its theoretical structure because the Peirce
decomposition for alternative rings is the generalization of the Peirce decomposition for
associative rings. Taking this fact into account, in the present paper we investigated the main
Changjing and Quanyuan’s Theorem [1] and Changjing’s et al. Theorem [2] to the class
of alternative rings. For this, we adopt and follow the same structure of the demonstration
presented in [1] and [2], in order: to preserve the author ideas and to highlight the investigation
of the associative results to the alternative results. Therefore, our lemmas and theorem that
seem to be equal in written form with the lemmas and theorem proposed in Changjing and
Quanyuan [1] and Changjing’s et al. [2], are distinguished by a fundamental item: the use of
the non-associative multiplications.
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2 Lie multiplicativemaps

2.1 Auxiliary lemmas

Let be ϕ a Liemultiplicative bijection ofR onto an arbitrary alternative ringR′, the following
lemmas hold true:

Lemma 2.1 ϕ(0) = 0.

Lemma 2.2 For any a ∈ R and z ∈ Z(R), there exists z′ ∈ Z(R′) such that ϕ(a + z) =
ϕ(a) + z′.

Lemma 2.3 Let a, b, c ∈ R and ϕ(c) = ϕ(a) + ϕ(b). Then for any t, s ∈ R, we have
ϕ([c, t]) = ϕ([a, t]) + ϕ([b, t]) and ϕ([[c, t], s]) = ϕ([[a, t], s]) + ϕ([[b, t], s]).

These lemmas, have identical proofs, as in [1] (Claim 1, Claim 2 and Claim 3 ). Thus,
they were omitted.

3 Main theorem

We shall prove as follows the main result of this paper.

Theorem 3.1 Let R and R′ be alternative rings. Suppose that R is a ring containing a
nontrivial idempotent e1 which satisfies:

(i) If [a11 + a22,R12] = 0, then a11 + a22 ∈ Z(R),

(ii) If [a11 + a22,R21] = 0, then a11 + a22 ∈ Z(R).

Then every Lie multiplicative bijection ϕ ofR onto an arbitrary alternative ringR′ is almost
additive.

The following lemmas have the same hypotheses as Theorem 3.1 and we need these
lemmas for the proof of this theorem. Thus, let us consider e1 a nontrivial idempotent ofR.

Lemma 3.1 For any a11 ∈ R 11, bi j ∈ R i j , with i �= j there exist z′a11,bi j ∈ Z(R ′) such
that

ϕ(a11 + bi j ) = ϕ(a11) + ϕ(bi j ) + z′a11,bi j .

Proof We shall only prove the case i = 2, j = 1 because the demonstration of the other
case is similar. By surjectivity of ϕ there exist c = c11 + c12 + c21 + c22 ∈ R such that
ϕ(c) = ϕ(a11) + ϕ(b21). Applying the Lemmas 2.1 and 2.3 we have

ϕ([c, e1]) = ϕ([a11, e1]) + ϕ([b21, e1]) = ϕ([b21, e1]).
Since ϕ is injective, we get [c, e1] = [b21, e1]. Thus c21 = b21 and c12 = 0. Now for any
x12 ∈ R 12, we have

ϕ([[c, x12], e1]) = ϕ([[a11, x12], e1]) + ϕ([[b21, x12], e1]).
By the injectivity of ϕ and Lemma 2.1, we get [c11 − a11 + c22, x12] = 0. Therefore by
condition (i) of the Theorem 3.1 we have c11 − a11 + c22 ∈ Z(R ). And finally by Lemma
2.2 we verified that the Lemma is valid. ��
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Lemma 3.2 For any a12 ∈ R 12 and b21 ∈ R 21, we have ϕ(a12 + b21) = ϕ(a12) + ϕ(b21).

Proof By the same arguments of Claim 7 of [1]. ��
Lemma 3.3 For any ai j , bi j ∈ R i j , we have ϕ(ai j + bi j ) = ϕ(ai j ) + ϕ(bi j ).

Proof Here too we shall only prove the case i = 2, j = 1 because the demonstration of the
other case is similar. Firstly observe that by x2i j = 0, for all xi j ∈ Ri j (i, j = 1, 2; i �= j)
we have

a21 + b21 + 2b21a21 = [e1 + a21, e1 − b21].
Now making use of Lemmas 3.1 and 3.2 we get

ϕ(a21 + b21) + ϕ(2b21a21) = ϕ(a21 + b21 + 2b21a21)

= ϕ([e1 + a21, e1 − b21])
= [ϕ(e1 + a21), ϕ(e1 − b21)]
= [ϕ(e1) + ϕ(a21) + Z ′

e1,a21 , ϕ(e1) + ϕ(−b21) + Z ′
e1,b21 ]

= [ϕ(e1), ϕ(e1)] + [ϕ(a21), ϕ(e1)] + [ϕ(e1), ϕ(−b21)]
+[ϕ(a21), ϕ(−b21)]

= ϕ([e1, e1]) + ϕ([a21, e1]) + ϕ([e1,−b21]) + ϕ([a21,−b21])
= ϕ(a21) + ϕ(b21) + ϕ(2b21a21).

For the case i = 1, j = 2 make use of

a12 + b12 + 2a12b12 = [e1 − b12, e1 + a12].
��

Lemma 3.4 For any aii , bii ∈ R i i , i = 1, 2, there exists a z′aii ,bii ∈ Z(R ′) such that

ϕ(aii + bii ) = ϕ(aii ) + ϕ(bii ) + z′aii ,bii .

Proof First we will show the case i = 1. Since ϕ is surjective, we can find an element
c = c11 + c12 + c21 + c22 ∈ R such that ϕ(c) = ϕ(a11) + ϕ(b11). Using Lemma 2.3,
we have ϕ([c, e1]) = ϕ([a11, e1]) + ϕ([b11, e1]) = 0. Since ϕ is injective, we arrive at
[c, e1] = 0. It follows that c12 = c21 = 0. For any x12 ∈ R 12, using Lemmas 2.3 and 3.3,
we get

ϕ([c, x12]) = ϕ([a11, x12]) + ϕ([b11, x12])
= ϕ(a11x12) + ϕ(b11x12)

= ϕ(a11x12 + b11x12).

It follows from the injectivity of ϕ that cx12 − x12c = [c, x12] = a11x12 + b11x12, which
implies (c11 − a11 − b11)x12 = x12c22 for all x12 ∈ R 12. By condition (i) of Theorem
3.1, we arrive at c11 − a11 − b11 + c22 ∈ Z(R ). So c11 + c22 = a11 + b11 + z for some
z ∈ Z(R ). Now we get c = a11 + b11 + z. By Lemma 2.2, we get ϕ(a11) + ϕ(b11) =
ϕ(c) = ϕ(a11 + b11 + z) = ϕ(a11 + b11) − z′a11,b11 for some z′a11,b11 ∈ Z(R ′). It follows
that ϕ(a11 + b11) = ϕ(a11) + ϕ(b11) + z′a11,b11 . In the case i = 2 again we can find an
element c = c11 + c12 + c21 + c22 ∈ R such that ϕ(c) = ϕ(a22) + ϕ(b22), because ϕ is
surjective. Using Lemma 2.3, we have ϕ([c, e1]) = ϕ([a22, e1]) + ϕ([b22, e1]) = 0. Since ϕ
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is injective, we arrive at [c, e1] = 0. It follows that c12 = c21 = 0. Now for any x21 ∈ R 21,
using Lemmas 2.3 and 3.3, we get

ϕ([c, x21]) = ϕ([a22, x21]) + ϕ([b22, x21])
= ϕ(a22x21) + ϕ(b22x21)

= ϕ(a22x21 + b22x21).

It follows from the injectivity of ϕ that cx21 − x21c = [c, x21] = a22x21 + b22x21, which
implies (c22 − a22 − b22)x21 = x21c11 for all x21 ∈ R 21. By condition (ii) of Theorem
3.1, we arrive at c22 − a22 − b22 + c11 ∈ Z(R ). So c11 + c22 = a22 + b22 + z for some
z ∈ Z(R ). Now we get c = a22 + b22 + z. By Lemma 2.2, we get ϕ(a22) + ϕ(b22) =
ϕ(c) = ϕ(a22 + b22 + z) = ϕ(a22 + b22) − z′a22,b22 for some z′a22,b22 ∈ Z(R ′). It follows
that ϕ(a22 + b22) = ϕ(a22) + ϕ(b22) + z′a22,b22 . This finishes the proof of Lemma 3.4. ��
Lemma 3.5 For any a11 ∈ R 11, b12 ∈ R 12, c21 ∈ R 21, d22 ∈ R 22, there exists a
z′a11,b12,c21,d22 ∈ Z(R ′) such that

ϕ(a11 + b12 + c21 + d22) = ϕ(a11) + ϕ(b12) + ϕ(c21) + ϕ(d22) + z′a11,b12,c21,d22 .

Proof By surjectivity of ϕ there exist h = h11 + h12 + h21 + h22 ∈ R such that ϕ(h) =
ϕ(a11) + ϕ(b12) + ϕ(c21) + ϕ(d22). Applying the Lemmas 2.1, 2.3 and 3.2 we have

ϕ([e1, h]) = ϕ([e1, a11]) + ϕ([e1, b12]) + ϕ([e1, c21]) + ϕ([e1, d22])
= ϕ(b12) + ϕ(−c21)

= ϕ(b12 − c21).

Since ϕ is injective, we get h12 = b12 and h21 = c21. Now for any x12 ∈ R 12, by Lemma
3.2 and 3.3 we obtain

ϕ([[h, x12], e1]) = ϕ([[a11, x12], e1]) + ϕ([[b12, x12], e1])
+ϕ([[c21, x12], e1]) + ϕ([[d22, x12], e1])

= ϕ(−a11x12) + ϕ(2b12x12) + ϕ(x12d22)

= ϕ(−a11x12 + 2b12x12 + x12d22).

As ϕ is injective, we get [h11 + h22 − a11 − d22, x12] = 0 for all x12 ∈ R 12. By condition
(i) of the Theorem 3.1 we have h = a11 + b12 + c21 + d22 + z for some z ∈ Z(R ). Thus the
Lemma is true by Lemma 2.2. ��

We are ready to prove our Theorem 3.1.

Proof of Theorem Let bea, b ∈ R witha = a11+a12+a21+a22 andb = b11+b12+b21+b22.
By previous Lemmas we obtain

ϕ(a + b) = ϕ(a11 + a12 + a21 + a22 + b11 + b12 + b21 + b22)

= ϕ((a11 + b11) + (a12 + b12) + (a21 + b21) + (a22 + b22))

= ϕ(a11 + b11) + ϕ(a12 + b12) + ϕ(a21 + b21) + ϕ(a22 + b22) + z′1
= ϕ(a11) + ϕ(b11) + z′2 + ϕ(a12) + ϕ(b12) + ϕ(a21)

+ϕ(b21) + ϕ(a22) + ϕ(b22) + z′3 + z′1
= (ϕ(a11) + ϕ(a12) + ϕ(a21) + ϕ(a22))

+(ϕ(b11) + ϕ(b12) + ϕ(b21) + ϕ(b22)) + (z′1 + z′2 + z′3)
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= ϕ(a11 + a12 + a21 + a22) − z′4 + ϕ(b11 + b12 + b21 + b22) − z′5
+(z′1 + z′2 + z′3)

= ϕ(a) + ϕ(b) + (z′1 + z′2 + z′3 − z′4 − z′5)
= ϕ(a) + ϕ(b) + z′a,b.

This finishes the proof of Theorem 3.1. ��

4 Lie triple derivable maps

4.1 Main theorem

We shall prove as follows the main result of this paper.

Theorem 4.1 LetR be an alternative ring. Suppose thatR is a ring containing a nontrivial
idempotent e1 which satisfies the same hypotheses of the Theorem 3.1. Then every Lie triple
derivable mapD of R into itself is almost additive.

The following lemmas have the same hypotheses as Theorem 4.1 and we need these
lemmas for the proof of this theorem. Thus, let us consider e1 a nontrivial idempotent ofR.
It’s worth highlighting that some lemmas have their proof equal to the claims in [2] and when
this occurs we will make the proper mention. We started with the following

Lemma 4.1 D (0) = 0.

Proof This Lemma have identical proof as Claim 1 in [2]. ��
Lemma 4.2 For any a11 ∈ R 11, bi j ∈ R i j , with i �= j there exist za11,bi j ∈ Z(R ) such that

D (a11 + bi j ) = D (a11) + D (bi j ) + za11,bi j .

Proof We shall only prove the case i = 1, j = 2 because the demonstration of the other
case is similar just use the condition (i) of the Theorem 4.1. According to Changjing et al.
we considered t = D (a11 + b12) − D (a11) − D (b12). As in the associative case we get
[[t, e1], e1] = 0 just to observe that

D ([[a11 + b12, e1], e1]) = D (b12) = D ([[a11, e1], e1]) + D ([[b12, e1], e1]).
It follows that t12 + t21 = 0 just use the definition of D . Now we will use the condition (ii)
of the Theorem 4.1, for this let any c21 ∈ R 21 and note that

D ([[a11 + b12, c21], e1]) = D (−c21a11) = D ([[a11, c21], e1]) + D ([[b12, c21], e1]).
So using the definition of D and Lemma 4.1 we obtain [t11 + t22, c21] = 0. Therefore
by condition (ii) of the Theorem 4.1 we have t11 + t22 ∈ Z(R ). Thus, D (a11 + b12) =
D (a11) + D (b12) + za11,b12 . ��
Lemma 4.3 For any a12 ∈ R 12 and b21 ∈ R 21, we haveD (a12+b21) = D (a12)+D (b21).

Proof This Lemma use the same arguments of Claim 5 of [2], but to clarify the text we added
here the proof. Using Lemma 4.2, we have
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D (a12 + b21) = D ([[e1 + a12, e1 − b21], e1])
= [[D (e1 + a12), e1 − b21], e1] + [[e1 + a12,D (e1 − b21)], e1]

+[[e1 + a12, e1 − b21],D (e1)]
= [[D (e1) + D (a12), e1 − b21], e1]

+[[e1 + a12,D (e1) + D (−b21)], e1] + [[e1 + a12, e1 − b21],D (e1)]
= D ([[e1, e1], e1]) + D ([[e1,−b12], e1]) + D ([[a12, e1], e1)

+D ([[a12,−b21], e1])
= D (a12) + D (b21).

��
Lemma 4.4 For any ai j , bi j ∈ R i j with i �= j , we haveD (ai j + bi j ) = D (ai j ) + D (bi j ).

Proof Here we shall only prove the case i = 2, j = 1 because the demonstration of the other
case is similar. Firstly observe that by x2i j = 0, for all xi j ∈ Ri j (i, j = 1, 2; i �= j) we
have

a21 + b21 + 2a21b21 = [[e1 + a21, e1 − b21], e1].
Now making use of Lemmas 4.2 and 4.3 we get

D (a21 + b21) + D (2a21b21) = D (a21 + b21 + 2a21b21)

= D ([[e1 + a21, e1 − b21], e1])
= [[D (e1 + a21), e1 − b21], e1]

+[[e1 + a21,D (e1 − b21)], e1]
+[[e1 + a21, e1 − b21],D (e1)]

= [[D (e1) + D (a21) + ze1,a21 , e1 − b21], e1]
+[[e1 + a21,D (e1) + D (−b21) + ze1,b21 ], e1]
+[[e1 + a21, e1 − b21],D (e1)]

= D ([[e1, e1)], e1)]) + D ([[e1,−b21], e1])
+D ([[a21, e1], e1])
+D ([[a21,−b21], e1])

= D (a21) + D (b21) + D (2a21b21).

For the case i = 1, j = 2 make use of

a12 + b12 − 2a12b12 = [e1, [e1 − b12, e1 + a12]].
��

Lemma 4.5 For any aii , bii ∈ R i i , i = 1, 2, there exists a zaii ,bii ∈ Z(R ) such that

D (aii + bii ) = D (aii ) + D (bii ) + zaii ,bii .

Proof We will only prove the case i = 1 because the other case is similar. Let T =
D (a11+b11)−D (a11)−D (b11), by a straightforward calculus, we get [[T , e1], e1] = 0 and
[[c12, T ], e1] = 0 for all c12 ∈ R 12 which implies T12 = T21 = 0 and [T11 + T22, c12] = 0
for all c12 ∈ R 12 respectively. By condition (i) of Theorem 3.1 we have T11 + T22 ∈ Z(R ).
ThereforeD (a11 + b11) = D (a11) + D (b11) + za11,b11 . ��
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Lemma 4.6 For any a11 ∈ R 11, b12 ∈ R 12, c21 ∈ R 21, d22 ∈ R 22, there exists a
za11,b12,c21,d22 ∈ Z(R ) such that

D (a11 + b12 + c21 + d22) = D (a11) + D (b12) + D (c21) + D (d22) + za11,b12,c21,d22 .

Proof Before the proof of this Lemma, observe that in an alternative ring if any xi j , yi j ∈ R i j

with i �= j then xi j yi j ∈ R j i and not necessarily xi j yi j = 0. In light of this we have a slight
change in the proof of Claim 6 made in [2], but such a change is crucial for the result of
the lemma to be valid. According to Claim 6 in [2], let t = D (a11 + b12 + c21 + d22) −
D (a11) − D (b12) − D (c21) − D (d22). Using the definition of D and Lemma 4.3 we get
[[t, e1], e1] = 0. Indeed,

[[t, e1], e1] = [[D (a11 + b12 + c21 + d22) − D (a11)

−D (b12) − D (c21) − D (d22), e1], e1]
= [[D (a11 + b12 + c21 + d22), e1], e1] − [[D (a11), e1], e1]

−[[D (b12), e1], e1] − [[D (c21), e1], e1] − [[D (d22), e1], e1]
= D ([[a11 + b12 + c21 + d22, e1], e1])

−[[a11 + b12 + c21 + d22,D (e1)], e1]
−[[a11 + b12 + c21 + d22, e1],D (e1)]
− {D ([[a11, e1], e1]) − [[a11,D (e1)], e1] − [[a11, e1],D (e1)]}
− {D ([[b12, e1], e1]) − [[b12,D (e1)], e1] − [[b12, e1],D (e1)]}
− {D ([[c21, e1], e1]) − [[c21,D (e1)], e1] − [[c21, e1],D (e1)]}
− {D ([[d22, e1], e1]) − [[d22,D (e1)], e1] − [[d22, e1],D (e1)]}

= D (b12 + c21) − D (b12) − D (c21)

= 0.

As [[t, e1], e1] = 0 we have t12 + t21 = 0. Now for all x12 ∈ R 12, by Lemmas 4.3, 4.4 we
have

[[D (a11 + b12 + c21 + d22), x12], e1] + [[a11 + b12 + c21 + d22,D (x12)], e1]
+[[a11 + b12 + c21 + d22, x12],D (e1)]

= D ([[a11 + b12 + c21 + d22, x12], e1])
= D (x12d22 − a11x12 − b12x12)

= D (x12d22 − a11x12) + D (−b12x12)

= D (x12d22) + D (−a11x12) + D (−b12x12)

= D ([[a11, x12], e1]) + D ([[b12, x12], e1]) + D ([[c21, x12], e1]) + D ([[d22, x12], e1])
= [[D (a11) + D (b12) + D (c21) + D (d22), x12], e1]

+[[a11 + b12 + c21 + d22,D (x12)], e1]
+[[a11 + b12 + c21 + d22, x12],D (e1)].

We get [[D (a11 + b12 + c21 + d22), x12], e1] = [[D (a11) + D (b12) + D (c21) +
D (d22), x12], e1], that is, [[t, x12], e1] = 0 which implies, by condition (i) of the Theo-
rem 4.1, t = t11 + t22 ∈ Z(R ). Thus, D (a11 + b12 + c21 + d22) = D (a11) + D (b12) +
D (c21) + D (d22) + za11,b12,c21,d22 where za11,b12,c21,d22 ∈ Z(R ). ��

We are ready to prove our Theorem 4.1.
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Proof of Theorem Let a, b ∈ R with a = a11+a12+a21+a22 and b = b11+b12+b21+b22.
By previous Lemmas we obtain

D (a + b) = D (a11 + a12 + a21 + a22 + b11 + b12 + b21 + b22)

= D ((a11 + b11) + (a12 + b12) + (a21 + b21) + (a22 + b22))

= D (a11 + b11) + D (a12 + b12) + D (a21 + b21) + D (a22 + b22) + z1

= D (a11) + D (b11) + z2 + D (a12) + D (b12) + D (a21)

+D (b21) + D (a22) + D (b22) + z3 + z1

= (D (a11) + D (a12) + D (a21) + D (a22))

+(D (b11) + D (b12) + D (b21) + D (b22)) + (z1 + z2 + z3)

= D (a11 + a12 + a21 + a22) − z4 + D (b11 + b12 + b21 + b22) − z5

+(z1 + z2 + z3)

= D (a) + D (b) + (z1 + z2 + z3 − z4 − z5)

= D (a) + D (b) + za,b.

This finishes the proof of Theorem 4.1. ��
Corollary 4.1 LetR be an alternative rings. Suppose thatR is a ring containing a nontrivial
idempotent e1 which satisfies:

(i) If [a11 + a22,R12] = 0, then a11 + a22 ∈ Z(R),
(ii) If [a11 + a22,R21] = 0, then a11 + a22 ∈ Z(R).

Then every Lie derivable map D of R into itself is almost additive.

Proof Just note that Lie derivable maps are Lie triple derivable maps. ��
Remark 4.1 It is worth noting that the hypothesis,

If [a11 + a22,R21] = 0, then a11 + a22 ∈ Z(R),

does not appear in the associative case because of the relationsR 12R 12 = 0 andR 21R 21 =
0, which in general is not true in alternative rings.

The following example shows us an associative ring in which conditions (i) and (ii) of the
Theorems 3.1 and 4.1 are not equivalent.

Example 4.1 Let R be an associative ring with a idempotent e �= 0, 1. Consider the multi-
plication table given by:

· e a11 b11 b12 c21 d22

e e a11 b11 b12 0 0
a11 a11 0 0 0 0 0
b11 b11 0 b11 b12 0 0
b12 0 0 0 0 0 0
c21 c21 0 0 0 0 0
d22 0 0 0 0 0 0

Note that this ring is associative. And by a straightforward calculation it can be verified that
R does not satisfy the condition (i) but satisfies the condition (ii) of the Theorems 3.1 and
4.1. Therefore the conditions of the Theorems 3.1 and 4.1 are not equivalent.
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Now, the following example is an alternative ring that is not associative and satisfies the
hypotheses of Theorems 3.1 and 4.1, which allows us to show that the conditions stated in
the Theorems 3.1 and 4.1 do not represent artificial conditions.

Example 4.2 Let R be an unital alternative ring with a idempotent e �= 0, 1. Consider the
multiplication table given by:

· 1 e a12 b12 a21 b21

1 1 e a12 b12 a21 b21
e e e a12 b12 0 0
a12 a12 0 0 b21 e 0
b12 b12 0 −b21 0 0 0
a21 a21 a21 1 − e 0 0 b12
b21 b21 b21 0 0 −b12 0

Note that this ring is not associative because (a12, b12, a21) �= 0. And by a direct calculation
it can be verified thatR satisfies the conditions of the Theorems 3.1 and 4.1. Therefore every
Lie multiplicative map ofR inR′ and Lie triple derivable multiplicative map ofR into itself
is almost additive.

5 Prime alternative rings

In this section, we shall show that prime alternative rings satisfies the conditions of the
Theorems 3.1 and 4.1.

Lemma 5.1 LetR be a 3-torsion free prime alternative ring with a nontrivial idempotent e1
and Z(R ) be its commutative centre.

(i) If [a11 + a22,R 12] = 0, then a11 + a22 ∈ Z(R ),
(ii) If [a11 + a22,R 21] = 0, then a11 + a22 ∈ Z(R ).

Proof We will only prove (i) because (ii) it is similar. Suppose [a11 + a22,R 12] = 0, note
that the identities are valid in alternative rings, by Proposition 1.1

(i) (x11, x12, a22) = 0 = (a11, x11, x12);
(ii) (x12, x22, a22) = 0 = (a11, x12, x22);
(iii) (a22, x21, x12) = 0 = (x21, a11, x12).

Taking these identities into account and a11r12 = r12a22 for all r12 ∈ R 12 we have

(a) (a11x11)x12 = a11(x11x12) = (x11x12)a22 = x11(x12a22) = x11(a11x12) =
(x11a11)x12, that implies [a11, x11](R e2) = 0 and as R is a 3-torsion free prime
alternative ring, by Theorem 1.1, we get [a11, x11] = 0.

(b) x12(x22a22) = (x12x22)a22 = a11(x12x22) = (a11x12)x22 = (x12a22)x22 =
x12(a22x22), that implies (e1R )[a22, x22] = 0, it follows from the primeness of R
and Theorem 1.1 that [a22, x22] = 0.

(c) (a22x21)x12 = a22(x21x12) = (x21x12)a22 = x21(x12a22) = x21(a11x12) =
(x21a11)x12, in the second equality we have used letter (b), that implies [a11 +
a22, x21](R e2) = 0 again as R is a 3-torsion free prime alternative ring, by Theo-
rem 1.1, we obtain [a11 + a22, x21] = 0.
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Therefore for any x ∈ R with x = x11 + x12 + x21 + x22, we obtain [a11 + a22, x] = 0
which prove a11 + a22 ∈ Z(R ). ��

As a last result of our paper follows the Corollaries, by Theorems 3.1 and 4.1 and Lemma
5.1.

Corollary 5.1 LetR be a 3-torsion free prime alternative ring andR′ be another alternative
ring. Suppose thatR is an alternative ring containing a nontrivial idempotent e1. Then every
Lie multiplicative bijection ϕ of R onto an arbitrary alternative ring R′ is almost additive.

Corollary 5.2 LetR be a 3-torsion free prime alternative ring. Suppose thatR is an alterna-
tive ring containing a nontrivial idempotent e1. Then every Lie triple derivable multiplicative
map D of R into itself is almost additive.
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