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Abstract

Let R be an alternative ring containing a nontrivial idempotent and R’ be another alternative
ring. Suppose that a bijective mapping ¢ : B — R’ is a Lie multiplicative mapping and D
is a Lie triple derivable multiplicative mapping from R into SR . Under a mild condition on
R, we prove that ¢ and D are almost additive, that is, ¢(a +b) — ¢(a) — ¢(b) € Z(R’) and
D(a+b)—D (a)—D (b) € Z(R) foralla, b € R, where Z(R’) is the commutative centre
of R’ and Z(R) is the commutative centre of 2R. As applications, we show that every Lie
multiplicative bijective mapping and Lie triple derivable multiplicative mapping on prime
alternative rings are almost additive.

Keywords Additivity - Lie multiplicative maps - Lie triple derivable maps - Prime
alternative rings

Mathematics Subject Classification 17A36 - 17D05

1 Alternative rings and Lie multiplicative maps

Let R be a ring not necessarily associative or commutative and consider the following con-
vention for its multiplication operation: xy -z = (xy)z and x - yz = x(yz) forx, y, z € R, to
reduce the number of parentheses. We denote the associator of Rby (x, y, z) = xy-z—x-yz
for x, y,z € R. And [x, y] = xy — yx is the usual Lie product of x and y, with x, y € fA.

Let R and R’ be two rings and ¢ : R — R’ a map of R into R’. We call ¢ a Lie
multiplicative map of R into R’ if for all x, y € R

o([x. yD = [p(x), e(M].
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AndletPR bearingand® : R — 9 amap of R into itself. We call ® a Lie triple derivable
multiplicative map of *R into itself if for all x, y, z € R

D ([Lx. y1. 2D = [[D (x), y1. 21 + [[x. D (W], 2] + [[x. ¥1. D ()]

Andif ® ([x, y) =[® (x), y] + [x,D (y)] forall x,y € R wesaythat ® : R — R isa
Lie derivable multiplicative map.

A ring *R is said to be alternative if (x, x, y) = 0 = (y, x, x) for all x, y € R. One easily
sees that any associative ring is an alternative ring. An alternative ring R is called k-torsion
free if kx = 0 implies x = 0, for any x € R, where k € Z, k > 0, and prime if AB # 0
for any two nonzero ideals 2, B C fR. The nucleus of an alternative ring R is defined by

NR) ={reR|(x,y,r)=0=(x,r,y) =(r,x,y) forall x, y € R}.
And the commutative centre of an alternative ring R is defined by

ZOR) ={r e R | [r,x] =0forall x € R}.

Theorem 1.1 Let R be a 3-torsion free alternative ring. So R is a prime ring if and only if
aR-b=0(ora-Rb=0)impliesa=0o0rb=0fora,b cA.

Proof See Theorem 1.1 in [4]. O

Definition 1.1 A ring R is said to be flexible if satisfies
(x,y,x)=0 forallx,y €*R.

It is known that alternative rings are flexible.
Proposition 1.1 Let SR be a alternative ring then ‘R satisfies
x,y,2)+ (@, y,x) =0 for all x,y,z€R.
Proof Just linearize the identity (x, y, x) = 0. O

A nonzero element e € R is called an idempotent if eje; = e; and a nontrivial idempotent if
it is an idempotent different from the multiplicative identity element of R. Let us consider R
an alternative ring and fix a nontrivial idempotent ¢; € R. Lete;: R — PR and 6’2 R —> R
be linear operators given by ex(a) = a — eja and €5(a) = a — aey. Clearly e% = ey,
(e’2)2 = ¢/, and we note that if 94 has a unity, then we can consider e; = 1 — e € R. Let us
denote e>(a) by exa and e’z(a) by ae;. It is easy to see that e;a - e; = e; - ae; (i, j = 1,2)
for all @ € R. Then %R has a Peirce decomposition R = R; & Ri2 & Ry © Ry, where
Rij = eiRe;j (i, j = 1,2) [5], satisfying the following multiplicative relations:

O RjRj; SRy G, j,1=1,2);

(i) MR SR (@, =1,2);
(iii) R;jRy =0,if j #kand (@, j) # (k, D), G, ),k 1=1,2);
(iv) x,?j =0, forallx;; € Ryj (G, j=1,2; i #j).

The first result about the additivity of maps on rings was given by Martindale III [6]. He
established a condition on a ring R such that every multiplicative isomorphism on ‘R is addi-
tive. Ferreira and Ferreira [3] also considered this question in the context of n-multiplicative
maps on alternative rings satisfying Martindale’s conditions. They proved the following the-
orems.
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Lie maps on alternative rings

Theorem 1.2 [3, Theorem 2.2.] Let R and R’ be two alternative rings. Suppose that R is a
ring containing a family {ey|a € A} of idempotents which satisfies:

(1) Ifx € Ris such that xR = 0, then x = 0;
(1) If x € Ris such that e,R - x = 0 (or ey -Rx = 0) forall o € A, then x = 0 (and
hence Rx = 0 implies x = 0);
(iii) Foreacha € A and x € R, if (egxey) - R(1 — ey) = 0 then eyxe, = 0.

Then every n-multiplicative isomorphism ¢ of R onto an arbitrary ring R’ is additive.

Changjing and Quanyuan [1] and Changjing et al. considered also the investigation of the
almost additivity of maps for the case of Lie multiplicative maps and Lie triple derivable
maps on associative rings. They proved the following theorem.

Theorem 1.3 Let R be an associative ring containing a nontrivial idempotent ey and
satisfying the following condition: (Q) If A11B12 = Bi12Ax for all Byp € *Rya, then
A1l + Ay € Z(R). Let R’ be another ring. Suppose that a bijection map ® : R — R
satisfies

©([A, B]) = [®(A), ©(B)]

forall A, B € R. Then ®(A + B) = ®(A) + ®(B) + Z;"Bfor all A, B € R, where Z/A,B
is an element in the commutative centre Z(R') of R’ depending on A and B.

and

Theorem 1.4 Let R be an associative ring containing a nontrivial idempotent ey and
satisfying the following condition: (Q) If A\1B12 = B12Ap for all Byy € ‘Riy, then
A1l + A2 € Z(0R). Suppose that a map § : R — R satisfies

8([[A, B], C]) = [[8(A), B, C1+[[A, §(B)], C1+[[A, B], 8(C)]

forall A, B, C € R. Then there exists a Za g (depending on A and B) in Z(*R) such that
3(A+ B) =38(A) +38(B) + Za,B.

It is noteworthy that the types of applications and the conditions usually vary according
to each problem.

The hypotheses of the Changjing and Quanyuan’s Theorem [1] and Changjing et al. [2]
allowed the author to make its proof based on calculus using the Peirce decomposition notion
for associative rings. The notion of Peirce decomposition for the alternative rings is similar
to the notion of Peirce decomposition for the associative rings. However, the similarity of
this notion is only in its written form, but not in its theoretical structure because the Peirce
decomposition for alternative rings is the generalization of the Peirce decomposition for
associative rings. Taking this fact into account, in the present paper we investigated the main
Changjing and Quanyuan’s Theorem [1] and Changjing’s et al. Theorem [2] to the class
of alternative rings. For this, we adopt and follow the same structure of the demonstration
presented in [1] and [2], in order: to preserve the author ideas and to highlight the investigation
of the associative results to the alternative results. Therefore, our lemmas and theorem that
seem to be equal in written form with the lemmas and theorem proposed in Changjing and
Quanyuan [1] and Changjing’s et al. [2], are distinguished by a fundamental item: the use of
the non-associative multiplications.
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2 Lie multiplicative maps
2.1 Auxiliary lemmas

Let be ¢ a Lie multiplicative bijection of 2R onto an arbitrary alternative ring R, the following
lemmas hold true:

Lemma 2.1 ¢(0) = 0.

Lemma2.2 For any a € R and z € Z(R), there exists 7/ € Z(R') such that p(a + z) =
pla) + 7.

Lemma23 Let a,b,c € R and ¢(c) = ¢(a) + ¢(b). Then for any t,s € ‘R, we have
w(le, t]) = o(la, t]) + o(b, t]) and p(llc, t], s]) = ¢(lla, 1], s]) + o((lb, 1], s]).

These lemmas, have identical proofs, as in [1] (Claim 1, Claim 2 and Claim 3 ). Thus,
they were omitted.

3 Main theorem

We shall prove as follows the main result of this paper.

Theorem 3.1 Let R and R’ be alternative rings. Suppose that R is a ring containing a
nontrivial idempotent ey which satisfies:

(1) Iflai1 + ax, Ri2l =0, then aj1 + axn € Z(R),
(i) If[an +ax, Rl =0, then ary + axn € Z(R).

Then every Lie multiplicative bijection ¢ of R onto an arbitrary alternative ring R’ is almost
additive.

The following lemmas have the same hypotheses as Theorem 3.1 and we need these
lemmas for the proof of this theorem. Thus, let us consider e; a nontrivial idempotent of R.

Lemma3.1 Forany a1 € Ry, bij € Rjj, with i # j there exist Z;ll-bi/’ e Z(R') such
that '

plain + bij) = (an) + ¢(bij) + 24, 1, -

Proof We shall only prove the case i = 2, j = 1 because the demonstration of the other
case is similar. By surjectivity of ¢ there exist ¢ = c¢y1 + c12 + ¢21 + ¢22 € R such that
¢(c) = ¢(ar) + ¢(ba1). Applying the Lemmas 2.1 and 2.3 we have

o([c, e1]) = p(lai1, e1]) + @([b21, e1]) = @([b21, e1]).

Since ¢ is injective, we get [c, e1] = [ba21, e1]. Thus ¢31 = b1 and ¢12 = 0. Now for any
X12 € R 12, we have

o([lc, x12], e1]) = o(lai1, x121, e1]D) + @([[b21, x12], e1]).

By the injectivity of ¢ and Lemma 2.1, we get [c11 — a11 + ¢22, x12] = 0. Therefore by
condition (i) of the Theorem 3.1 we have cj; — a1 + ¢22 € Z(R). And finally by Lemma
2.2 we verified that the Lemma is valid. ]
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Lemma 3.2 Foranyayy € R and by € Ry, we have p(a1z + bay) = ¢(arn) + ¢(bay).
Proof By the same arguments of Claim 7 of [1]. ]
Lemma3.3 Forany a;j, bjj € R;j, we have (a;j + b;j) = ¢(a;;) + ¢(bij).

Proof Here too we shall only prove the case i = 2, j = 1 because the demonstration of the
other case is similar. Firstly observe that by xizj =0, forallx;; € Ry; (G, j=1,2; 1 #))
we have

ax1 + bai + 2briax = [er +azy, e1 — byl
Now making use of Lemmas 3.1 and 3.2 we get

w(az1 + b21) + (2br1az1) = @(az + ba1 + 2bayaz1)
= ¢(le1 +az1, e1 — ba])
= [p(e1 +az1), p(er — ba1)]
= [p(e1) + ¢(@1) + Zy, 4y,» 9(e1) +@(=b21) + Z;, 4]
= [p(e1), p(en)] + [p(aa1), plen)] + [p(e1), p(—ba1)]
+lp(az1), p(=b21)]
= ¢(le1, e1]) + ¢([a21. e1]) + o(ler, —b2a D) + ¢(lazi, =b21])
= g(az1) + ¢(b21) + ¢(2br1az1).

For the case i = 1, j = 2 make use of

a2 + b2 +2appbi2 = [ey — b1z, e +apzl.

Lemma 3.4 Forany a;;, bi; € Rii, i = 1,2, there exists a Z/au,b,-; € Z(R') such that
p(aii + bii) = @(aii) + @bii) + 2, 4, -

Proof First we will show the case i = 1. Since ¢ is surjective, we can find an element
¢ = c11 + c12 4 ca1 + cn € R such that o(c) = ¢(arr) + ¢(b11). Using Lemma 2.3,
we have ¢([c, e1]) = ¢([a11, e1]) + ¢([b11,e1]) = 0. Since ¢ is injective, we arrive at
[c, e1] = 0. It follows that c;» = ¢31 = 0. For any x17 € R 12, using Lemmas 2.3 and 3.3,
we get

o([c, x12]) = e([ai1, x12]) + o ([b11, x12])
= @(a11x12) + ¢(br1x12)
= @(ajixi2 + brix12).

It follows from the injectivity of ¢ that cx12 — x12¢ = [c, x12] = a11x12 + b11x12, which
implies (c1; — aj1 — b11)x12 = xj2¢22 for all x;2 € R 2. By condition (i) of Theorem
3.1, we arrive at cj1 — a1 — b1 +¢22 € Z(R). So c11 + ¢ = ajy + b1 + z for some
z € Z(R). Now we get ¢ = aj| + b1 + z. By Lemma 2.2, we get ¢(aj1) + ¢(b11) =
o(c) = @(ay + b1 +2) = play +biy) — z;”’b“ for some z;”’b” e Z(R'). Tt follows

that g(ai1 + bi1) = ¢(an) + @) + 2, ,,- In the case i = 2 again we can find an
element ¢ = c¢11 + c12 + 21 + ¢c22 € R such that ¢(c) = ¢(ax) + ¢(b22), because ¢ is

surjective. Using Lemma 2.3, we have ¢([c, e1]) = ¢([a22, e1]) + ¢([b22, e1]) = 0. Since ¢
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is injective, we arrive at [c, e;] = 0. It follows that ¢12 = ¢31 = 0. Now for any x»1 € Ry,
using Lemmas 2.3 and 3.3, we get
(e, x21]) = o([az, x21]) + ¢([b22, x21])

= @(axnx21) + ¢(bxnxa1)

= @(axnxz + banxzy).
It follows from the injectivity of ¢ that cxz1 — x21¢ = [c¢, x21] = ax21 + baxa1, which
implies (c22 — ax — b22)x21 = x21¢11 for all xo; € $R,;. By condition (ii) of Theorem
3.1, we arrive at cpp — ax — by +c11 € Z(CR). So c11 + ¢ = apx + by + z for some

z € Z(R). Now we get ¢ = ap + by + z. By Lemma 2.2, we get p(az) + ¢(by) =
o(c) = @paxn + by +2) = plaxn +bn) — 2 for some 7’ e Z(R"). It follows

/
ax,bx ax,bxn

that ¢ (a2 + b)) = @(axn) + @) + zém by This finishes the proof of Lemma 3.4. O

Lemma3.5 For any a;y € Ry, b1z € Ryp, c21 € Roy, dp € Ry, there exists a
€ Z(R') such that

’
Za.bia.co1.dn
@(ar + b1z + 21 + d2) = @(an) + @(b12) + @(c21) + ©(d2) + 24, biy.cordon-

Proof By surjectivity of ¢ there exist h = hyy + hip + ho; + hoo € R such that ¢p(h) =
o(air) + ¢(b12) + ¢(c21) + ¢(dr2). Applying the Lemmas 2.1, 2.3 and 3.2 we have
e(le1, hD) = ¢(ler, anl) + ¢(le1, bial) + ¢ (le1, ca1) + ¢(le1, d22l)
= ¢(b12) + ¢(—c21)
= (b2 — c21).
Since ¢ is injective, we get hjp = by and hy; = c21. Now for any x12 € R 12, by Lemma
3.2 and 3.3 we obtain
o(llh, x12], e1]) = ¢(lla11, x12], e1]) + @([[b12, x12], €1])
+o([lea1, x12], e1]) + @([[da2, x12], e1])
= ¢(—anxi2) + ¢(2bi2x12) + ¢(x12d22)
= p(—ai1x12 + 2b12x12 + x12d22).
As ¢ is injective, we get [h1] + hoo — a1 — da2, x12] = 0 for all x5 € R 12. By condition

(i) of the Theorem 3.1 we have i = a1 + b12 4 c21 + doo + z for some z € Z(R). Thus the
Lemma is true by Lemma 2.2. O

We are ready to prove our Theorem 3.1.

Proof of Theorem Letbea, b € R witha = ajj+aja+az;+ax andb = by1+bj2+ba1+b2s.
By previous Lemmas we obtain
pla+b) = glan +aiz +ax +axn + b + bix + bay + b2)
= ¢((an1 +b1) + (a2 + bi2) + (@21 + b21) + (az2 + b22))
= @(ar1 +b11) + @(a2 + b12) + @(az + b)) + ¢laz + ba) + 2
= @(a1) + ¢b11) + 25 + @(an) + ¢(b12) + (az1)
+oba) +¢an) + obn) + 25+ 2}
= (p(an) + @an) + ¢(az) + ¢(az))
+(pb11) + @(b12) + ¢ (b21) + @(b2)) + (2} + 25 + 25)
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= @(an +ain +ax +an) —zy + ¢bi1 + bz + ba1 + b)) — 75
+(2) + 25 +25)
=g(a) +ob) + (2] + 2 + 25 — 24 — 25)
= g(a) +¢b) + 2,
This finishes the proof of Theorem 3.1. O

4 Lie triple derivable maps
4.1 Main theorem

We shall prove as follows the main result of this paper.

Theorem 4.1 Let SR be an alternative ring. Suppose that R is a ring containing a nontrivial
idempotent ey which satisfies the same hypotheses of the Theorem 3.1. Then every Lie triple
derivable map ® of R into itself is almost additive.

The following lemmas have the same hypotheses as Theorem 4.1 and we need these
lemmas for the proof of this theorem. Thus, let us consider e; a nontrivial idempotent of fR.
It’s worth highlighting that some lemmas have their proof equal to the claims in [2] and when
this occurs we will make the proper mention. We started with the following

Lemma4.1 © (0) =0.
Proof This Lemma have identical proof as Claim 1 in [2]. m]

Lemma4.2 Foranyay € R, bij € Rij, withi # j there exist Zay,bij € Z(R) such that
D (ar1 + bij) =D (ai) +D (bij) + zay by -

Proof We shall only prove the case i = 1, j = 2 because the demonstration of the other

case is similar just use the condition (i) of the Theorem 4.1. According to Changjing et al.

we considered t = D (a1 + b12) — D (ar1) — D (b12). As in the associative case we get
[[z, e1], e1] = O just to observe that

D ([larr + b1z, e1l, e1]) =D (b12) =D ([lai1, e1], er]) +D ([[b12, e1], e1]).

It follows that #15 + 21 = 0 just use the definition of ® . Now we will use the condition (ii)
of the Theorem 4.1, for this let any cp; € P71 and note that

D ([lai1 + b1z, c21], e1]) =D (—ca1a11) =D ([lai1, c21], er]) +D ([[b12, c21], e1]).

So using the definition of ® and Lemma 4.1 we obtain [t11 + #22, c21] = 0. Therefore
by condition (ii) of the Theorem 4.1 we have t11 + 22 € Z(R). Thus, D (a11 + b12) =
D (a1) + D (012) + Zayy - .

Lemma4.3 Foranyaip € R 12 and by € Ry, we have D (a1a+ba1) =D (ar2) +9 (bay).

Proof This Lemma use the same arguments of Claim 5 of [2], but to clarify the text we added
here the proof. Using Lemma 4.2, we have
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D (a2 +b21) =D (ller +aiz, er — bayl, er])
= [[D (e1 +a12). e1 — ba1], e1] + [le1 + a1, D (e1 — ba1)], e1]
+ller +aiz, er — b21], D (e1)]
= [[D (e1) + D (a12), e1 — b21], e1]
+ller +aiz, D (e1) + D (=ba1)], e1] + [le1 + a1z, e1 — b21], D (e1)]
=D (lle1, e1l, er]) + D ([ler, —b12], e1]) +D ([lai2, e1], e1)
+9D ([lai2, —b21l, e1])
=D (a12) + D (b21).
O
Lemma4.4 Forany a;j, bij € Ri; withi # j, we have D (a;; + b;j) = D (a;;) + D (b;)).

Proof Here we shall only prove the case i = 2, j = 1 because the demonstration of the other
case is similar. Firstly observe that by xizj =0, forall x;; € R;; (,j =1,2; i # j) we
have

az1 + ba1 + 2a21b21 = [[e1 + az1, e1 — b1l en].
Now making use of Lemmas 4.2 and 4.3 we get

D (a21 + b21) + D az1ba1) = D (az1 + b2 + 2az21b21)

=D ([le1 +az1,e1 —ba1l, e1])

= [[D (e1 +a21), e1 — b21], e1]
+ller +az1, D (e1 — b21)], e1]
+ller +az1, e1 — b211, D (e1)]

= [[D (e1) +D (a21) + Zey.azr» €1 — b21], e1]
+ller +a21, D (e1) +D (—b21) + zey by, 1, €1]
+ller +az1, e1 — b211, D (e1)]

=D ([le1, en)], en)D + D ([le1, —b21], e1])
+9 ([laz1, e1], e1])
+9 ([laz1, —b21l, e1])

=D (a21) + D (b21) +D 2az1b21).

For the case i = 1, j = 2 make use of

aip + by — 2anbyy = ley, [er — b2, e1 +arz]l.

Lemma4.5 Forany a;;, bj; € R, i = 1,2, there exists a 24, p,; € Z(R) such that
D (aii + bii) =D (@ii) +D (bii) + Za;; by -

Proof We will only prove the case i = 1 because the other case is similar. Let 7 =
D (a11+b11)—2 (a11) —2 (b11), by astraightforward calculus, we get [[T', e1], e;] = 0 and
[[c12, T1, e1] = O for all ¢j2 € PR 12 which implies T1o = T>1 = 0 and [T11 + T22,¢12] =0
for all c12 € R 12 respectively. By condition (i) of Theorem 3.1 we have 711 + T2 € Z(R).
Therefore © (a1 + b11) =D (a11) +D (b11) + Zay,.6y, - O
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Lemma 4.6 For any a;; € R, bi1a € Rz, 21 € R, dp € R, there exists a
Zay,b1a,car,dn € Z(R) such that

D (a11 +bia+c21 +dn) =D (a11) + D (b12) +D (c21) + D (d22) + Zay b1a,er1,do -

Proof Before the proof of this Lemma, observe that in an alternative ring if any x; i Yij € Rij
withi # j then x;;y;; € 2R j; and not necessarily x;;y;; = 0. Inlight of this we have a slight
change in the proof of Claim 6 made in [2], but such a change is crucial for the result of
the lemma to be valid. According to Claim 6 in [2], let t = D (a1 + b12 + ¢21 + d2) —
D (ar1) — D (b12) — D (c21) — D (d22). Using the definition of ® and Lemma 4.3 we get
[z, e1], e1] = 0. Indeed,
[[z, e1]. e1] = [[D (a11 + b12 + c21 + d22) — D (a11)
=D (b12) — D (c21) — D (dn), e1], e1l
= [[D (a11 + b12 + c21 +d22), e1], e1] = [[D (a11), e1], e1]
—[[D (b12), e1], e1] — [[D (c21), e1], e1] — [[D (d22), e1], e1l
=D ([la11 + b12 + c21 + dn2, e1], e1])
—[la11 + b12 + c21 + do2, D (e1)], en]
—[la11 + b1z + c21 + dn2, €1], D (e1)]
—{® (lai1, e1], e1]) — lla11, D (en)], e1] — [lai1, e1], D (e))]}
—{D (b1, e1], e1]) — [[b12, D (e1)], e1] — [[b12, €1], D (e) ]}
—{® (lcar1, e1l, e1]) — [le21, D (en)], e1] = [lea1, e1], D (en)]}
—{D ([[d22; e1], e1]) — [ld22, D (e1)], e1] — [ld22, e1], D (en)]}
=D (bia+c21) — D (b12) — D (c21)
=0.

As [[t, e1], e1] = 0 we have t12 + 121 = 0. Now for all x12 € R 12, by Lemmas 4.3, 4.4 we
have

[[D (a11 + b12 + c21 + d22), x12], e1] + [[a11 + b1z + c21 + d22, D (x12)], e1]
+llai + b1z + c21 + doz, x12], D (e1)]
=D ([lan + b1z + c21 + da2, x12], €1])
=D (x12d2 — anxi2 — biax12)
=D (x12d2 — anx12) + D (=bi2x12)
=D (x12d2) + D (—anxi2) + D (=b12x12)
=9 ([la11, x12], e1]) + D ([[b12, x12], e1]) + D ([[c21, x12]. e1]) + D ([[d22, x12], e1])
= [[D (a11) +D (b12) + D (c21) + D (d22), x12], e1]
+llan + bz + c21 +daa, D (x12)], e1]
+llan + bz + c21 + daz, x12], D (e1)].
We get [[D(a11 + b1z + ca1 + da), xi2ler]l = [[D(an) + D (b12) + D (c21) +
D (d2), x121, e1], that is, [[#, x12], e1] = 0 which implies, by condition (i) of the Theo-

rem4.1,t = t1; + 10 € Z(R). Thus, D (a1 + b1z + c21 +dr) = D (ar1) + D (b12) +
D(c21)+D (d22) + Zay,b12,001,dm where Zayy,bia,c21.d2n € Z(%) O

We are ready to prove our Theorem 4.1.
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Proof of Theorem Leta, b € R witha = aj;+ajp+ax+ax andb = by +b12+ba +ba.
By previous Lemmas we obtain
D(a+b) =D (an +aix+ax +ax+bi1 + b2+ by + b2n)
=D ((a11 + b11) + (a12 + b12) + (a21 + b21) + (a22 + b22))
=D (a1 +b11) +D (a2 + b12) + D (az1 + b21) +D (ax + b22) + 21
=D (a11) +D (b11) + 22 + D (a12) + D (b12) + D (a21)
+9 (b21) + D (a22) + D (b2) + 23 + 21
= (D (a11) + D (a12) + D (a21) + D (a22))
+(® b11) + D (b12) + D (b21) + D (b)) + (21 + 22 + 23)
=D (an +an+ax +an) — 24+ b1 + b2+ b + b)) — 25
+(z1+22+23)
=D@+DWb)+ (z1+z2+23— 24 —25)
=D (@) +D0b)+ zap-
This finishes the proof of Theorem 4.1. O
Corollary 4.1 Let R be an alternative rings. Suppose that R is a ring containing a nontrivial
idempotent ey which satisfies:

1) Iflarn +axn, Rzl =0, then a1y + axn € Z(N),
(i) Iflain + a2, R21]1 =0, then ajy + ax € Z(R).

Then every Lie derivable map ® of R into itself is almost additive.
Proof Just note that Lie derivable maps are Lie triple derivable maps. O
Remark 4.1 1t is worth noting that the hypothesis,

If [a11 + a2z, R21] =0, then ay + axn € Z(R),

does not appear in the associative case because of the relations R 1R 12 = 0and R 1R 21 =
0, which in general is not true in alternative rings.

The following example shows us an associative ring in which conditions (i) and (ii) of the
Theorems 3.1 and 4.1 are not equivalent.

Example 4.1 Let ‘R be an associative ring with a idempotent ¢ # 0, 1. Consider the multi-
plication table given by:

e arg bn b1z 21 dy
e e ary b1y b2 0 0
ary ary 0 0 0 0 0
b b1 0 by b1z 0 0
b12 0 0 0 0 0 0
1 1 0 0 0 0 0
dy 0 0 0 0 0 0

Note that this ring is associative. And by a straightforward calculation it can be verified that
R does not satisfy the condition (i) but satisfies the condition (ii) of the Theorems 3.1 and
4.1. Therefore the conditions of the Theorems 3.1 and 4.1 are not equivalent.
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Now, the following example is an alternative ring that is not associative and satisfies the
hypotheses of Theorems 3.1 and 4.1, which allows us to show that the conditions stated in
the Theorems 3.1 and 4.1 do not represent artificial conditions.

Example 4.2 Let YR be an unital alternative ring with a idempotent ¢ # 0, 1. Consider the
multiplication table given by:

1 e ap b1z az) b2
1 1 e ap bia az| b2
e e e arn b12 0 0
apn apn 0 0 by e 0
b12 b12 0 —byy 0 0 0
ary ary axl 1—e 0 0 b1y
bai bai bai 0 0 —b12 0

Note that this ring is not associative because (aj2, b12, a>1) # 0. And by a direct calculation
it can be verified that R satisfies the conditions of the Theorems 3.1 and 4.1. Therefore every
Lie multiplicative map of R in R’ and Lie triple derivable multiplicative map of R into itself
is almost additive.

5 Prime alternative rings

In this section, we shall show that prime alternative rings satisfies the conditions of the
Theorems 3.1 and 4.1.

Lemma 5.1 Let$R be a 3-torsion free prime alternative ring with a nontrivial idempotent e{
and Z(R) be its commutative centre.

() Iflai1 + axn,R12] =0, then ayy + axn € Z(R),
(i) Iflai1 +axn, R21]1 =0, then ayy + axn € Z(R).

Proof We will only prove (i) because (ii) it is similar. Suppose [a11 + a2z, R 12] = 0, note
that the identities are valid in alternative rings, by Proposition 1.1

1) (x11,x12,a22) =0 = (a1, x11, X12);
(i) (x12,x22,a22) =0 = (a1, X12, x22);
(iii) (a2, x21, x12) = 0 = (x21, a1y, X12).

Taking these identities into account and aj1r12 = ripas; for all 715 € R 12 we have

(@) (anxiDxiz = an(xxe) = @nxp)an = xjp(xipean) = xj(anxp) =
(x11a11)x12, that implies [aj1, x11](PRez) = 0 and as R is a 3-torsion free prime
alternative ring, by Theorem 1.1, we get [a11, x11] = 0.

(b) x12(x22a22) = (x12x22)a22 = aj(x12x22) = (anxp)xn = (X12a22)xpn =
x12(azx22), that implies (e1R)[a2, x22] = 0, it follows from the primeness of R
and Theorem 1.1 that [ap;, x22] = 0.

(©) (anx21)x12 = an(x21x12) = (21x12)az = x21(x12022) = x21(a11x12) =
(x21a11)x12, in the second equality we have used letter (b), that implies [aj; +
ax, x21](Rez) = 0 again as R is a 3-torsion free prime alternative ring, by Theo-
rem 1.1, we obtain [a1; + a2, x21] = 0.
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Therefore for any x € R with x = x11 + x12 + x21 + x22, we obtain [aj; + a2, x] = 0
which prove a11 + ax € Z(R). ]

As alast result of our paper follows the Corollaries, by Theorems 3.1 and 4.1 and Lemma
5.1.

Corollary 5.1 Let R be a 3-torsion free prime alternative ring and SR’ be another alternative
ring. Suppose that R is an alternative ring containing a nontrivial idempotent e|. Then every
Lie multiplicative bijection ¢ of R onto an arbitrary alternative ring R’ is almost additive.

Corollary 5.2 Let R be a 3-torsion free prime alternative ring. Suppose that R is an alterna-
tive ring containing a nontrivial idempotent e|. Then every Lie triple derivable multiplicative
map ® of R into itself is almost additive.
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