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CENTRAL IDEMPOTENTS IN ALTERNATIVE LOOP ALGEBRAS 

EDGAR G. GOODAIRE AND CESAR POLCINO MILIES 

AllSTJU.CT. Lei L be iL Moufang loop with torsion 1ubloop T a.nd suppme th&t the loop 

a.lgebr1. KL of L over iL field K is a.n iLlterniLtive algebra.. In this pa.per, we find necesaa.ry ud 

sufficient conditions which guua.ntee thiLI every idempotent of KT is central in KL. 

1. lNTR.ODUCTION 

Let L be a Moufang loop with torsion subloop T and let I( be a field. Suppose that the loop 
algebra KL is an alternative algebra and then lt:t ll(K L) denote the loop of units in KL. In the 
case where L = G is a group, the study of group-theoretical properties of U(KG)-nilpotence, 
finite conjugacy classes, closure of torsion units under multir '. ication-has led naturally to the 
condition that all idempotents of KT are central in KG. See [3, 6, 11) and (13, Chapter VI]. In 
the nonassociative case, the authors have recently shown that the idempotents of QT are central 
in Q L whenever the torsion units in ZL form a subloop [9]. Thus the condition "idempotents 
of KT central in /{ L" seems worthy of independent study. Such is the purpose of this article. 

This paper requires some background in the theory of RA loops which are, by definition, 
loops L such that RL is an alternative ring, for any commutative and associative ring R with 
unity. We record briefly some of the results of the theory which are of particular relevance here. 
The following theorem, which is implicit in (2, Section JJ and amplified in (10] is fundamental. 

Theorem 1.1. A loop Lis RA if and only if 
(i) L = GU Gu is the disjoint union of a nonabelian group G and a single cosd Gu: 

(ii) G has a unique nonidentity commutator, .s, which is necessarily central and of order 2; 

{
g if g is central 

(iii) the map g ,._. g" = th . 
.sg o enin.se, 

is an involution of G (i.e., an antiautomorphi.sm of order 2}; 
(iv) multiplication in L is defined by g(hu) = (hg)u, (gu)h = (gh")u, (gu)(hu) = goh"g for 

g,h E G, where g0 = u2 is a centrol elemenl of G. 

1991 Mathematac, Su6Jecl Clouajicahon. Primuy ITDOS; Secondo.ry 20N05, 16S34. 
The 6rst iLUlhor wishes 10 thiLnk the lns1i1uto de MatematiciL e Estaliatic& d1. Uni•ersidiLde de Si.o PiLulo 

where be wu a visitor while this ,-arch wu 11nder1ak,,n. Tliis rcsea.rcb wu aupported by lhe !'lateral Scieacea 
iLnd Engineering Rese&rch Council of Canada.. Gr1.nt No. OGP0009087, 1.nd by FAPESP and CNPq. of Brull 

(Proc. No. 94/4726-3 and 501253/91-2, respecliYely). 



2 EDGAR G. GOODAIRE AND CESAR POLCINO MILIES 

The loop described in this theorem is denoted M(G,•,go). It is a. Moufa.ng loop a.nd hence 
diassociative: the subloop generated by a.ny two of its elements is a. group. More genera.Dy, if 
three elements a.ssocia.te in some order, they also generate a. group. 

If g, h a.nd k a.re elements of a. loop L, .;..,e denote the commutator of g a.nd h by (g, h) a.nd 
the associator of g, h, k by (g, h, k). Thus, 

gh = (hg)(g,h) a.nd gh · k = (g · hk)(g,h,k) 

for a.ny g,h, k E L. If Lis the RA loop M(G, •,g0 ), then L ha.s a. unique nonidentity commutator 
which must be, of course, the unique nonidentity commutator of G ( a.nd is a.lwa.ys denoted s) 
a.nd this element is also a. unique nonidentity a.ssocia.tor in L. Thus the subloop L' = {l,a} 
generated by the associators and commutators is a central group of order 2. 

The centre of a. Moufa.ng loop L is the group 

(L.1) Z(L) = {a EL I (a,g,h) = (a,g) = 1, for a.ll g,h EL}. 

(Note tha.t elements of the centre a.re required to a.ssocia.te with a.II other pairs of elements.) 
Using Theorem 1.1,it is ea.sytoshowtha.t if L = M(G,•,g0 ) is a.n RA loop, then Z(L) = Z(G) 
a.nd the involution • on G extends to a.n involution on L with the same definition: 

(1.2) t• = {l ifl E Z(L) 
al. otherwise. 

For a.ny commutative a.nd associative ring R with unity, this involution extends linearly to a.n 
involution of the loop ring RL. Since L = G U Gu, every r E RL ca.n be written in the form 
r = z + yu, where z a.nd y a.re in the group ring RG. Writing r this wa.y, we haver• = z• + syu. 
The centre of RL ca.n be described in two useful wa.ys (10, Proposition 2): 

(1.3) 

(1.4) 

Z(RL) = {r Ir E RL,r" = r} 
= {z + yu I z,y E RG,z• = z,sy = y}. 

A Moufa.ng loop is a. torsion loop if a.ll its elements ha.ve finite order. For a.ny prime p, by a. 
p-element, we mea.n a.n element whose order is a. power of p. A p'-element is a.n element of finite 
order relatively prime top. Throughout this pa.per, we sha.ll denote by P a.nd A the sets of p­
a.nd p'-elements in a. loop, respectively, and ma.ke liberal use of the following result [2, Theorem 
6). 

Lemma 1.2. Let T be a torsion subloop of an RA loop. Then T = To x B is the direct product 
of a 2-loop To and a (central) abelian group B all of whose elements have odd order. Thus, 
for any prime p, the set P of p-elements and the set A of p'-elements of T are subloops of T. 
Furthermore, T = P x A. 

We require two more lemmas as well. The first uses the fa.ct tha.t a.n RA loop ha.s the so-ca.lled 
LC property: if two elements of a.n RA loop commute, then one or the other or the product of 
both is central [2, Theorem 4]. 

Lemma 1.3. Let L be an RA loop and B a commutative subloop of L. Then, for any z EL, 
the subloop ( B, z) generated by B and z is a group. In particular, B is an abelian group. 
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Proof Let b1, bi E B. Since b1 bi = b2b1, either b1 is central or b2 is central, or b1 b2 is central. In 
the first two cases we obtain directly from (1.1) that (b1,bi,z) = l while, if b1bi = z is central, 
then (b1,b2,z) = (zb21,bi,z) = l because r;,fdiassocia.tivity and the identity 

(1.5) (ab,c,d) = (a,c,d)(b,c,d) 

which is valid in any RA loop (2, Theorem 3). Now a straightforward induction argument 
ma.king further use of (1.5) gives the result. D 

Lemma 1.4, The set T of torsion elements of an RA loop L is a normal, locally finite subloop 
of L. 

Proo/. That T is a normal subloop is known [9, Lemma 2.1) . To establish local finiteness, let 
H be a finitely generated subloop of T . If H is commutative, it is a group by Lemma 1.3 
and readily seen to be finite . If it is not commutative, it contains the commutator/associator 
subloop L' of L . Then, as a finitely generated torsion abelia.n group, H / L' is finite, so H is 
finite because L' is finite. □ 

2. THE CASE or POSITIVE CB-\RACTERISTIC 

In this sPction , we establish within the context of alternative algebras an analogue of the 
following theorem of S. Coelho [4]. 

Theorem 2.1. Let K be a field of characteristic p > 0 and with prime field P . Let Ga group 
whose torsion elements form a locally finite subgroup T. Let P denote the set of p-elements and 
A the set of p'-elements in T . Then every idempotent of KT is central in KG if and only if 
the following four conditions hold. 

(i) A is an abelian group. 
(ii) If A is not central, then the algebraic dosure P of P in K is finite and, for all t E A and 

z E L, there ezists r E N such that ztz-1 = tP'. Furthermore, each such r is a multiple 
of the degree (P: P). 

(iii) P is a subgroup of G. 
(iv) T = P x A. 

If G is a group contained in an RA loop L, it is clear from Lemma 1.4 that the torsion 
elements of G form a locally finite subgroup T of G and, from Lemma 1.2, that the sets P of 
p-elements and A of p'-elements of G are always subgroups of G with T = P X A . Thus, for 
such G, we have the following simplification. 

Theorem 2.2. Let h" be a field of characteristic p > 0 with prime field P and let G be a group 
which is contained in an RA loop. Then every idempotent of KT is central in KG if and only 

if 
( i) T is an abelian group, and 

(ii) i/ T is not central, then the algebraic closure P of P in K is finite and, for all t E A and 
z E L, there exists r E N such that ztz- 1 = tP'. Furthermore, each such r is a multiple 

of[P: P). 
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In what follows, it is convenient to have a term by which we can refer to the loop elements 
which actually appear in the representation of a loop ring element. For an element o = E o.,l, 
at E R, l E L, in a loop ring RL, the suppqrt of a is the set 

supp(a) = {l I 01 ,/; O}. 

Also, for a = E a,l, the augmentation of o is the element f( a) = Ea, E R. The map 
€: RL -+ R is a ring homomorphism. We now have at hand the tools needed to establish the 
main theorem of this section. 

Theorem 2.3. ld K be a field of characteristic p > 0 with prime field 'P. Let L be an RA loop 
with torsion subloop T. Then every idempotent of the alternative loop algebra KT is central in 
KL if and only if p = 2 or 

(i) the set A of p'-elements of Lis an abelian group, and 
(ii) if A is nol central, the algebraic closure P of 'P in K is finite and, for all t E A and 

z E L, there exists r E N such that ztz-1 = ,,• . Furthermore, each such r is a multiple 
o/(P: 'P]. 

Proof. Suppose every idempotent in KT is central in KL a.nd p ,'-- 2. By Lemma 1.2, we can 
write T = T0 x B, where To is a. 2-loop and B is a central group consisting of el-:ments of 
odd order. If To is not commutative, any two noncommuting elements of To will generate a 
nonabelia.n group T1 which is finite because T is locally finite. Since IT1l is relatively prime 
to p, the group algebra PT, is the direct sum of finite simple associative algebras. lf any of 
these is not commutative, it cannot be a division ring, so it is an n x n matrix algebra. for some 
n > 1. As such, it contains noncentral idempotents, a contradiction. Thus T is commutative 
and hence, by Lemma. 1.3, an abelian group. Since A ~ T, so also is A an abelian group. If A 
is not central and :r E L, then G = (A, :r) is a group, by Lemma 1.3. Now (iii) follows directly 
from Theorem 2.2. 

For the converse, suppose first that p = 2. Then A is the ( central) group B of Lemma. 1.2 
and so T = To x A where T0 is a 2-loop. Let e be an idempotent of KT. Since T is locally 
finite, replacing T by the loop generated by the support of e, we may assume that T is finite. 
We have KA= ~K;, the direct sum of fields K;, and e E (K A)To = ~K;To, Writing e =Ee; 
with e; E K;T0 , we note that each e; is an idempotent in K;T0 , so its augmentation is O or l. 
Thus either e; or J + I!; (which is also an idempotent) is in the kernel . .6.K,(To), of the natural 
map K;L - K;(L/To). Since K; has characteristic 2 and To is a 2-loop, this ideal is nilpotent 
[13, Lemma 1.2.21), so e; = 0 ore;= 1. Thus e is in /\ A and hence central in KL. 

Now suppose that pis odd and that we have (i) and (ii). Write T = To x B as in Lemma 1.2 
and note that T is an abelian group because T0 ~ A. Let e E KT be an idempotent and let 
z E L. Then G = (T,z} is a group whose torsion subgroup is T. By Theorem 2.2, e commutes 
with z, and it follows that e is central in A" L. □ 

3. THE CASE OF CHARACTERISTIC 0 

Let o. and /3 be nonzero elements of a field F. Recall that a generalized quaternion algebra 
over Fis an (associative) algebra. (F,o.,/J) of dimension 4 over F with basis 1, i, j, ij, where 
i1 = o, j 2 = f3 and ij = -ji. With o = /J = -1, the algebra. (F,-1,-1) is known simply as 
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the quaternion algebra over F a.nd denoted H(F). With F the field R of real numbers, H(R) 

is, of course, the well-known qua.ternion algebra of Sir Willia.m Rowan Hamilton. 

Let H = (F,a,/3) be a. generalized qua.~ernion algebra.. Let 7 be a.oother nonzero element 

of F a.nd let l be an indeterminate. Then the Cayky-Dickson algebra (F,a,/3,r) is the vector 

space H EB H l with multiplication defined by 

(3.1) (a+ bl)(c + dl) = (ac + 7db) + (da + bc)l. 

Here, q denotes the conjugate of the quaternion q: for q = a1 + a2 i + a3j + a4ij, 7j = a1 - a 2i -

a3j - a4ij. 
We require the following facts a.bout quaternion and Ca.yley-Dick.son algebras. 

Lemma 3.1. The quaternion algebra H(F) = (F, -1,-1) is either a division ring or the ring 

of 2 X 2 matrices of F. It is a division ring if and only if the equation z2 + 1,12 = -1 has no 

solutions in the field F. The Cayley-Dickson algebra ( F, -1, -1, -1) is either a division ring 

or H $ H l where H is the ring of 2 X 2 matrices over a field and multiplication is given by 

( 3.1) with 1 = l. It is a division ring if and only if the equation z1 + y2 + z1 + w1 = -1 has no 

solutions in F. 

Proof. The statement about the quaternion algebra is proven, for instance, in (7, Proposition 

8.6.2). The stated far~s concerning the Cayley-Dickson algebra. are in (12, Sections 111.4 a.nd 

III.SJ and (8, Corollary 3.5]. D 

S. Coelho and C. P. Milles have established the following result [5]. 

Theorem 3.2. Let K be a field of characteristic O and let T denote the set of torsion elements 

of a group G. Then every idempotent of KT is central in KG if and onlv if 

(i) For every t E T and evr.ry z E G, there ezists a positive integer j such that ztz-1 = ti. 
Furthermore, for every noncentral element t E T, K contains no root of unity of order 

the order oft. 
(ii) Either T is abelian or T = A X Q where A is an abelian group and Q is the quaternion 

group of order 8 and, for every a E A of order n and every n-th root of unity ! in an 

algebraic closure of K, the field K(~) contains no solution of the equation z 2 + y2 = -1. 

The analogue for alternative loop algebras is this: 

Theorem 3.3. Let K be a field of characteristic O and let L be an RA loop with torsion subloop 

T. Then every idempotent in KT is central in KL if and only if 
(i) for every t E T and every z E L, there ezists a positive integer j such that ztz-• =ti; 

(ii) for every noncentral element t E T, K contains no root of unity of order the order oft; 

and 
(iii) either 

(a.) T is an abelian group, or 
(b) T = A x Q where A is an abelian group and Q is the quaternion group of order 8 

and, for eve'11 a E A of order n and every n-root of unit11 { in an algebraic closure 

of K, the field K({) contains no solutions to x2 + y2 = -1, or 
( c) T = A x C ID here A is an abelian group and C is the Cayley loop and, for every 

11 E A of order n and every n-th mot of unity { in an algebraic closure of K, the 

field K({) contains no solutions to z 2 + 1J2 + z2 + w2 = -1. 

• 
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Proof. Suppose every idempotent of KT is central in KL. Let t e T have order n. Then the 

element t = ¼( 1 + t + • · · + t"- 1) is an idempotent in KT and so central in KL. Thus, for 

any :i: e L, we have :i:e:i:-1 = t, so that :i:_tz-1 = 1i for some integer j which we can assume 

to be positive. This gives (i) and shows, incidentally, that every subloop of Tis commutative 

or Hamiltonian. If T contains a noncentral element t, of order n, say, write K(t) = &K((;) 

as the direct sum of cyclotomic fields for various primitive roots of unity, {;, at least one of 

which, say {1, has order n. Let :i: e L be an element which does not commute with t. Since 

K({;) = K(t)e; for some idempotent e; of K(t), and since every idempotent of KT is central 

in KL, conjugation by z defines an automorphism of K (t) which induces an automorphism (J 

of K({1)- Since zt:i:-1 =ti,/ t, 9({1) ={it, {1, so { 1 "K. Thus no nth root of unity is in K. 

This establishes (ii). 
If Tis commutative, then Tis an abelian group by Lemma 1.3 and we have case iii(a). If 

T is a Hamiltonian group, then it is well-known that T = A x Q where A is an abelian group 

and Q is the quaternion group Q of order 8. For any II E A of order n, T contains the direct 

product (11) x Q, so KT contains K(a)Q which is the direct sum EBK((i)Q of group algebras of 

Q over cyclotomic fields K((;), where some(;, say {1, is an nth root of unity. Now K({t)Q is 

the direct sum of four copies of K({1 ) and the quaternion algebra H(K(!i )). Since it contains 
no noncentral idempotents, H(K({1)) must be a. division ring so, by Lemma. 3.1, we have ca.ae 

iii(b). Finally, if T is not associative, then T = A x C where A is an abelian group and C is 
the Ca.yley loop (1, Sf'ction IV.7J. Since the loop algebra. of Cover a field Fis the direct sum 

of eight copies of F and the Ca.yley-Dicbon algebra (F, -1,-1,-1) (see {8, Proposition 3.9J 

where C is denoted M1e(Q)), we see just as before that if II E A has order n and { is an n-th 

root of unity, then (K({),-1, -1, -1) must be a. division algebra. By Lemma. 3.1 we have case 

iii(c). 
Conversely, assume that (i), (ii) and (iii) hold. If Tis an abelian group and z is any element 

of L, then G = (T,:i:) is a group by Lemma 1.3, so any idempotent in KT commutes with z 

by Theorem 3.2. In case iii(b), we proceed as in (5]. Let e E KT be an idempotent. Replacing 

T by the subgroup generated by the support of e, we may assume that T is finite. Let A have 

exponent n and let { be a primitive nth root of unity. We have KA= eK,, the direct sum of 

cyclotomic fields K; ~ K((). By hypothesis, each quaternion algebra H(K;) is a division ring. 

Since KT= (KA)Q = eK,Q, and K;Q = 4K; (B H(J(;), we see that KT is the direct sum 

of division rings, so each idempotent of KT is central in KT. Since every such idempotent is 

the sum of primitive idempotents, to show that it is in fact central in KL, it is sufficient to 

show that each primitive idempotent of K;Q is central in KL. For this, we first note that any 

idempotent µ of KA is central in KL, by the following a.rgument. If :r E L, then G = (A, :i:) 

is a group whose torsion subgroup is an abelian group contained in T. By Theorem 3.2, µ is 

central in /\"G, soµ commutes with :i: and it follows thatµ is central in KL, as asserted. Next, 

presenting Q as 

Q = (a,b I 11
4 = l,b2 = 112,ba = a-1b), 

we see that the unique nonidentity commutator of Lis a= (11,b) = 112 and so, in view of ( 1.2), 

the restriction to Q of the involution on L is defined by 

. {g if g = 1 or g = 112 

g = 
a2g otherwise. 
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The primitive idempotents of K;Q are 
µ-

e1 = 
8
'{l+a+ci2 +a3 +6+a6+a2 +a36) 

e2 = ~ ( 1 + a + ai + a3 
- I, - ab - 112 - a36) 

µ; 
e3 = 8 (1- 11+112 - 113 + 6-116 + 1126 -1136) 

µ; 
e4 = 8 (1- a+ a2 

- 113 - I,+ ab - a2b + a3b) 
µ-

es = 2(1- a2) 
8 

7' 

where /Ji is the identity element of Ki which, as an idempotent of KA, is central in KL. For 

each i, we have et = fi so that, by ( 1.3), e; is central in KL. 
Finally, suppose we have case iii(c). Again letting n be the exponent of A and { a primitive 

nth root of unity, we have KT= (KA)C = (BK;C, for certain fields K; ~ K({), and each 

K,C = BK; EB (K;,-1, -1, -1) is the direct sum of division rings by Lemma 3.1. So every 

idempotent in KT is central in KT a.nd, to show centrality in KL, it is sufficient to show 

that any primitive idempotent of K;C is central in KL. Representing C as M(Q, •• u) for some 

u r/. Q. the primitive idempotents of K;C are e5 and, for j = 1, 2, 3, 4, the ei~ht elements 

e;1 = 1r"(l + u)e; and e;2 = ~(1-u)e;. Eachµ;, being an idempotent of KA, is central in KL 

as before. Since e;; = z + yu, with x,y E K;Q, z• - z aud :sy = y, each e;; is central because 

of ( 1.4) and the proof is complete. ' 0 
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