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The loop described in this theorem is denoted M(G,*,g0). It is a Moufang loop and hence
diassociative: the subloop generated by any two of its elements is a group. More generally, if
three elements associate in some order, they also generate a group.

If g, h and k are elements of a loop L, we denote the commutator of g and h by (g, h) and
the associator of g, h,k by (g,h, k). Thus,

gh = (hg)(g,k) and gh - k = (g - hk)(g, k. k)

forany g,h,k € L. If L is the RA loop M(G, ¥, g0), then L has a unique nonidentity commutator
which must be, of course, the unique nonidentity commutator of G (and is always denoted s)
and this element is also a unique nonidentity associator in L. Thus the subloop L' = {1,s}
generated by the associators and commutators is a central group of order 2.

The centre of a Moufang loop L is the group

(L.1) Z(L)y={a€ L|(a,9,h) =(a,g9)=1, forall g,h € L}.

(Note that elements of the centre are required to associate with all other pairs of elements.)
Using Theorem 1.1, it is easy to show that if L = M(G, *,g0) is an RA loop, then Z(L) = Z(G)
and the involution * on G extends to an involution on L with the same definition:

g2 {z ifte Z(L)

(1.2) .
st otherwise.

For any commutative and associative ring R with unity, this involution extends linearly to an
involution of the loop ring RL. Since L = G UGu, every r € RL can be written in the form
r = z + yu, where z and y are in the group ring RG. Writing r this way, we have r* = z* 4 syu.
The centre of RL can be described in two useful ways {10, Proposition 2:

(1.3) Z(RLY={r|re RL,r" =1}
(1.4) ={z+yu|z,y€ RG,z" = z,sy = y}.

A Moufang loop is a torsion loop if all its elements have finite order. For any prime p, by a
p-element, we mean an element whose order is a power of p. A p’-element is an element of finite
order relatively prime to p. Throughout this paper, we shall denote by P and A the sets of p-
and p'-elements in a loop, respectively, and make liberal use of the following result [2, Theorem
6).

Lemma 1.2. Let T be a torsion subloop of an RA loop. Then T = Ty x B is the direct product
of a 2-loop Ty and a (central) abelian group B all of whose elements have odd order. Thus,
for any prime p, the set P of p-elements and the set A of p'-elements of T are subloops of T.
Furthermore, T = P x A.

We require two more lemmas as well. The first uses the fact that an RA loop has the so-called
LC property: if two elements of an RA loop commute, then one or the other or the product of
both is central {2, Theorem 4].

Lemma 1.3. Let L be an RA loop and B a commutative subloop of L. Then, for anyz € L,
the subloop (B,z) generated by B and z is a group. In particular, B is an abelian group.
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Proof. Let by,by € B. Since byby = baby, either 4 is central or b, is central, or byb, is central. In
the first two cases we obtain directly from (1.1) that (by,b2, £) = 1 while, if bybs = z is central,
then (b1, bs,2) = (267 ! bs,z) = 1 because of diassociativity and the identity

(1.5) (ab,c,d) = (a,c,d)(b,c,d)

which is valid in any RA loop |2, Theorem 3]. Now a straightforward induction argument
making further use of (1.5) gives the result. ]

Lemma 1.4. The set T of torsion elements of an RA loop L is a normal, locally finite subloop
of L.

Proof. That T is a normal subloop is known [9, Lemma 2.1}. To establish local finiteness, let
H be a finitely generated subloop of T. If H is commutative, it is a group by Lemma 1.3
and readily seen to be finite. If it is not commutative, it contains the commutator/associator
subloop L’ of L. Then, as a finitely generated torsion abelian group, H/L' is finite, so H is
finite because L' is finite. a

2. THE CasE ofF PosITIVE CHARACTERISTIC

In this section, we establish within the context of alternative algebras an analogue of the
following theorem of S. Coelho [4].

Theorem 2.1. Let K be a field of characteristic p > 0 and with prime field P. Let G a group
whose torsion elements form a locally finite subgroup T. Let P denote the set of p-elements and
A the set of p'-elements in T. Then cvery idempotent of KT is central in KG if and only if
the following four conditions hold.
(i) A is an abelian group.
(it) If A is not central, then the algebraic closure P of P in K is finite and, for allt € A and
¢ € L, there exists r € N such that ztz~' = t*". Furthermore, each such r is a multiple
of the degree [P: P].
(iii) P is a subgroup of G.
(iv) T=Px A.

If G is a group contained in an RA loop L, it is clear from Lemma 1.4 that the torsion
elements of G form a locally finite subgroup T of G and, from Lemma 1.2, that the sets P of
p-elements and A of p/-elements of G are always subgroups of G with T = P x A. Thus, for
such G, we have the following simplification.

Theorem 2.2. Let K be a field of characteristic p > 0 with prime field P and let G be a group
which is contained in an RA loop. Then every idempotent of KT is central in KG if and only
i
(i) T is an abelian group, and
(ii) if T is not central, then the algebraic closure P of P in K is finite and, for allte A and
z € L, there ezists r € N such that ztz™! = t?" . Furthermore, each such r is a multiple
of [P: P.



4 EDGAR G. GOODAIRE AND CESAR POLCINO MILIES

In what follows, it is convenient to have a term by which we can refer to the loop elements
which actually appear in the representation of a loop ring element. For an element a = ¥ a¢f,
ar€ R, L€ L,in aloop ring RL, the support of a is the set

supp(a) = {¢| a¢ # 0}.

Also, for a = ¥ a.l, the augmentation of a is the element ¢(a) = Y a; € R. The map
€: RL — R is a ring homomorphism. We now have at hand the tools needed to establish the
main theorem of this section.

Theorem 2.3. Let K be a field of characteristic p > 0 with prime field P. Let L be an RA loop
with torsion subloop T. Then every idempotent of the alternative loop algebra KT is central in
KL ifand only if p = 2 or
(i) the set A of p'-elements of L is an abelian group, and
(i1} if A 1s not central, the algebraic closure P of P in K is finite and, for allt € A and
z € L, there exists r € N such that ztz~' = t*". Furthermore, each such r is a multiple

of [P: 7).

Proof. Suppose every idempotent in AT is central in AL and p # 2. By Lemma 1.2, we can
write T = Ty x B, where Tp is a 2-loop and B is a central group consisting of elzments of
odd order. If Tp is not commutative, any two noncommuting elements of Tp will generate a
nonabelian group 7 which is finite because T is locally finite. Since [Ty| is relatively prime
to p, the group algebra PT; is the direct sum of finite sinple associative algebras. If any of
these is not commutative, it cannot be a division ring, so it is an n x n matrix algebra for some
n > 1. As such, it contains noncentral idempotents, a contradiction. Thus T is commutative
and hence, by Lemma 1.3, an abelian group. Since 4 C T, so also is A an abelian group. If A
is not central and z € L, then G = (A, z) is a group, by Lemma 1.3. Now (iii) follows directly
from Theorem 2.2.

For the converse, suppose first that p = 2. Then A is the (central) group B of Lemma 1.2
and so T = Ty x A where Ty is a 2-loop. Let e be an idempotent of K'T. Since T is locally
finite, replacing T by the loop generated by the support of e, we may assume that T is finite.
We have A = K;, the direct sum of fields K;, and e € (KA)Ty = @ K;Tp. Writing e = e
with e; € RTo, we note that each e; is an idempotent in ATy, so its augmentation is 0 or 1.
Thus either ¢; or i + ¢; (which is also an idempotent) is in the kernel, Ag;,(Tp), of the natural
map K;L — K;[L/Tp]. Since A has characteristic 2 and Ty is a 2-loop, this ideal is nilpotent
[13, Lemma 1.2.21],s0 &; = 0 or ¢; = 1. Thus e is in i'A and hence central in KL.

Now suppose that p is odd and that we have (i) and (ii). Write T = Ty x B as in Lemma 1.2
and note that T is an abelian group because Ty C A. Let e € AT be an idempotent and let
z € L. Then G = (T, z} is a group whose torsion subgroup is T. By Theorem 2.2, e commutes
with z, and it follows that e is central in A'L. (]

3. THE CasE OF CHARACTERISTIC 0

Let a and g be nonzero elements of a field F. Recall that a generalized quaternion algebra
over F is an (associative) algebra (F,a,3) of dimension 4 over F with basis 1, i, j, ij, where
i? =@, j2 = f and ij = —ji. With a = 8 = —1, the algebra (F,—1,~1) is known simply as
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the quaternion algebra over F and denoted H(F). With F the field R of real numbers, #(R)
is, of course, the well-known quaternion algebra of Sir William Rowan Hamilton.

Let H = (F,a,) be a generalized quaternion algebra. Let y be another nonzero element
of F and let £ be an indeterminate. Then the Cayley-Dickson algebra (F,a,f,7) is the vector
space H & H{ with multiplication defined by
3.1) (a + be)(c + dt) = (ac + ydb) + (da + bE)L.

Here, § denotes the conjugate of the quaternion ¢: for ¢ = a; + azi + a3j + @45, § = a3 — azi —
a;,j = d4‘l'j.

We require the following facts about quaternion and Cayley-Dickson algebras.

Lemma 3.1. The quaternion algebra H(F) = (F,—1,—1) is either a division ring or the ring
of 2 x 2 matrices of F. It is a division ring if and only if the equation 22 + y® = -1 has no
solutions in the field F. The Cayley-Dickson algebra (F,~1,~1,-1) is either a division ring
or H @ Ht where H is the ring of 2 X 2 matrices over a field and multiplication is given by
(3.1) withy = 1. It is a division ring if and only if the equation 22 + y* + 22 + w? = —1 has no
solutions in F.

Proof. The statement about the quaternion algebra is proven, for instance, in [7, Proposition
8.6.2]. The stated facts concerning the Cayley-Dickson algebra are in [12, Sections II.4 and
I11.5) and (8, Corollary 3.5). O

S. Coelho and C. P. Milies have established the following result [5].

Theorem 3.2. Let K be a field of characteristic 0 and let T denote the set of torsion elements
of a group G. Then every idempotent of KT is central in KG if and only if )
(i) For everyt € T and every z € G, there ezists a positive integer j such that ztz~! =07,
Furthermore, for every noncentral element t € T, K contains no root of unity of order
the order of t.
(ii) Either T is abelian or T = A X Q where A is an abelian group and Q is the quaternion
group of order 8 and, for every a € A of order n and every n-th root of unity £ in an
algebraic closure of K, the field K (£) contains no solution of the equation 22 +y? = -1

The analogue for alternative loop algebras is this:

Theorem 3.3. Let K be a field of characteristic 0 and let L be an RA loop with torsion subloop
T. Then every idempotent in KT is central in K'L if and only if )
(i) for every t € T and every z € L, there exists a positive integer j such that ztz~! = ¢;
(ii) for every noncentral element t € T, K contains no root of unity of order the order of t;
and
(iii) either
(a) T is an abelian group, or
(b) T = A x Q where A is an abelian group and Q is the quaternion group of order 8
and, for every a € A of order n and every n-root of unity § in an algebraic closure
of K, the field Kk (£) contains no solutions to z? + y* = -1, or
(c) T = A x C where A is an abelian group and C is the Cayley loop and, for every
a € A of order n and every n-th root of unity  in an algebraic closure of K, the
field K(£) contains no solutions to 22 + y* + 2% + w? = —1.
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Proof. Suppose every idempotent of KT is central in KL. Let t € T have order n. Then the
element e = L(14+t+---+ t*=1) is an idempotent in KT and so central in K'L. Thus, for
any z € L, we have zez™! = ¢, so that ztz~! = 1/ for some integer j which we can assume
to be positive. This gives (i) and shows, incidentally, that every subloop of T is commutative
or Hamiltonian. If T contains a noncentral element ¢, of order n, say, write K{t}) = ®K(&)
as the direct sum of cyclotomic fields for various primitive roots of unity, &, at least one of
which, say €, has order n. Let z € L be an element which does not commute with ¢. Since
K(&) = K (t)e; for some idempotent ¢; of K(t), and since every idempotent of KT is central
in KL, conjugation by z defines an automorphism of K (t) which induces an automorphism ¢
of K(&). Since ztz~! = £t 06)= {{ # &1, 50 £ ¢ K. Thus no nth root of unity is in K.
This establishes (ii).

If T is commutative, then T is an abelian group by Lemma 1.3 and we have case iii(a). If
T is a Hamiltonian group, then it is well-known that T = A x Q where A is an abelian group
and @ is the quaternion group @ of order 8, For any a € A of order n, T contains the direct
product (a) x @, so KT contains A {a)Q which is the direct sum @K (&:)Q of group algebras of
Q over cyclotomic fields K(&;), where some &;, say £1, is an nth root of unity. Now K(£)Q is
the direct sum of four copies of K(£;) and the quaternion algebra H(K(£1)). Since it contains
no noncentral idempotents, H(K(£;)) must be a division ring so, by Lemma 3.1, we have case
iii(b). Finally, if T is not associative, then T = A x C where 4 is an abelian group and C is
the Cayley loop [1, Section IV.7]. Since the loop algebra of C over a field F is the direct sum
of eight copies of F and the Cayley-Dickson algebra (F,~1,-1,—1) (see (8, Proposition 3.9]
where C is denoted M;g(Q)), we see just as before that if a € A has order n and £ is an n-th
root of unity, then (K(£),~1,—1,—1) must be a division algebra. By Lemma 3.1 we have case
ifi(c).

Conversely, assume that (i), (i) and (iii) hold. If T is an abelian group and z is any element
of L, then G = (T,z) is a group by Lemma 1.3, so any idempotent in KT commutes with z
by Theorem 3.2. In case iii(b), we proceed as in [5]. Let e € KT be an idempotent. Replacing
T by the subgroup generated by the support of ¢, we may assume that T is finite. Let A have
exponent n and let £ be a primitive nth root of unity. We have KA = @K;, the direct sum of
cyclotomic fields K; C K(€). By hypothesis, each quaternion algebra H(K) is a division ring.
Since KT = (KA)Q = ©k;Q, and K:Q = 4K; & H(K;), we see that KT is the direct sum
of division rings, so each idempotent of KT is central in KT. Since every such idempotent is
the sum of primitive idempotents, to show that it is in fact central in KL, it is sufficient to
show that each primitive idempotent of K;Q is central in K'L. For this, we first note that any
idempotent u of KA is central in KL, by the following argument. If z € L, then G = {4,z)
is a group whose torsion subgroup is an abelian group contained in T. By Theorem 3.2, p is
central in A'G, so 4 commutes with z and it follows that yu is central in K L, as asserted. Next,
presenting  as

Q = (a,b| a* = 1,b* = a®,ba = a7'b),

we see that the unique nonidentity commutator of L is s = (a,b) = a? and so, in view of (1.2),
the restriction to @ of the involution on L is defined by

. _Jg ifg=lorg=a?
s a%g otherwise.
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The primitive idempotents of K;Q are
a=B(+atad+a +b+ab+al+a%)
ez=%(1+a+ai+a3-b—ﬂb-“2‘“ab)
c3=%(l—a+a’—a3+b—ab+a26-aab)
ey =%(1—d+az-—aa—b+ab—azb+aab)
e =E(1-

where y; is the identity element of K; which, as an idempotent of K A, is central in KL. For
each i, we have €] = ¢; so that, by (1.3), e; is central in K L.

Finally, suppose we have case iii(c). Again letting n be the exponent of A and £ a primitive
nth root of unity, we have KT = (KA)C = ®KiC, for certain fields K; C K(£), and each
K,C = 8K; ® (K;,-1,-1,-1) is the direct sum of division rings by Lemma 3.1. So every
idempotent in KT is central in KT and, to show centrality in KL, it is sufficient to show
that any primitive idempotent of K;C is central in K L. Representing C as M(Q, *, 1) for some
u ¢ Q. the primitive idempotents of K,C are es and, for j = 1,2,3,4, the eight elements
ej1 = §(1 +u)ej and ¢j3 = (1~ u)e;. Each p;, being an idempotent of KA,is central in KL
as before. Since e;; = z + yu, with z,y € K;Q,z* — z and 5y = y, each e;; is central because
of (1.4) and the proof is complete. a
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