

RT-MAT 95-16

Central idempotents in  
alternative loop algebras

Edgar G. Goodaire  
and  
César Polcino Milies

maio 1995

# CENTRAL IDEMPOTENTS IN ALTERNATIVE LOOP ALGEBRAS

EDGAR G. GOODAIRE AND CÉSAR POLCINO MILIES

**ABSTRACT.** Let  $L$  be a Moufang loop with torsion subloop  $T$  and suppose that the loop algebra  $KL$  of  $L$  over a field  $K$  is an alternative algebra. In this paper, we find necessary and sufficient conditions which guarantee that every idempotent of  $KT$  is central in  $KL$ .

## 1. INTRODUCTION

Let  $L$  be a Moufang loop with torsion subloop  $T$  and let  $K$  be a field. Suppose that the loop algebra  $KL$  is an alternative algebra and then let  $\mathcal{U}(KL)$  denote the loop of units in  $KL$ . In the case where  $L = G$  is a group, the study of group-theoretical properties of  $\mathcal{U}(KG)$ —nilpotence, finite conjugacy classes, closure of torsion units under multiplication—has led naturally to the condition that all idempotents of  $KT$  are central in  $KG$ . See [3, 6, 11] and [13, Chapter VI]. In the nonassociative case, the authors have recently shown that the idempotents of  $QT$  are central in  $QL$  whenever the torsion units in  $ZL$  form a subloop [9]. Thus the condition “idempotents of  $KT$  central in  $KL$ ” seems worthy of independent study. Such is the purpose of this article.

This paper requires some background in the theory of *RA loops* which are, by definition, loops  $L$  such that  $RL$  is an alternative ring, for any commutative and associative ring  $R$  with unity. We record briefly some of the results of the theory which are of particular relevance here. The following theorem, which is implicit in [2, Section 3] and amplified in [10] is fundamental.

**Theorem 1.1.** *A loop  $L$  is RA if and only if*

- (i)  $L = G \cup Gu$  is the disjoint union of a nonabelian group  $G$  and a single coset  $Gu$ ;
- (ii)  $G$  has a unique nonidentity commutator,  $s$ , which is necessarily central and of order 2;
- (iii) the map  $g \mapsto g^* = \begin{cases} g & \text{if } g \text{ is central} \\ sg & \text{otherwise,} \end{cases}$  is an involution of  $G$  (i.e., an antiautomorphism of order 2);
- (iv) multiplication in  $L$  is defined by  $g(hu) = (hg)u$ ,  $(gu)h = (gh^*)u$ ,  $(gu)(hu) = g_0h^*g$  for  $g, h \in G$ , where  $g_0 = u^2$  is a central element of  $G$ .

---

1991 *Mathematics Subject Classification.* Primary 17D05; Secondary 20N05, 16S34.

The first author wishes to thank the Instituto de Matemática e Estatística da Universidade de São Paulo where he was a visitor while this research was undertaken. This research was supported by the Natural Sciences and Engineering Research Council of Canada, Grant No. 0GP0009087, and by FAPESP and CNPq. of Brasil (Proc. No. 94/4726-3 and 501253/91-2, respectively).

The loop described in this theorem is denoted  $M(G, *, g_0)$ . It is a Moufang loop and hence *diassociative*: the subloop generated by any two of its elements is a group. More generally, if three elements associate in some order, they also generate a group.

If  $g, h$  and  $k$  are elements of a loop  $L$ , we denote the *commutator* of  $g$  and  $h$  by  $(g, h)$  and the *associator* of  $g, h, k$  by  $(g, h, k)$ . Thus,

$$gh = (hg)(g, h) \text{ and } gh \cdot k = (g \cdot hk)(g, h, k)$$

for any  $g, h, k \in L$ . If  $L$  is the RA loop  $M(G, *, g_0)$ , then  $L$  has a unique nonidentity commutator which must be, of course, the unique nonidentity commutator of  $G$  (and is always denoted  $s$ ) and this element is also a unique nonidentity associator in  $L$ . Thus the subloop  $L' = \{1, s\}$  generated by the associators and commutators is a central group of order 2.

The centre of a Moufang loop  $L$  is the group

$$(1.1) \quad \mathcal{Z}(L) = \{a \in L \mid (a, g, h) = (a, g) = 1, \text{ for all } g, h \in L\}.$$

(Note that elements of the centre are required to associate with all other pairs of elements.) Using Theorem 1.1, it is easy to show that if  $L = M(G, *, g_0)$  is an RA loop, then  $\mathcal{Z}(L) = \mathcal{Z}(G)$  and the involution  $*$  on  $G$  extends to an involution on  $L$  with the same definition:

$$(1.2) \quad r^* = \begin{cases} r & \text{if } r \in \mathcal{Z}(L) \\ sr & \text{otherwise.} \end{cases}$$

For any commutative and associative ring  $R$  with unity, this involution extends linearly to an involution of the loop ring  $RL$ . Since  $L = G \cup Gu$ , every  $r \in RL$  can be written in the form  $r = x + yu$ , where  $x$  and  $y$  are in the group ring  $RG$ . Writing  $r$  this way, we have  $r^* = x^* + syu$ . The centre of  $RL$  can be described in two useful ways [10, Proposition 2]:

$$(1.3) \quad \mathcal{Z}(RL) = \{r \mid r \in RL, r^* = r\}$$

$$(1.4) \quad = \{x + yu \mid x, y \in RG, x^* = x, sy = y\}.$$

A Moufang loop is a *torsion* loop if all its elements have finite order. For any prime  $p$ , by a  $p$ -*element*, we mean an element whose order is a power of  $p$ . A  $p'$ -*element* is an element of finite order relatively prime to  $p$ . Throughout this paper, we shall denote by  $P$  and  $A$  the sets of  $p$ - and  $p'$ -elements in a loop, respectively, and make liberal use of the following result [2, Theorem 6].

**Lemma 1.2.** *Let  $T$  be a torsion subloop of an RA loop. Then  $T = T_0 \times B$  is the direct product of a 2-loop  $T_0$  and a (central) abelian group  $B$  all of whose elements have odd order. Thus, for any prime  $p$ , the set  $P$  of  $p$ -elements and the set  $A$  of  $p'$ -elements of  $T$  are subloops of  $T$ . Furthermore,  $T = P \times A$ .*

We require two more lemmas as well. The first uses the fact that an RA loop has the so-called *LC* property: if two elements of an RA loop commute, then one or the other or the product of both is central [2, Theorem 4].

**Lemma 1.3.** *Let  $L$  be an RA loop and  $B$  a commutative subloop of  $L$ . Then, for any  $x \in L$ , the subloop  $\langle B, x \rangle$  generated by  $B$  and  $x$  is a group. In particular,  $B$  is an abelian group.*

*Proof.* Let  $b_1, b_2 \in B$ . Since  $b_1 b_2 = b_2 b_1$ , either  $b_1$  is central or  $b_2$  is central, or  $b_1 b_2$  is central. In the first two cases we obtain directly from (1.1) that  $(b_1, b_2, x) = 1$  while, if  $b_1 b_2 = z$  is central, then  $(b_1, b_2, x) = (zb_2^{-1}, b_2, x) = 1$  because of diassociativity and the identity

$$(1.5) \quad (ab, c, d) = (a, c, d)(b, c, d)$$

which is valid in any RA loop [2, Theorem 3]. Now a straightforward induction argument making further use of (1.5) gives the result.  $\square$

**Lemma 1.4.** *The set  $T$  of torsion elements of an RA loop  $L$  is a normal, locally finite subloop of  $L$ .*

*Proof.* That  $T$  is a normal subloop is known [9, Lemma 2.1]. To establish local finiteness, let  $H$  be a finitely generated subloop of  $T$ . If  $H$  is commutative, it is a group by Lemma 1.3 and readily seen to be finite. If it is not commutative, it contains the commutator/associator subloop  $L'$  of  $L$ . Then, as a finitely generated torsion abelian group,  $H/L'$  is finite, so  $H$  is finite because  $L'$  is finite.  $\square$

## 2. THE CASE OF POSITIVE CHARACTERISTIC

In this section, we establish within the context of alternative algebras an analogue of the following theorem of S. Coelho [4].

**Theorem 2.1.** *Let  $K$  be a field of characteristic  $p > 0$  and with prime field  $\mathcal{P}$ . Let  $G$  a group whose torsion elements form a locally finite subgroup  $T$ . Let  $P$  denote the set of  $p$ -elements and  $A$  the set of  $p'$ -elements in  $T$ . Then every idempotent of  $KT$  is central in  $KG$  if and only if the following four conditions hold.*

- (i)  $A$  is an abelian group.
- (ii) If  $A$  is not central, then the algebraic closure  $\bar{\mathcal{P}}$  of  $\mathcal{P}$  in  $K$  is finite and, for all  $t \in A$  and  $x \in L$ , there exists  $r \in \mathbb{N}$  such that  $xtx^{-1} = t^{p^r}$ . Furthermore, each such  $r$  is a multiple of the degree  $[\bar{\mathcal{P}} : \mathcal{P}]$ .
- (iii)  $P$  is a subgroup of  $G$ .
- (iv)  $T = P \times A$ .

If  $G$  is a group contained in an RA loop  $L$ , it is clear from Lemma 1.4 that the torsion elements of  $G$  form a locally finite subgroup  $T$  of  $G$  and, from Lemma 1.2, that the sets  $P$  of  $p$ -elements and  $A$  of  $p'$ -elements of  $G$  are always subgroups of  $G$  with  $T = P \times A$ . Thus, for such  $G$ , we have the following simplification.

**Theorem 2.2.** *Let  $K$  be a field of characteristic  $p > 0$  with prime field  $\mathcal{P}$  and let  $G$  be a group which is contained in an RA loop. Then every idempotent of  $KT$  is central in  $KG$  if and only if*

- (i)  $T$  is an abelian group, and
- (ii) if  $T$  is not central, then the algebraic closure  $\bar{\mathcal{P}}$  of  $\mathcal{P}$  in  $K$  is finite and, for all  $t \in A$  and  $x \in L$ , there exists  $r \in \mathbb{N}$  such that  $xtx^{-1} = t^{p^r}$ . Furthermore, each such  $r$  is a multiple of  $[\bar{\mathcal{P}} : \mathcal{P}]$ .

In what follows, it is convenient to have a term by which we can refer to the loop elements which actually appear in the representation of a loop ring element. For an element  $\alpha = \sum \alpha_\ell \ell$ ,  $\alpha_\ell \in R$ ,  $\ell \in L$ , in a loop ring  $RL$ , the *support* of  $\alpha$  is the set

$$\text{supp}(\alpha) = \{\ell \mid \alpha_\ell \neq 0\}.$$

Also, for  $\alpha = \sum \alpha_\ell \ell$ , the *augmentation* of  $\alpha$  is the element  $\epsilon(\alpha) = \sum \alpha_\ell \in R$ . The map  $\epsilon: RL \rightarrow R$  is a ring homomorphism. We now have at hand the tools needed to establish the main theorem of this section.

**Theorem 2.3.** *Let  $K$  be a field of characteristic  $p > 0$  with prime field  $\mathcal{P}$ . Let  $L$  be an RA loop with torsion subloop  $T$ . Then every idempotent of the alternative loop algebra  $KT$  is central in  $KL$  if and only if  $p = 2$  or*

- (i) *the set  $A$  of  $p^l$ -elements of  $L$  is an abelian group, and*
- (ii) *If  $A$  is not central, the algebraic closure  $\bar{\mathcal{P}}$  of  $\mathcal{P}$  in  $K$  is finite and, for all  $t \in A$  and  $x \in L$ , there exists  $r \in \mathbb{N}$  such that  $xtx^{-1} = t^{p^r}$ . Furthermore, each such  $r$  is a multiple of  $[\bar{\mathcal{P}} : \mathcal{P}]$ .*

*Proof.* Suppose every idempotent in  $KT$  is central in  $KL$  and  $p \neq 2$ . By Lemma 1.2, we can write  $T = T_0 \times B$ , where  $T_0$  is a 2-loop and  $B$  is a central group consisting of elements of odd order. If  $T_0$  is not commutative, any two noncommuting elements of  $T_0$  will generate a nonabelian group  $T_1$  which is finite because  $T$  is locally finite. Since  $|T_1|$  is relatively prime to  $p$ , the group algebra  $\mathcal{P}T_1$  is the direct sum of finite simple associative algebras. If any of these is not commutative, it cannot be a division ring, so it is an  $n \times n$  matrix algebra for some  $n > 1$ . As such, it contains noncentral idempotents, a contradiction. Thus  $T$  is commutative and hence, by Lemma 1.3, an abelian group. Since  $A \subseteq T$ , so also is  $A$  an abelian group. If  $A$  is not central and  $x \in L$ , then  $G = \langle A, x \rangle$  is a group, by Lemma 1.3. Now (iii) follows directly from Theorem 2.2.

For the converse, suppose first that  $p = 2$ . Then  $A$  is the (central) group  $B$  of Lemma 1.2 and so  $T = T_0 \times A$  where  $T_0$  is a 2-loop. Let  $e$  be an idempotent of  $KT$ . Since  $T$  is locally finite, replacing  $T$  by the loop generated by the support of  $e$ , we may assume that  $T$  is finite. We have  $KA = \bigoplus K_i$ , the direct sum of fields  $K_i$ , and  $e \in (KA)T_0 = \bigoplus K_i T_0$ . Writing  $e = \sum e_i$  with  $e_i \in K_i T_0$ , we note that each  $e_i$  is an idempotent in  $K_i T_0$ , so its augmentation is 0 or 1. Thus either  $e_i$  or  $1 + e_i$  (which is also an idempotent) is in the kernel,  $\Delta_{K_i}(T_0)$ , of the natural map  $K_i L \rightarrow K_i [L/T_0]$ . Since  $K_i$  has characteristic 2 and  $T_0$  is a 2-loop, this ideal is nilpotent [13, Lemma I.2.21], so  $e_i = 0$  or  $e_i = 1$ . Thus  $e$  is in  $KA$  and hence central in  $KL$ .

Now suppose that  $p$  is odd and that we have (i) and (ii). Write  $T = T_0 \times B$  as in Lemma 1.2 and note that  $T$  is an abelian group because  $T_0 \subseteq A$ . Let  $e \in KT$  be an idempotent and let  $x \in L$ . Then  $G = \langle T, x \rangle$  is a group whose torsion subgroup is  $T$ . By Theorem 2.2,  $e$  commutes with  $x$ , and it follows that  $e$  is central in  $KL$ .  $\square$

### 3. THE CASE OF CHARACTERISTIC 0

Let  $\alpha$  and  $\beta$  be nonzero elements of a field  $F$ . Recall that a *generalized quaternion algebra* over  $F$  is an (associative) algebra  $(F, \alpha, \beta)$  of dimension 4 over  $F$  with basis  $1, i, j, ij$ , where  $i^2 = \alpha$ ,  $j^2 = \beta$  and  $ij = -ji$ . With  $\alpha = \beta = -1$ , the algebra  $(F, -1, -1)$  is known simply as

the quaternion algebra over  $F$  and denoted  $H(F)$ . With  $F$  the field  $\mathbb{R}$  of real numbers,  $H(\mathbb{R})$  is, of course, the well-known quaternion algebra of Sir William Rowan Hamilton.

Let  $H = (F, \alpha, \beta)$  be a generalized quaternion algebra. Let  $\gamma$  be another nonzero element of  $F$  and let  $\ell$  be an indeterminate. Then the Cayley-Dickson algebra  $(F, \alpha, \beta, \gamma)$  is the vector space  $H \oplus H\ell$  with multiplication defined by

$$(3.1) \quad (a + b\ell)(c + d\ell) = (ac + \gamma\bar{d}b) + (da + b\bar{c})\ell.$$

Here,  $\bar{q}$  denotes the conjugate of the quaternion  $q$ : for  $q = a_1 + a_2i + a_3j + a_4ij$ ,  $\bar{q} = a_1 - a_2i - a_3j - a_4ij$ .

We require the following facts about quaternion and Cayley-Dickson algebras.

**Lemma 3.1.** *The quaternion algebra  $H(F) = (F, -1, -1)$  is either a division ring or the ring of  $2 \times 2$  matrices of  $F$ . It is a division ring if and only if the equation  $x^2 + y^2 = -1$  has no solutions in the field  $F$ . The Cayley-Dickson algebra  $(F, -1, -1, -1)$  is either a division ring or  $H \oplus H\ell$  where  $H$  is the ring of  $2 \times 2$  matrices over a field and multiplication is given by (3.1) with  $\gamma = 1$ . It is a division ring if and only if the equation  $x^2 + y^2 + z^2 + w^2 = -1$  has no solutions in  $F$ .*

*Proof.* The statement about the quaternion algebra is proven, for instance, in [7, Proposition 8.6.2]. The stated facts concerning the Cayley-Dickson algebra are in [12, Sections III.4 and III.5] and [8, Corollary 3.5].  $\square$

S. Coelho and C. P. Milies have established the following result [5].

**Theorem 3.2.** *Let  $K$  be a field of characteristic 0 and let  $T$  denote the set of torsion elements of a group  $G$ . Then every idempotent of  $KT$  is central in  $KG$  if and only if*

- (i) *For every  $t \in T$  and every  $x \in G$ , there exists a positive integer  $j$  such that  $xtx^{-1} = t^j$ . Furthermore, for every noncentral element  $t \in T$ ,  $K$  contains no root of unity of order the order of  $t$ .*
- (ii) *Either  $T$  is abelian or  $T = A \times Q$  where  $A$  is an abelian group and  $Q$  is the quaternion group of order 8 and, for every  $a \in A$  of order  $n$  and every  $n$ -th root of unity  $\xi$  in an algebraic closure of  $K$ , the field  $K(\xi)$  contains no solution of the equation  $x^2 + y^2 = -1$ .*

The analogue for alternative loop algebras is this:

**Theorem 3.3.** *Let  $K$  be a field of characteristic 0 and let  $L$  be an RA loop with torsion subloop  $T$ . Then every idempotent in  $KT$  is central in  $KL$  if and only if*

- (i) *for every  $t \in T$  and every  $x \in L$ , there exists a positive integer  $j$  such that  $xtx^{-1} = t^j$ ;*
- (ii) *for every noncentral element  $t \in T$ ,  $K$  contains no root of unity of order the order of  $t$ ; and*
- (iii) *either*
  - (a)  *$T$  is an abelian group, or*
  - (b)  *$T = A \times Q$  where  $A$  is an abelian group and  $Q$  is the quaternion group of order 8 and, for every  $a \in A$  of order  $n$  and every  $n$ -th root of unity  $\xi$  in an algebraic closure of  $K$ , the field  $K(\xi)$  contains no solutions to  $x^2 + y^2 = -1$ , or*
  - (c)  *$T = A \times C$  where  $A$  is an abelian group and  $C$  is the Cayley loop and, for every  $a \in A$  of order  $n$  and every  $n$ -th root of unity  $\xi$  in an algebraic closure of  $K$ , the field  $K(\xi)$  contains no solutions to  $x^2 + y^2 + z^2 + w^2 = -1$ .*

*Proof.* Suppose every idempotent of  $KT$  is central in  $KL$ . Let  $t \in T$  have order  $n$ . Then the element  $e = \frac{1}{n}(1 + t + \dots + t^{n-1})$  is an idempotent in  $KT$  and so central in  $KL$ . Thus, for any  $x \in L$ , we have  $zex^{-1} = e$ , so that  $ztx^{-1} = t^j$  for some integer  $j$  which we can assume to be positive. This gives (i) and shows, incidentally, that every subloop of  $T$  is commutative or Hamiltonian. If  $T$  contains a noncentral element  $t$ , of order  $n$ , say, write  $K(t) = \bigoplus K(\xi_i)$  as the direct sum of cyclotomic fields for various primitive roots of unity,  $\xi_i$ ; at least one of which, say  $\xi_1$ , has order  $n$ . Let  $x \in L$  be an element which does not commute with  $t$ . Since  $K(\xi_i) = K(t)\xi_i$  for some idempotent  $\xi_i$  of  $K(t)$ , and since every idempotent of  $KT$  is central in  $KL$ , conjugation by  $x$  defines an automorphism of  $K(t)$  which induces an automorphism  $\theta$  of  $K(\xi_1)$ . Since  $ztx^{-1} = t^j \neq t$ ,  $\theta(\xi_1) = \xi_1^j \neq \xi_1$ , so  $\xi_1 \notin K$ . Thus no  $n$ th root of unity is in  $K$ . This establishes (ii).

If  $T$  is commutative, then  $T$  is an abelian group by Lemma 1.3 and we have case iii(a). If  $T$  is a Hamiltonian group, then it is well-known that  $T = A \times Q$  where  $A$  is an abelian group and  $Q$  is the quaternion group  $Q$  of order 8. For any  $a \in A$  of order  $n$ ,  $T$  contains the direct product  $\langle a \rangle \times Q$ , so  $KT$  contains  $K(a)Q$  which is the direct sum  $\bigoplus K(\xi_i)Q$  of group algebras of  $Q$  over cyclotomic fields  $K(\xi_i)$ , where some  $\xi_i$ , say  $\xi_1$ , is an  $n$ th root of unity. Now  $K(\xi_1)Q$  is the direct sum of four copies of  $K(\xi_1)$  and the quaternion algebra  $H(K(\xi_1))$ . Since it contains no noncentral idempotents,  $H(K(\xi_1))$  must be a division ring so, by Lemma 3.1, we have case iii(b). Finally, if  $T$  is not associative, then  $T = A \times C$  where  $A$  is an abelian group and  $C$  is the Cayley loop [1, Section IV.7]. Since the loop algebra of  $C$  over a field  $F$  is the direct sum of eight copies of  $F$  and the Cayley-Dickson algebra  $(F, -1, -1, -1)$  (see [8, Proposition 3.9] where  $C$  is denoted  $M_{16}(Q)$ ), we see just as before that if  $a \in A$  has order  $n$  and  $\xi$  is an  $n$ -th root of unity, then  $(K(\xi), -1, -1, -1)$  must be a division algebra. By Lemma 3.1 we have case iii(c).

Conversely, assume that (i), (ii) and (iii) hold. If  $T$  is an abelian group and  $x$  is any element of  $L$ , then  $G = \langle T, x \rangle$  is a group by Lemma 1.3, so any idempotent in  $KT$  commutes with  $x$  by Theorem 3.2. In case iii(b), we proceed as in [5]. Let  $e \in KT$  be an idempotent. Replacing  $T$  by the subgroup generated by the support of  $e$ , we may assume that  $T$  is finite. Let  $A$  have exponent  $n$  and let  $\xi$  be a primitive  $n$ th root of unity. We have  $KA = \bigoplus K_i$ , the direct sum of cyclotomic fields  $K_i \subseteq K(\xi)$ . By hypothesis, each quaternion algebra  $H(K_i)$  is a division ring. Since  $KT = (KA)Q = \bigoplus K_i Q$ , and  $K_i Q = 4K_i \oplus H(K_i)$ , we see that  $KT$  is the direct sum of division rings, so each idempotent of  $KT$  is central in  $KT$ . Since every such idempotent is the sum of primitive idempotents, to show that it is in fact central in  $KL$ , it is sufficient to show that each primitive idempotent of  $K_i Q$  is central in  $KL$ . For this, we first note that any idempotent  $\mu$  of  $KA$  is central in  $KL$ , by the following argument. If  $x \in L$ , then  $G = \langle A, x \rangle$  is a group whose torsion subgroup is an abelian group contained in  $T$ . By Theorem 3.2,  $\mu$  is central in  $KG$ , so  $\mu$  commutes with  $x$  and it follows that  $\mu$  is central in  $KL$ , as asserted. Next, presenting  $Q$  as

$$Q = \langle a, b \mid a^4 = 1, b^2 = a^2, ba = a^{-1}b \rangle,$$

we see that the unique nonidentity commutator of  $L$  is  $s = [a, b] = a^2$  and so, in view of (1.2), the restriction to  $Q$  of the involution on  $L$  is defined by

$$g^* = \begin{cases} g & \text{if } g = 1 \text{ or } g = a^2 \\ a^2 g & \text{otherwise.} \end{cases}$$

The primitive idempotents of  $K_i Q$  are

$$\begin{aligned} e_1 &= \frac{\mu_i}{8}(1 + a + a^2 + a^3 + b + ab + a^2b + a^3b) \\ e_2 &= \frac{\mu_i}{8}(1 + a + a^2 + a^3 - b - ab - a^2 - a^3b) \\ e_3 &= \frac{\mu_i}{8}(1 - a + a^2 - a^3 + b - ab + a^2b - a^3b) \\ e_4 &= \frac{\mu_i}{8}(1 - a + a^2 - a^3 - b + ab - a^2b + a^3b) \\ e_5 &= \frac{\mu_i}{8}(1 - a^2) \end{aligned}$$

where  $\mu_i$  is the identity element of  $K_i$  which, as an idempotent of  $KA$ , is central in  $KL$ . For each  $i$ , we have  $e_i^* = e_i$ ; so that, by (1.3),  $e_i$  is central in  $KL$ .

Finally, suppose we have case iii(c). Again letting  $n$  be the exponent of  $A$  and  $\xi$  a primitive  $n$ th root of unity, we have  $KT = (KA)\mathcal{C} = \bigoplus K_i \mathcal{C}$ , for certain fields  $K_i \subseteq K(\xi)$ , and each  $K_i \mathcal{C} = 8K_i \oplus (K_i, -1, -1, -1)$  is the direct sum of division rings by Lemma 3.1. So every idempotent in  $KT$  is central in  $KT$  and, to show centrality in  $KL$ , it is sufficient to show that any primitive idempotent of  $K_i \mathcal{C}$  is central in  $KL$ . Representing  $\mathcal{C}$  as  $M(Q, *, u)$  for some  $u \notin Q$ , the primitive idempotents of  $K_i \mathcal{C}$  are  $e_5$  and, for  $j = 1, 2, 3, 4$ , the eight elements  $e_{j1} = \frac{\mu_i}{2}(1+u)e_j$  and  $e_{j2} = \frac{\mu_i}{2}(1-u)e_j$ . Each  $\mu_i$ , being an idempotent of  $KA$ , is central in  $KL$  as before. Since  $e_{ij} = x + yu$ , with  $x, y \in K_i Q$ ,  $x^* = x$  and  $sy = y$ , each  $e_{ij}$  is central because of (1.4) and the proof is complete.  $\square$

#### REFERENCES

1. R. H. Bruck, *A survey of binary systems*, Ergeb. Math. Grenzgeb., vol. 20, Springer-Verlag, 1958.
2. Orin Chein and Edgar G. Goodaire, *Loops whose loop rings are alternative*, Comm. Algebra 14 (1986), no. 2, 293–310.
3. G. H. Cliff and S. K. Sehgal, *Group rings whose units form an FC-group*, Math. Z. 161 (1978), 163–168.
4. Sônia P. Coelho, *A note on central idempotents in group rings*, Proc. Edinburgh Math. Soc. 30 (1987), 69–72.
5. Sônia P. Coelho and C. Polcino Milies, *A note on central idempotents in group rings II*, Proc. Edinburgh Math. Soc. 31 (1988), 211–215.
6. ———, *Group rings whose torsion units form a subgroup*, Proc. Edinburgh Math. Soc. 37 (1994), 201–205.
7. P. M. Cohn, *Algebra*, vol. 2, John Wiley and Sons, London, 1977.
8. Luiz G. X. de Barros, *On semisimple alternative loop algebras*, Comm. Algebra 21 (1993), no. 11, 3995–4011.
9. Edgar G. Goodaire and César Polcino Milies, *On the loop of units of an alternative loop ring*, Nova J. Algebra Geom., to appear.
10. Edgar G. Goodaire and M. M. Parmenter, *Semi-simplicity of alternative loop rings*, Acta Math. Hungar. 50 (1987), no. 3–4, 241–247.
11. César Polcino Milies, *Group rings whose torsion units form a subgroup II*, Comm. Algebra 81 (1981), no. 9, 699–712.
12. R. D. Schafer, *An introduction to nonassociative algebras*, Academic Press, New York, 1966.
13. S. K. Sehgal, *Topics in group rings*, Marcel Dekker, New York, 1978.

MEMORIAL UNIVERSITY OF NEWFOUNDLAND, ST. JOHN'S, NEWFOUNDLAND, CANADA A1C 5S7  
 E-mail address: edgar@math.mun.ca

UNIVERSIDADE DE SÃO PAULO, C. P. 20570, 01452-990 SÃO PAULO, BRASIL  
 E-mail address: polcino@ime.usp.br

## TRABALHOS DO DEPARTAMENTO DE MATEMÁTICA

## TÍTULOS PUBLICADOS

94-01 BIANCONI, R. A note on the construction of a certain class of Kleinian groups. 9p.

94-02 HENTZEL, I.R., JACOBS, D.P., PERESI, L.A. & SVERCHKOV, S.R. Solvability of the ideal of all weight zero elements in Bernstein Algebras. 11p.

94-03 CORREA, I. & PERESI, L.A. Bernstein-Jordan Algebras of dimension five. 6p.

94-04 ABADIE, B. The range of traces on the  $K_0$ -group of quantum Heisenberg manifolds. 13p.

94-05 BIANCONI, R., GUSEVSKII, N. and KLIMENKO, H. Schottky type groups and Kleinian groups acting on  $S^3$  with the limit set a wild Cantor set. 30p.

94-06 GORODSKI, C. Minimal Hyperspheres in Rank Two Compact Symmetric Spaces. 20 p.

94-07 BARROS, L.G.X. de and WATSON, B. On Modular Loop Algebras of RA2 Loops. 19p.

94-08 BARROS, L.G.X. de Loop Rings of I.P. Loops. 12p.

94-09 BIANCONI, R. A note on the non-interpretability of a discrete order in an o-minimal (dense) structure. 9p.

94-10 GOODAIRE, E.G. and POLCINO MILIES, C. On the loop of units of an alternative loop ring. 10p.

94-11 GOODAIRE, E.G. and POLCINO MILIES, C. Finite subloops of units in an alternative loop ring. 8p.

94-12 JURIAANS, S.O. Trace Properties of Torsion Units in Group Rings. 7p.

94-13 FALBEL, E. and GORODSKI, C. On Contact Sub-Riemannian Symmetric Spaces. 22p.

94-14 GORODSKI, C. Minimal Sphere Bundles in Euclidean Spheres. 32p.

94-15 COELHO, F.U., MARCOS, E.N., MERKLEN, H.A. and SKOWRONSKI, A. Module categories with infinite radical cube zero. 28p.

94-16 CHAVES, R.M.B. On two parameter envelopes of N-Spheres in a real space form. 17p.

94-17 BARROS, L.G.X and JURIAANS, S.O. Units in Integral Loop Rings. 13p.

94-18 BRASIL, JR. A. Hypersurfaces in  $S^4(1)$  with constant mean curvature and constant Gauss-Kronecker curvature. 7p.

94-19 COSTA R., NEUBURG, M. and SUAZO, A. Some Results in the Theory of Bernstein Algebras. 19p.

94-20 FALBEL E., GORODSKI C. Sub-Riemannian Homogeneous Spaces in Dimensions 3 and 4. 32p.

94-21 BARROS, L. G. X. de and POLCINO MILIES, C. Loops Algebras of Code Loops. 13p.

94-22 CARRARA, V.L., RUAS, M.A.S. and SAEKI, O. A note on codimension two submanifolds with at most four critical points. 11p.

94-23 COELHO F.U., MARCOS E.N., MERKLEN H.A., and SKOWRONSKI, A. Domestic Semiregular Branch Enlargements of Tame Canceled Algebras. 14p.

94-24 DOKUCHAEV M. A., and JURIAANS, O. Finite Subgroups in Integral Group Rings. 20p

94-25 FALBEL E., GORODSKI C. and VELOSO J.M. Conformal Sub-Riemannian Geometry in Dimension 3. 12p.

95-01 BARROS, L.G.X. de and Juriangs, S.O. Loops whose Loop Algebras are Flexible. 25p.

95-02 GUIDORIZZI, H.L. - Jordan canonical form: an elementary proof. 12 p.

95-03 CATALAN A., and COSTA R. E-Ideals in Baric Algebras. 14p.

95-04 MARTIN, P.A. On the generating function of the decimal expansion of an irrational real numbers. 7p.

95-05 COELHO F.U., MARCOS E.N., MERKLEN H.A. and PLATZECK M.I. Modules of Infinite Projective Dimension over Algebras whose Idempotent Ideals are Projective. 13p.

95-06 GUIDORIZZI, H. L. The family of functions  $S_{\alpha,k}$  and the Liénard Equation. 22p.

95-07 GUIDORIZZI, H. L. On the Existence of Periodic Solution for the Equation  $\ddot{x} + \alpha^{2/3}\dot{x} + x^{4/3} = 0$ . 5p.

95-08 CORTIZO, S.F. Extensões Virtuais. 27p.

95-09 CORTIZO, S.F. Cálculo Virtual. 31p.

95-10 GUIDORIZZI, H. L. On Periodic Solutions of Systems of the Type  $\ddot{x} = H(y)$ ,  $\dot{y} = - \sum_{i=1}^s f_i(x)H_i(y) - g(x)$ . 16p.

95-11 OLIVA, S. M., PEREIRA, A. L. Attractors for Parabolic Problems with Non linear Boundary Conditions in Fractional Power Spaces. 28p.

95-12 CORDARO, P. D. Global hypoellipticity for  $\bar{\partial}_b$  on certain compact three dimensional CR manifolds. 11p.

95-13 COELHO, F.U. and SKOWRONSKI, A. On Auslander-Reiten Components for Quasitilted Algebras. 16p.

95-14 COELHO, F.U. and HAPPEL, D. Quasitilted algebras admit a preprojective component. 12p.

95-15 GOODAIRE, E.G. and POLCINO MILIES, C. The torsion product property in alternative algebras. 10p.

95-16 GOODAIRE, E. G. and POLCINO MILIES, C. Central idempotents in alternative loop algebras. 7p.

NOTA: Os títulos publicados dos Relatórios Técnicos dos anos de 1980 a 1993 estão à disposição no Departamento de Matemática do IME-USP. Cidade Universitária "Armando de Salles Oliveira" Rua do Matão, 1010 - Butantã Caixa Postal - 66281 (Ag. Cidade de São Paulo) CEP: 05389-970 - São Paulo - Brasil