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Abstract

Many real-world systems can be studied in terms of pattern recognition tasks, so that proper

use (and understanding) of machine learning methods in practical applications becomes

essential. While many classification methods have been proposed, there is no consensus

on which methods are more suitable for a given dataset. As a consequence, it is important

to comprehensively compare methods in many possible scenarios. In this context, we per-

formed a systematic comparison of 9 well-known clustering methods available in the R lan-

guage assuming normally distributed data. In order to account for the many possible

variations of data, we considered artificial datasets with several tunable properties (number

of classes, separation between classes, etc). In addition, we also evaluated the sensitivity of

the clustering methods with regard to their parameters configuration. The results revealed

that, when considering the default configurations of the adopted methods, the spectral

approach tended to present particularly good performance. We also found that the default

configuration of the adopted implementations was not always accurate. In these cases, a

simple approach based on random selection of parameters values proved to be a good alter-

native to improve the performance. All in all, the reported approach provides subsidies guid-

ing the choice of clustering algorithms.

Introduction

In recent years, the automation of data collection and recording implied a deluge of informa-

tion about many different kinds of systems [1–8]. As a consequence, many methodologies

aimed at organizing and modeling data have been developed [9]. Such methodologies are

motivated by their widespread application in diagnosis [10], education [11], forecasting [12],

and many other domains [13]. The definition, evaluation and application of these methodolo-

gies are all part of the machine learning field [14], which became a major subarea of computer

science and statistics due to their crucial role in the modern world.

Machine learning encompasses different topics such as regression analysis [15], feature

selection methods [16], and classification [14]. The latter involves assigning classes to the
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objects in a dataset. Three main approaches can be considered for classification: supervised,

semi-supervised and unsupervised classification. In the former case, the classes, or labels, of

some objects are known beforehand, defining the training set, and an algorithm is used to

obtain the classification criteria. Semi-supervised classification deals with training the algo-

rithm using both labeled and unlabeled data. They are commonly used when manually labeling

a dataset becomes costly. Lastly, unsupervised classification, henceforth referred as clustering,

deals with defining classes from the data without knowledge of the class labels. The purpose of

clustering algorithms is to identify groups of objects, or clusters, that are more similar to each

other than to other clusters. Such an approach to data analysis is closely related to the task of

creating a model of the data, that is, defining a simplified set of properties that can provide

intuitive explanation about relevant aspects of a dataset. Clustering methods are generally

more demanding than supervised approaches, but provide more insights about complex data.

This type of classifiers constitute the main object of the current work.

Because clustering algorithms involve several parameters, often operate in high dimensional

spaces, and have to cope with noisy, incomplete and sampled data, their performance can vary

substantially for different applications and types of data. For such reasons, several different

approaches to clustering have been proposed in the literature (e.g. [17–19]). In practice, it

becomes a difficult endeavor, given a dataset or problem, to choose a suitable clustering

approach. Nevertheless, much can be learned by comparing different clustering methods. Sev-

eral previous efforts for comparing clustering algorithms have been reported in the literature

[20–29]. Here, we focus on generating a diversified and comprehensive set of artificial, nor-

mally distributed data containing not only distinct number of classes, features, number of

objects and separation between classes, but also a varied structure of the involved groups (e.g.

possessing predefined correlation distributions between features). The purpose of using artifi-

cial data is the possibility to obtain an unlimited number of samples and to systematically

change any of the aforementioned properties of a dataset. Such features allow the clustering

algorithms to be comprehensive and strictly evaluated in a vast number of circumstances, and

also grants the possibility of quantifying the sensitivity of the performance with respect to

small changes in the data. It should be observed, nevertheless, that the performance results

reported in this work are therefore respective and limited to normally distributed data, and

other results could be expected for other types of data following other statistical behavior. Here

we associate performance with the similarity between the known labels of the objects and

those found by the algorithm. Many measurements have been defined for quantifying such

similarity [30], we compare the Jaccard index [31], Adjusted Rand index [32], Fowlkes-

Mallows index [33] and Normalized mutual information [34]. A modified version of the pro-

cedure developed by [35] was used to create 400 distinct datasets, which were used in order to

quantify the performance of the clustering algorithms. We describe the adopted procedure

and the respective parameters used for data generation. Related approaches include [36].

Each clustering algorithm relies on a set of parameters that needs to be adjusted in order to

achieve viable performance, which corresponds to an important point to be addressed while

comparing clustering algorithms. A long standing problem in machine learning is the defini-

tion of a proper procedure for setting the parameter values [37]. In principle, one can apply an

optimization procedure (e.g., simulated annealing [38] or genetic algorithms [39]) to find the

parameter configuration providing the best performance of a given algorithm. Nevertheless,

there are two major problems with such an approach. First, adjusting parameters to a given

dataset may lead to overfitting [40]. That is, the specific values found to provide good perfor-

mance may lead to lower performance when new data is considered. Second, parameter opti-

mization can be unfeasible in some cases, given the time complexity of many algorithms,

combined with their typically large number of parameters. Ultimately, many researchers resort

Clustering algorithms: A comparative approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0210236 January 15, 2019 2 / 34

for LdFC), Núcleo de Apoio à Pesquisa (LdFC) and

CAPES - Coordenação de Aperfeiçoamento de

Pessoal de Nı́vel Superior (Finance Code 001).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0210236


to applying classifier or clustering algorithms using the default parameters provided by the

software. Therefore, efforts are required for evaluating and comparing the performance of

clustering algorithms in the optimization and default situations. In the following, we consider

some representative examples of algorithms applied in the literature [37, 41].

Clustering algorithms have been implemented in several programming languages and pack-

ages. During the development and implementation of such codes, it is common to implement

changes or optimizations, leading to new versions of the original methods. The current work

focuses on the comparative analysis of several clustering algorithm found in popular packages

available in the R programming language [42]. This choice was motivated by the popularity of

the R language in the data mining field, and by virtue of the well-established clustering pack-

ages it contains. This study is intended to assist researchers who have programming skills in R

language, but with little experience in clustering of data.

The algorithms are evaluated on three distinct situations. First, we consider their perfor-

mance when using the default parameters provided by the packages. Then, we consider the

performance variation when single parameters of the algorithms are changed, while the rest

are kept at their default values. Finally, we consider the simultaneous variation of all parame-

ters by means of a random sampling procedure. We compare the results obtained for the latter

two situations with those achieved by the default parameters, in such a way as to investigate

the possible improvements in performance which could be achieved by modifying the

algorithms.

The algorithms were evaluated on 400 artificial, normally distributed, datasets generated by

a robust methodology previously described in [36]. The number of features, number of classes,

number of objects for each class and average distance between classes can be systematically

changed among the datasets.

The text is divided as follows. We start by revising some of the main approaches to cluster-

ing algorithms comparison. Next, we describe the clustering methods considered in the analy-

sis, we also present the R packages implementing such methods. The data generation method

and the performance measurements used to compare the algorithms are presented, followed

by the presentation of the performance results obtained for the default parameters, for single

parameter variation and for random parameter sampling.

Related works

Previous approaches for comparing the performance of clustering algorithms can be divided

according to the nature of used datasets. While some studies use either real-world or artificial

data, others employ both types of datasets to compare the performance of several clustering

methods.

A comparative analysis using real world dataset is presented in several works [20, 21, 24, 25,

43, 44]. Some of these works are reviewed briefly in the following. In [43], the authors propose

an evaluation approach based in a multiple criteria decision making in the domain of financial

risk analysis over three real world credit risk and bankruptcy risk datasets. More specifically,

clustering algorithms are evaluated in terms of a combination of clustering measurements,

which includes a collection of external and internal validity indexes. Their results show that no

algorithm can achieve the best performance on all measurements for any dataset and, for this

reason, it is mandatory to use more than one performance measure to evaluate clustering

algorithms.

In [21], a comparative analysis of clustering methods was performed in the context of text-

independent speaker verification task, using three dataset of documents. Two approaches were

considered: clustering algorithms focused in minimizing a distance based objective function
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and a Gaussian models-based approach. The following algorithms were compared: k-means,

random swap, expectation-maximization, hierarchical clustering, self-organized maps (SOM)

and fuzzy c-means. The authors found that the most important factor for the success of the

algorithms is the model order, which represents the number of centroid or Gaussian compo-

nents (for Gaussian models-based approaches) considered. Overall, the recognition accuracy

was similar for clustering algorithms focused in minimizing a distance based objective func-

tion. When the number of clusters was small, SOM and hierarchical methods provided lower

accuracy than the other methods. Finally, a comparison of the computational efficiency of the

methods revealed that the split hierarchical method is the fastest clustering algorithm in the

considered dataset.

In [25], five clustering methods were studied: k-means, multivariate Gaussian mixture,

hierarchical clustering, spectral and nearest neighbor methods. Four proximity measures were

used in the experiments: Pearson and Spearman correlation coefficient, cosine similarity and

the euclidean distance. The algorithms were evaluated in the context of 35 gene expression

data from either Affymetrix or cDNA chip platforms, using the adjusted rand index for perfor-

mance evaluation. The multivariate Gaussian mixture method provided the best performance

in recovering the actual number of clusters of the datasets. The k-means method displayed

similar performance. In this same analysis, the hierarchical method led to limited perfor-

mance, while the spectral method showed to be particularly sensitive to the proximity measure

employed.

In [24], experiments were performed to compare five different types of clustering algo-

rithms: CLICK, self organized mapping-based method (SOM), k-means, hierarchical and

dynamical clustering. Data sets of gene expression time series of the Saccharomyces cerevisiae
yeast were used. A k-fold cross-validation procedure was considered to compare different

algorithms. The authors found that k-means, dynamical clustering and SOM tended to yield

high accuracy in all experiments. On the other hand, hierarchical clustering presented a more

limited performance in clustering larger datasets, yielding low accuracy in some experiments.

A comparative analysis using artificial data is presented in [45–47]. In [47], two subspace

clustering methods were compared: MAFIA (Adaptive Grids for Clustering Massive Data

Sets) [48] and FINDIT (A Fast and Intelligent Subspace Clustering Algorithm Using Dimen-

sion Voting) [49]. The artificial data, modeled according to a normal distribution, allowed the

control of the number of dimensions and instances. The methods were evaluated in terms of

both scalability and accuracy. In the former, the running time of both algorithms were com-

pared for different number of instances and features. In addition, the authors assessed the abil-

ity of the methods in finding adequate subspaces for each cluster. They found that MAFIA

discovered all relevant clusters, but one significant dimension was left out in most cases. Con-

versely, the FINDIT method performed better in the task of identifying the most relevant

dimensions. Both algorithms were found to scale linearly with the number of instances, how-

ever MAFIA outperformed FINDIT in most of the tests.

Another common approach for comparing clustering algorithms considers using a mixture

of real world and artificial data (e.g. [23, 26–28, 50]). In [28], the performance of k-means, sin-

gle linkage and simulated annealing (SA) was evaluated, considering different partitions

obtained by validation indexes. The authors used two real world datasets obtained from [51]

and three artificial datasets (having two dimensions and 10 clusters). The authors proposed a

new validation index called I index that measures the separation based on the maximum dis-

tance between clusters and compactness based on the sum of distances between objects and

their respective centroids. They found that such an index was the most reliable among other

considered indices, reaching its maximum value when the number of clusters is properly

chosen.
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A systematic quantitative evaluation of four graph-based clustering methods was performed

in [27]. The compared methods were: markov clustering (MCL), restricted neighborhood

search clustering (RNSC), super paramagnetic clustering (SPC), and molecular complex detec-

tion (MCODE). Six datasets modeling protein interactions in the Saccharomyces cerevisiae and

84 random graphs were used for the comparison. For each algorithm, the robustness of the

methods was measured in a twofold fashion: the variation of performance was quantified in

terms of changes in the (i) methods parameters and (ii) dataset properties. In the latter, con-

nections were included and removed to reflect uncertainties in the relationship between pro-

teins. The restricted neighborhood search clustering method turned out to be particularly

robust to variations in the choice of method parameters, whereas the other algorithms were

found to be more robust to dataset alterations. In [52] the authors report a brief comparison of

clustering algorithms using the Fundamental clustering problem suite (FPC) as dataset. The

FPC contains artificial and real datasets for testing clustering algorithms. Each dataset repre-

sents a particular challenge that the clustering algorithm has to handle, for example, in the

Hepta and LSum datasets the clusters can be separated by a linear decision boundary, but have

different densities and variances. On the other hand, the ChainLink and Atom datasets cannot

be separated by linear decision boundaries. Likewise, the Target dataset contains outliers.

Lower performance was obtained by the single linkage clustering algorithm for the Tetra,

EngyTime, Twodiamonds and Wingnut datasets. Although the datasets are quite versatile, it is

not possible to control and evaluate how some of its characteristics, such as dimensions or

number of features, affect the clustering accuracy.

Clustering methods

Many different types of clustering methods have been proposed in the literature [53–56].

Despite such a diversity, some methods are more frequently used [57]. Also, many of the com-

monly employed methods are defined in terms of similar assumptions about the data (e.g., k-

means and k-medoids) or consider analogous mathematical concepts (e.g, similarity matrices

for spectral or graph clustering) and, consequently, should provide similar performance in typ-

ical usage scenarios. Therefore, in the following we consider a choice of clustering algorithms

from different families of methods. Several taxonomies have been proposed to organize the

many different types of clustering algorithms into families [29, 58]. While some taxonomies

categorize the algorithms based on their objective functions [58], others aim at the specific

structures desired for the obtained clusters (e.g. hierarchical) [29]. Here we consider the algo-

rithms indicated in Table 1 as examples of the categories indicated in the same table. The

Table 1. Clustering methods considered in our analysis and the respective libraries and functions in R employing the methods. The first column shows the name of

the algorithms used throughout the text. The second column indicates the category of the algorithms. The third and fourth columns contain, respectively, the function

name and R library of each algorithm.

Algorithm name Category Function in R Library in R

k-means Partitional k-means stats

clara Partitional clara cluster

hierarchical Linkage agnes cluster

EM Model-based mstep, estep mclust

hcmodel Model-based hc mclust

spectral Spectral methods specc kernlab

subspace Based on subspaces hddc HDclassif

optics Density optics dbscan

dbscan Density dbscan dbscan

https://doi.org/10.1371/journal.pone.0210236.t001
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algorithms represent some of the main types of methods in the literature. Note that some algo-

rithms are from the same family, but in these cases they posses notable differences in their

applications (e.g., treating very large datasets using clara). A short description about the

parameters of each considered algorithm is provided in S1 File of the supplementary material.

Regarding partitional approaches, the k-means [68] algorithm has been widely used by

researchers [57]. This method requires as input parameters the number of groups (k) and a

distance metric. Initially, each data point is associated with one of the k clusters according to

its distance to the centroids (clusters centers) of each cluster. An example is shown in Fig 1(a),

where black points correspond to centroids and the remaining points have the same color if

the centroid that is closest to them is the same. Then, new centroids are calculated, and the

classification of the data points is repeated for the new centroids, as indicated in Fig 1(b),

where gray points indicate the position of the centroids in the previous iteration. The process

is repeated until no significant changes of the centroids positions is observed at each new step,

as shown in Fig 1(c) and 1(d).

The a priori setting of the number of clusters is the main limitation of the k-means algo-

rithm. This is so because the final classification can strongly depend on the choice of the num-

ber of centroids [68]. In addition, the k-means is not particularly recommended in cases where

the clusters do not show convex distribution or have very different sizes [59, 60]. Moreover,

the k-means algorithm is sensitive to the initial seed selection [41]. Given these limitations,

many modifications of this algorithm have been proposed [61–63], such as the k-medoid [64]

and k-means++ [65]. Nevertheless, this algorithm, besides having low computational cost, can

provide good results in many practical situations such as in anomaly detection [66] and data

segmentation [67]. The R routine used for k-means clustering was the k-means from the stats
package, which contains the implementation of the algorithms proposed by Macqueen [68],

Hartigan and Wong [69]. The algorithm of Hartigan and Wong is employed by the stats pack-

age when setting the parameters to their default values, while the algorithm proposed by Mac-

queen is used for all other cases. Another interesting example of partitional clustering

algorithms is the clustering for large applications (clara) [70]. This method takes into account

multiple fixed samples of the dataset to minimize sampling bias and, subsequently, select the

best medoids among the chosen samples, where a medoid is defined as the object i for which

the average dissimilarity to all other objects in its cluster is minimal. This method tends to be

efficient for large amounts of data because it does not explore the whole neighborhood of the

Fig 1. Illustration of the k-means clustering method. Each plot shows the partition obtained after specific iterations of the algorithm. The centroids of

the clusters are shown as a black marker. Points are colored according to their assigned clusters. Gray markers indicate the position of the centroids in

the previous iteration. The dataset contains 2 clusters, but k = 4 seeds were used in the algorithm.

https://doi.org/10.1371/journal.pone.0210236.g001
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data points [71], although the quality of the results have been found to strongly depend on the

number of objects in the sample data [62]. The clara algorithm employed in our analysis was

provided by the clara function contained in the cluster package. This function implements the

method developed by Kaufman and Rousseeuw [70].

The Ordering Points To Identify the Clustering Structure (OPTICS) [72, 73] is a density-

based cluster ordering based on the concept of maximal density-reachability [72]. The algo-

rithm starts with a data point and expands its neighborhood using a similar procedure as in

the dbscan algorithm [74], with the difference that the neighborhood is first expanded to

points with low core-distance. The core distance of an object p is defined as the m-th smallest

distance between p and the objects in its �-neighborhood (i.e., objects having distance less than

or equal to � from p), where m is a parameter of the algorithm indicating the smallest number

of points that can form a cluster. The optics algorithm can detect clusters having large density

variations and irregular shapes. The R routine used for optics clustering was the optics from

the dbscan package. This function considers the original algorithm developed by Ankerst et al.

[72]. An hierarchical clustering structure from the output of the optics algorithm can be con-

structed using the function extractXi from the dbscan package. We note that the function

extractDBSCAN, from the same package, provides a clustering from an optics ordering that is

similar to what the dbscan algorithm would generate.

Clustering methods that take into account the linkage between data points, traditionally

known as hierarchical methods, can be subdivided into two groups: agglomerative and divisive

[59]. In an agglomerative hierarchical clustering algorithm, initially, each object belongs to a

respective individual cluster. Then, after successive iterations, groups are merged until stop

conditions are reached. On the other hand, a divisive hierarchical clustering method starts

with all objects in a single cluster and, after successive iterations, objects are separated into

clusters. There are two main packages in the R language that provide routines for performing

hierarchical clustering, they are the stats and cluster. Here we consider the agnes routine from

the cluster package which implements the algorithm proposed by Kaufman and Rousseeuw

[70]. Four well-known linkage criteria are available in agnes, namely single linkage, complete

linkage, Ward’s method, and weighted average linkage [75].

Model-based methods can be regarded as a general framework for estimating the maximum

likelihood of the parameters of an underlying distribution to a given dataset. A well-known

instance of model-based methods is the expectation-maximization (EM) algorithm. Most

commonly, one considers that the data from each class can be modeled by multivariate normal

distributions, and, therefore, the distribution observed for the whole data can be seen as a mix-

ture of such normal distributions. A maximum likelihood approach is then applied for finding

the most probable parameters of the normal distributions of each class. The EM approach for

clustering is particularly suitable when the dataset is incomplete [76, 77]. On the other hand,

the clusters obtained from the method may strongly depend on the initial conditions [54]. In

addition, the algorithm may fail to find very small clusters [29, 78]. In the R language, the pack-

age mclust [79, 80]. provides iterative EM (Expectation-Maximization) methods for maximum

likelihood estimation using parameterized Gaussian mixture models. Functions estep and

mstep implement the individual steps of an EM iteration. A related algorithm that is also ana-

lyzed in the current study is the hcmodel, which can be found in the hc function of the mclust
package. The hcmodel algorithm, which is also based on Gaussian-mixtures, was proposed by

Fraley [81]. The algorithm contains many additional steps compared to traditional EM meth-

ods, such as an agglomerative procedure and the adjustment of model parameters through a

Bayes factor selection using the BIC aproximation [82].

Another class of methods considered in our analyses is spectral clustering. These methods

emerged as an alternative to traditional clustering approaches that were not able to define
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nonlinear discriminative hypersurfaces [83]. The main advantage of spectral methods lies on

the definition of an adjacency structure from the original dataset, which avoids imposing a

prefixed shape for the clusters [84]. The first step of the method is to construct an affinity

matrix A 2 RNxN , where the value in the j-th row and k-th column indicates the similarity

between points j and k. This matrix can be regarded as a weighted graph representation of the

data. Then, the eigenvalues and eigenvectors of the matrix are used for partitioning the data

according to a given criterion. Many different types of similarity matrices can be used, a

popular choice being the Laplacian matrix [85]. Spectral methods involve the potentially

demanding process of calculating the eigenvectors of the similarity matrix [54]. The function

specc from the kernlab R package implements the algorithm of Jordan and Weiss [86], which

employs a kernel function to compute the affinity matrix from the data. The function is

defined as Aij = exp(−||xi − xj||
2/2σ2), where xi and xj are points to be clustered into k subsets

and σ2 controls how rapidly the affinity matrix Aij falls off with the distance between xi and xj.

A recent discussion about the relationship between the spectral and kmeans algorithms can be

found in [87]. The weighted kernel kmeans is a generalization of the kmeans method. It can be

used to locally optimize the graph partitioning objectives into k disjoint partitions or clusters.

Usually, this task would be performed by some spectral algorithm using eigenvectors to help

determine the partitions. However, depending on the size of the dataset, computing a large

number of eigenvectors can become computationally expensive. The authors show that the

weighted kernel kmeans algorithm can be used to aid in optimizing a number of graph parti-

tioning objectives.

In recent years, the efficient handling of high dimensional data has become of paramount

importance and, for this reason, this feature has been desired when choosing the most appro-

priate method for obtaining accurate partitions. To tackle high dimensional data, subspace

clustering was proposed [49]. This method works by considering the similarity between

objects with respect to distinct subsets of the attributes [88]. The motivation for doing so is

that different subsets of the attributes might define distinct separations between the data.

Therefore, the algorithm can identify clusters that exist in multiple, possibly overlapping, sub-

spaces [49]. Subspace algorithms can be categorized into four main families [89], namely: lat-

tice, statistical, approximation and hybrid. The hddc function from package HDclassif
implements the subspace clustering method of Bouveyron [90] in the R language. The algo-

rithm is based on statistical models, with the assumption that all attributes may be relevant for

clustering [91]. Some parameters of the algorithm, such as the number of clusters or model to

be used, are estimated using an EM procedure.

So far, we have discussed the application of clustering algorithms on static data. Neverthe-

less, when analyzing data, it is important to take into account whether the data are dynamic or

static. Dynamic data, unlike static data, undergo changes over time. Some kinds of data, like

the network packets received by a router and credit card transaction streams, are transient in

nature and they are known as data stream. Another example of dynamic data are time series

because its values change over time [92]. Dynamic data usually include a large number of fea-

tures and the amount of objects is potentially unbounded [59]. This requires the application of

novel approaches to quickly process the entire volume of continuously incoming data [93], the

detection of new clusters that are formed and the identification of outliers [94].

Materials and methods

Artificial datasets

The proper comparison of clustering algorithms requires a robust artificial data generation

method to produce a variety of datasets. For such a task, we apply a methodology based on a
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previous work by Hirschberger et al. [35]. The procedure can be used to generate normally dis-

tributed samples characterized by F features and separated into C classes. In addition, the

method can control both the variance and correlation distributions among the features for

each class. The artificial dataset can also be generated by varying the number of objects per

class, Ne, and the expected separation, α, between the classes.

The main difficult in generating datasets with the aforementioned properties is the defini-

tion of a proper covariance matrix R for the considered features. A valid covariance matrix

must be positive semi-definite [95], which is hard to ensure. However, for a given matrix

G 2 Rn�m
, the matrix R = GGT is guaranteed to be positive semi-definite [95]. Thus any ran-

dom matrix G can define a valid respective covariance matrix. As a consequence, additional

constraints on matrix G can be imposed for the generation of datasets with the required prop-

erties. Hirschberger et al. [35] developed a robust approach to generate such a matrix given the

first two statistical moments of the co-variance distribution of a set of F artificial features. The

resulting covariance matrix contains variances and co-variances drawn from such distribution.

Here we consider a normal distribution to represent the elements of R.

For each class i in the dataset, a covariance matrix Ri of size F × F is created, and this matrix

is used for generating Ne objects for the classes. This means that pairs of features can have dis-

tinct correlation for each generated class. Then, the generated class values are divided by α and

translated by si, where si is a random variable described by a uniform random distribution

defined in the interval [−1, 1]. Parameter α is associated with the expected distances between

classes. Such distances can have different impacts on clusterization depending on the number

of objects and features used in the dataset. The features in the generated data have a multivari-

ate normal distribution. In addition, the covariance among the features also have a normal dis-

tribution. Notice that such a procedure for the generation of artificial datasets was previously

used in [36].

In Fig 2, we show some examples of artificially generated data. For visualization purposes,

all considered cases contain F = 2 features. The parameters used for each case are described in

the caption of the figure. Note that the methodology can generate a variety of dataset configu-

rations, including variations in features correlation for each class.

In this study, we considered the following values for the artificial dataset parameters:

• Number of classes (C): The generated datasets are divided into C = {2, 10, 50} classes.

• Number of features (F): The number of features to characterize the objects is F = {2, 5, 10,

50, 200}.

• Number of object per class (Ne): we considered Ne = {5, 50, 100, 500, 5000} objects per

class. In our experiments, in a given generated dataset, the number of instances for each

class is constant.

• Mixing parameter (α): This parameter has a non-trivial dependence on the number of clas-

ses and features. Therefore, for each dataset, the value of this parameter was tuned so that no

algorithm would achieve an accuracy of 0% or 100%.

We refer to datasets containing 2, 10, 50 and 200 features as DB2F, DB10F, DB50F, DB200F

respectively. Such datasets are composed of all considered number of classes, C = {2, 10, 50},

and 50 elements for each class (i.e., Ne = 50). In some cases, we also indicate the number of

classes considered for the dataset. For example, dataset DB2C10F contains 2 classes, 10 features

and 50 elements per class.

For each case, we consider 10 realizations of the dataset. Therefore, 400 datasets were gener-

ated in total.
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Evaluating the performance of clustering algorithms

The evaluation of the quality of the generated partitions is one of the most important issues in

cluster analysis [30]. Indices used for measuring the quality of a partition can be categorized

into two classes, internal and external indices. Internal validation indices are based on infor-

mation intrinsic to the data, and evaluates the goodness of a clustering structure without exter-

nal information. When the correct partition is not available it is possible to estimate the quality

of a partition measuring how closely each instance is related to the cluster and how well-sepa-

rated a cluster is from other clusters. They are mainly used for choosing an optimal clustering

Fig 2. Examples of artificial datasets generated by the methodology. The parameters used for each case are (a) C = 2, Ne = 100 and α = 3.3. (b) C = 2, Ne = 100 and

α = 2.3. (c) C = 10, Ne = 50 and α = 4.3. (d) C = 10, Ne = 50 and α = 6.3. Note that each class can present highly distinct properties due to differences in correlation

between their features.

https://doi.org/10.1371/journal.pone.0210236.g002
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algorithm to be applied on a specific dataset [96]. On the other hand, external validation indi-

ces measure the similarity between the output of the clustering algorithm and the correct parti-

tioning of the dataset. The Jaccard, Fowlkes-Mallows and adjusted rand index belong to the

same pair counting category, making them closely related. Some differences include the fact

that they can exhibit biasing with respect to the number of clusters or the distribution of class

sizes in a partition. Normalization helps prevent this unwanted effect. In [97] the authors dis-

cuss several types of bias that may affect external cluster validity indices. A total of 26 pair-

counting based external cluster validity indices were used to identify the bias generated by the

number of clusters. It was shown that the Fowlkes Mallows and Jaccard index monotonically

decrease as the number of clusters increases, favoring partitions with smaller number of clus-

ters, while the Adjusted Rand Index tends to be indifferent to the number of clusters.

Here, we adopt the most traditional external indexes, which are the Jaccard Index (J) [31],

Adjusted Rand Index (ARI) [32], Fowlkes Mallows Index (FM) [33] and Normalized Mutual

Information (NMI) [34]. In order to define the cluster external index, we consider the follow-

ing concepts. Let U = {u1, u2. . .uR} represent the original partition of a dataset, where ui denote

a subset of the objects associated with cluster i. Equivalently, let V = {v1, v2. . .vC} represent the

partition found by a cluster algorithm. We denote as a the number of pairs of objects that are

placed in the same group in both U and V. Mathematically, a can be computed by

a ¼
X

i;j

nij

2

� �
; ð1Þ

where nij is the number of objects belonging to both subset ui and vj.

Let b indicate the number of pairs of objects belonging to the same group in U but different

groups in V, i.e.

b ¼
X

i

ni:

2

� �
�
X

i;j

nij

2

� �
; ð2Þ

where ni. = ∑j nij. Let c be the number of pairs of objects belonging to different groups in U and

to the same group in V, which can be written as

c ¼
X

j

n:j
2

� �
�
X

i;j

nij

2

� �
; ð3Þ

where n.j = ∑i nij.

The Jaccard Index (J), Adjusted Rand Index (ARI) and Fowlkes Mallows (FM) index can

then be defined based on a, b, c:

J ¼
a

aþ bþ c
; ð4Þ

ARI ¼

P
i;j

nij

2

� �
�
P

i
ni:

2

� �P
j

n:j
2

� �h i
=

n
2

� �

1=2
P

i

ni:

2

� �
þ
P

j

n:j
2

� �h i
�
P

i

ni:

2

� �P
j

n:j
2

� �h i
=

n
2

� � ; ð5Þ

FM ¼ a
ffiffiffiffiffiffiffiffiffiffiffi
aþ b
p ffiffiffiffiffiffiffiffiffiffiffi

aþ c
p

ðaþ bÞðaþ cÞ
: ð6Þ

We also consider the normalized mutual information (NMI) as a quality metric because it

quantifies the mutual dependence between two random variables based on well-established
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concepts of information theory [98]. The NMI measure is defined as [99]

NMIðC;TÞ ¼
IðC;TÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½HðCÞ;HðTÞ�

p : ð7Þ

where C is the random variable denoting the cluster assignments of the points, and T is the

random variable denoting the underlying class labels on the points. I(C, T) = H(C) − H(C|T) is

the mutual information between the random variables C and T. H(C) is the Shannon entropy

of C. H(C|T) is the conditional entropy of C given T.

Note that when the two sets of labels have a perfect one-to-one correspondence, the quality

measures are all equal to unity.

Previous works have shown that there is no single internal cluster validation index that out-

performs the other indices [100, 101]. In [101] the authors compare a set of internal cluster val-

idation indices in many distinct scenarios, indicating that the Silhouette index yielded the best

results in most cases.

The Dunn’s validation index quantifies not only the degree of compactness of clusters, but

also the degree of separation between individual clusters. The goal is therefore to maximize the

inter-cluster distance while minimizing the intra-cluster distance, where ci represents the i-th

cluster of the partition. The index is calculated as

DU ¼ min
1�i�k

(

min
iþ1�j�k

distðci; cjÞ

max
1�l�k

diamðclÞ

8
<

:

9
=

;

9
=

;
ð8Þ

where dist(ci, cj) is the minimal distance between clusters ci and cj, and

diamðclÞ ¼ max x;y2cl
kx � yk. A high value of this measure indicates that a compact and well-

separated cluster.

The Silhouette index (SI) computes for each point a width depending on its membership

inside a cluster.

SIk ¼
1

n

Xn

i¼1

ðbi � aiÞ

maxðai; biÞ
ð9Þ

where n is the total number of points, ai is the average distance between point i and all other

points in its own cluster, and bi is the minimum of the average dissimilarities between i and

points in other clusters. The interval of the silhouette index values is −1� SI� 1. The partition

with the highest SI is taken to be optimal.

Results and discussion

The accuracy of each considered clustering algorithm was evaluated using three methodolo-

gies. In the first methodology, we consider the default parameters of the algorithms provided

by the R package. The reason for measuring performance using the default parameters is to

consider the case where a researcher applies the classifier to a dataset without any parameter

adjustment. This is a common scenario when the researcher is not a machine learning expert.

In the second methodology, we quantify the influence of the algorithms parameters on the

accuracy. This is done by varying a single parameter of an algorithm while keeping the others

at their default values. The third methodology consists in analyzing the performance by ran-

domly varying all parameters of a classifier. This procedure allows the quantification of certain

properties such as the maximum accuracy attained and the sensibility of the algorithm to

parameter variation.
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Performance when using default parameters

In this experiment, we evaluated the performance of the classifiers for all datasets described in

Section Artificial datasets. All unsupervised algorithms were set with their default configura-

tion of parameters. For each algorithm, we divide the results according to the number of fea-

tures contained in the dataset. In other words, for a given number of features, F, we used

datasets with C = {2, 10, 50, 200} classes, and Ne = {5, 50, 100} objects for each class. Thus, the

performance results obtained for each F corresponds to the performance averaged over dis-

tinct number of classes and objects per class. We note that the algorithm based on subspaces

cannot be applied to datasets containing 2 features, and therefore its accuracy was not quanti-

fied for such datasets.

In Fig 3, we show the obtained values for the four considered performance metrics. The

results indicate that all performance metrics provide similar results. Also, the hierarchical

method seems to be strongly affected by the number of features in the dataset. In fact, when

using 50 and 200 features the hierarchical method provided lower accuracy. The k-means,

spectral, optics and dbscan methods benefit from an increment in the number of features.

Interestingly, the hcmodel has a better performance in the datasets containing 10 features than

in those containing 2, 50 and 200 features, which suggests an optimum performance for this

algorithm for datasets containing around 10 features. It is also clear that for 2 features the per-

formance of the algorithms tend to be similar, with the exception of the optics and dbscan

methods. On the other hand a larger number of features induce marked differences in perfor-

mance. In particular, for 200 features, the spectral algorithm provides the best results among

all classifiers.

We use the Kruskal-Wallis test [102], a nonparametric test, to explore the statistical differ-

ences in performance when considering distinct number of features in clustering methods.

First, we test if the difference in performance is significant for 2 features. For this case, the

Kruskal-Wallis test returns a p-value of p = 6.48 × 10−7, with a chi-squared distance of χ2 =

41.50. Therefore, the difference in performance is statistically significant when considering all

algorithms. For datasets containing 10 features, a p-value of p = 1.53 × 10−8 is returned by the

Kruskal-Wallis test, with a chi-squared distance of χ2 = 52.20). For 50 features, the test returns

a p-value of p = 1.56 × 10−6, with a chi-squared distance of χ2 = 41.67). For 200 features, the

test returns a p-value of p = 2.49 × 10−6, with a chi-squared distance of χ2 = 40.58). Therefore,

the null hypothesis of the Kruskal–Wallis test is rejected. This means that the algorithms

indeed have significant differences in performance for 2, 10, 50 and 200 features, as indicated

in Fig 3.

In order to verify the influence of the number of objects used for classification, we also cal-

culated the average accuracy for datasets separated according to the number of objects Ne. The

result is shown in Fig 4. We observe that the impact that changing Ne has on the accuracy

depends on the algorithm. Surprisingly, the hierarchical, k-means and clara methods attain

lower accuracy when more data is used. The result indicates that these algorithms tend to be

less robust with respect to the larger overlap between the clusters due to an increase in the

number of objects. We also observe that a larger Ne enhances the performance of the hcmodel,

optics and dbscan algorithms. This results is in agreement with [90].

In most clustering algorithms, the size of the data has an effect on the clustering quality. In

order to quantify this effect, we considered a scenario where the data has a high number of

instances. Datasets with F = 5, C = 10 and Ne = {5, 50, 500, 5000} instances per class were cre-

ated. This dataset will be referenced as DB10C5F. In Fig 5 we can observe that the subspace

and spectral methods lead to improved accuracy when the number of instances increases. On

the other hand, the size of the dataset does not seem to influence the accuracy of the kmeans,
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Fig 3. Average performance of the seven considered clustering algorithms according to the number of features in the dataset. All artificial datasets

were used for evaluation. The averages were calculated separately for datasets containing 2, 10 and 50 features. The considered performance indexes are

(a) adjusted Rand, (b) Jaccard, (c) normalized mutual information and (d) Fowlkes Mallows.

https://doi.org/10.1371/journal.pone.0210236.g003
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Fig 4. Average performance of the seven considered clustering algorithms according to the number of objects per class in the dataset. All

artificial datasets were used for evaluation. The averages were calculated separately for datasets containing 5, 50 and 100 objects per class. The

considered performance indexes are (a) adjusted Rand, (b) Jaccard, (c) normalized mutual information and (d) Fowlkes Mallows.

https://doi.org/10.1371/journal.pone.0210236.g004
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clara, hcmodel and EM algorithms. For the spectral, hierarchical and hcmodel algorithms, the

accuracy could not be calculated when 5000 instances per class was used due to the amount of

memory used by these methods. For example, in the case of the spectral algorithm method, a

lot of processing power is required to compute and store the kernel matrix when the algorithm

Fig 5. Performance of the algorithms when the number of elements by class correspond to Ne = 5, 50, 500, 5000. The plots correspond to the ARI, Jaccard and FM

indexes averaged for all datasets containing 10 classes and 5 features (DB10C5F).

https://doi.org/10.1371/journal.pone.0210236.g005
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is executed. When the size of the dataset is too small, we see that the subspace algorithm results

in low accuracy.

It is also interesting to verify the performance of the clustering algorithms when setting dis-

tinct values for the expected number of classes K in the dataset. Such a value is usually not

known beforehand in real datasets. For instance, one might expect the data to contain 10 clas-

ses, and, as a consequence, set K = 10 in the algorithm, but the objects may actually be better

accommodated into 12 classes. An accurate algorithm should still provide reasonable results

even when a wrong number of classes is assumed. Thus, we varied K for each algorithm and

verified the resulting variation in accuracy. Observe that the optics and dbscan methods were

not considered in this analysis as they do not have a parameter for setting the number of clas-

ses. In order to simplify the analysis, we only considered datasets comprising objects described

by 10 features and divided into 10 classes (DB10C10F). The results are shown in Fig 6. The top

figures correspond to the average ARI and Jaccard indexes calculated for DB10C10F, while the

Silhoute and Dunn indexes are shown at the bottom of the figure. The results indicate that set-

ting K< 10 leads to a worse performance than obtained for the cases where K> 10, which sug-

gests that a slight overestimation of the number of classes has smaller effect on the

performance. Therefore, a good strategy for choosing K seems to be setting it to values that are

slightly larger than the number of expected classes. An interesting behavior is observed for

hierarchical clustering. The accuracy improves as the number of expected classes increases.

This behavior is due to the default value of the method parameter, which is set as “average”.

The “average” value means that the unweighted pair group method with arithmetic mean

Fig 6. Performance of the algorithms when changing the expected number of clusters K in the dataset. The upper plots correspond to

the ARI and Jaccard indices averaged for all datasets containing 10 classes and 10 features (DB10C10F). The lower plots correspond to the

Silhouette and Dunn indices for the same dataset. The red line indicates the actual number of clusters in the dataset.

https://doi.org/10.1371/journal.pone.0210236.g006
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(UPGMA) is used to agglomerate the points. UPGMA is the average of the dissimilarities

between the points in one cluster and the points in the other cluster. The moderate perfor-

mance of UPGMA in recovering the original groups, even with high subgroup differentiation,

is probably a consequence of the fact that UPGMA tends to result in more unbalanced clusters,

that is, the majority of the objects are assigned to a few clusters while many other clusters con-

tain only one or two objects.

The external validation indices show that most of the clustering algorithms correctly iden-

tify the 10 main clusters in the dataset. Naturally, this knowledge would not be available in a

real life cluster analysis. For this reason, we also consider internal validation indices, which

provides feedback on the partition quality. Two internal validation indices were considered,

the Silhouette index (defined in the range [−1,1]) and the Dunn index (defined in the range

[0,1]). These indices were applied to the DB10C10F and DB10C2F dataset while varying the

expected number of clusters K. The results are presented in Figs 6 and 7. In Fig 6 we can see

that the results obtained for the different algorithms are mostly similar. The results for the Sil-

houette index indicate high accuracy around k = 10. The Dunn index displays a slightly lower

performance, misestimating the correct number of clusters for the hierarchical algorithm. In

Fig 7 Silhouette and Dunn show similar behavior.

The results obtained for the default parameters are summarized in Table 2. The table is

divided into four parts, each part corresponds to a performance metric. For each performance

metric, the value in row i and column j of the table represents the average performance of the

method in row i minus the average performance of the method in column j. The last column

Fig 7. Performance of the algorithms when changing the expected number of clusters K in the dataset. The upper plots correspond to

the ARI and Jaccard indices averaged for all datasets containing 10 classes and 2 features (DB10C2F). The lower plots correspond to the

Silhouette and Dunn indices for the same dataset. The red line indicates the actual number of clusters in the dataset.

https://doi.org/10.1371/journal.pone.0210236.g007
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of the table indicates the average performance of each algorithm. We note that the averages

were taken over all generated datasets.

The results shown in Table 2 indicate that the spectral algorithm tends to outperform the

other algorithms by at least 10%. On the other hand, the hierarchical method attained lower

performance in most of the considered cases. Another interesting result is that the k-means

and clara provided equivalent performance when considering all datasets. In the light of the

results, the spectral method could be preferred when no optimitization of parameters values is

performed.

Table 2. Average difference of accuracies obtained when clustering algorithms are used with their default configuration of parameters. In general, the spectral algo-

rithm provides the highest accuracy rate among all evaluated methods.

Algorithm hierarchical k-means clara spectral hcmodel subspace optics dbscan EM MAcc

NMI hierarchical - -28.59% -25.89% -42.10% -22.65% -16.72% -13.01% -9.59% -10.29% 40.99%

k-means 28.59% - 2.70% -13.51% 5.94% 11.87% 15.58% 19.00% 18.30% 69.58%

clara 25.89% -2.70% - -16.21% 3.24% 9.17% 12.88% 16.30% 15.60% 66.88%

spectral 42.10% 13.51% 16.21% - 19.45% 25.38% 29.09% 32.51% 31.81% 83.09%

hcmodel 22.65% -5.94% -3.24% -19.45% - 5.93% 9.64% 13.06% 12.36% 63.64%

subspace 16.72% -11.87% -9.17% -25.38% -5.93% - 3.71% 7.13% 6.43% 57.71%

optics 13.01% -15.58% -12.88% -29.09% -9.64% -3.71% - 3.42% 2.72% 54.00%

dbscan 9.59% -19.00% -16.30% -32.51% -13.06% -7.13% -3.42% - -0.70% 50.58%

EM 10.29% -18.30% -15.60% -31.81% -12.36% -6.43% -2.72% 0.70% - 51.28%

ARI hierarchical - -31.58% -29.06% -46.82% -18.27% -30.42% -0.58% -9.14% -10.07% 21.34%

k-means 31.58% - 2.52% -15.24% 13.31% 1.16% 31.00% 22.44% 21.51% 52.92%

clara 29.06% -2.52% - -17.76% 10.79% -1.36% 28.48% 19.92% 18.99% 50.40%

spectral 46.82% 15.24% 17.76% - 28.55% 16.40% 46.24% 37.68% 36.75% 68.16%

hcmodel 18.27% -13.31% -10.79% -28.55% - -12.15% 17.69% 9.13% 8.20% 39.61%

subspace 30.42% -1.16% 1.36% -16.40% 12.15% - 29.84% 21.28% 20.35% 51.76%

optics 0.58% -31.00% -28.48% -46.24% -17.69% -29.84% - -8.56% -9.49% 21.92%

dbscan 9.14% -22.44% -19.92% -37.68% -9.13% -21.28% 8.56% - -0.93% 30.48%

EM 10.07% -21.51% -18.99% -36.75% -8.20% -20.35% 9.49% 0.93% - 31.41%

Jaccard hierarchical - -17.46% -14.36% -30.97% -8.20% -17.94% 9.54% -1.62% -2.93% 31.95%

k-means 17.46% - 3.10% -13.51% 9.26% -0.48% 27.00% 15.84% 14.53% 48.81%

clara 14.36% -3.10% - -16.61% 6.16% -3.58% 23.90% 12.74% 11.43% 45.71%

spectral 30.97% 13.51% 16.61% - 22.77% 13.03% 40.51% 29.35% 28.04% 62.32%

hcmodel 8.20% -9.26% -6.16% -22.77% - -9.74% 17.74% 6.58% 5.27% 39.55%

subspace 17.94% 0.48% 3.58% -13.03% 9.74% - 27.48% 16.32% 15.01% 49.24%

optics -9.54% -27.00% -23.90% -40.51% -17.74% -27.48% - -11.16% -12.47% 21.81%

dbscan 1.62% -15.84% -12.74 -29.35% -6.58% -16.32% 11.16% - -1.31% 32.97%

EM 2.93% -14.53% -11.43% -28.04% -5.27% -15.01% 12.47% 1.31% - 34.28%

FM hierarchical - -14.98% -10.64% -25.57% -6.47% -15.22% 9.25% -0.53% -0.41% 49.44%

k-means 14.90% - 4.26% -10.67% 8.43% -0.32% 24.15% 14.37% 14.49% 64.34%

clara 10.64% -4.26% - -14.93% 4.17% -4.58% 19.89% 10.11% 10.23% 60.08%

spectral 25.57% 10.67% 14.93% - 19.10% 10.35% 34.82% 25.04% 25.16% 75.01%

hcmodel 6.47% -8.43% -4.17% -19.10% - -8.75% 15.72% 5.94% 6.06% 55.91%

subspace 15.22% 0.32% 4.58% -10.35% 8.75 - 24.47% 14.69% 14.81% 64.66%

optics -9.25% -24.15% -19.89% -34.82% -15.72% -24.47% - -9.78% -9.66% 40.19%

dbscan 0.53% -14.37% -10.11% -25.04% -5.94% -14.69% 9.78% - 0.12% 49.97%

EM 0.41% -14.49% -10.23% -25.16% -6.06% -14.81% 9.66% -0.12% - 49.85%

https://doi.org/10.1371/journal.pone.0210236.t002
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One-dimensional analysis

The objective of the one-dimensional analysis is to verify how sensitive the accuracy of the

clustering algorithms is to the variation of a single parameter. In addition, this analysis is also

useful to verify if a very simple optimization strategy can lead to significant improvements

in performance. For the one-dimensional analysis, we considered the databases DB2C2F

(with α = 2.5), DB10C2F (with α = 4.3), DB2C10F (with α = 1.16), DB10C10F (with α = 1.75),

DB2C200F (with α = 0.87) and DB10C200F (with α = 1.09). For each parameter, we varied its

values while keeping the other parameters at their default configuration. The effect of varying

the values of a single parameter P was quantified by comparing the obtained accuracy Γ(x)

when the parameter takes the value x and the accuracy Γdef achieved with the default configu-

ration of parameters. The improvement in performance was quantified in terms of the average

(hSi) and maximum value (max S), given by

hSi ¼
1

nP

X

x
GðxÞ � Gdefð Þ; ð10Þ

max S ¼ max
x
ðGðxÞ � GdefÞ; ð11Þ

where nP is the cardinality of all possible values taken by the parameter P in our experiments.

We also measured the sensitivity of varying the values of P using the standard deviation ΔS:

DS ¼
1

nP

X

x

GðxÞ � Gdef � hSið Þ
2

#1=2

:

2

4 ð12Þ

In addition to the aforementioned quantities, we also measured, for each dataset, the maxi-

mum accuracy obtained when varying each single parameter of the algorithm. We then calcu-

late the average of maximum accuracies, hmax Acci, obtained over all considered datasets. In

Table 3, we show the values of hSi, max S, ΔS and hmax Acci for datasets containing two fea-

tures. When considering a two-class problem (DB2C2F), a significant improvement in perfor-

mance (hSi = 10.75% and hSi = 13.35%) was observed when varying parameter modelName,

minPts and kpar of, respectively, the EM, optics and spectral methods. For all other cases, only

minor average gain in performance was observed. For the 10-class problem, we notice that an

inadequate value for parameter method of the hierarchical algorithm can lead to substantial

loss of accuracy (16.15% on average). In most cases, however, the average variation in perfor-

mance was small.

In Table 4, we show the values of hSi, max S, ΔS and hmax Acci for datasets described by 10

features. For the the two-class clustering problem, a moderate improvement can be observed

for the k-means, hierarchical and optics algorithm through the variation of, respectively,

parameter nstart, method and minPts. A large increase in accuracy was observed when varying

parameter modelName of the EM method. Changing the modelName used by the algorithm led

to, on average, an improvement of 18.8%. A similar behavior was obtained when the number

of classes was set to C = 10. For 10 classes, the variation of method in the hierarchical algorithm

provided an average improvement of 6.72%. A high improvement was also observed when

varying parameter modelName of the EM algorithm, with an average improvement of 13.63%.

Differently from the parameters discussed so far, the variation of some parameters plays a

minor role in the discriminative power of the clustering algorithms. This is the case, for

instance, of parameters kernel and iter of the spectral clustering algorithm and parameter iter.
max of the kmeans clustering. In some cases, the effect of a unidimensional variation of
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parameter resulted in reduction of performance. For instance, the variation of min.individuals
and models of the subspace algorithm provided an average loss of accuracy on the order of

hSi = 20%, depending on the dataset. Similar behavior is observed for the dbscan method, for

which the variation of minPts causes and average loss of accuracy of 20.32%. Parameters metric
and rngR of the clara algorithm also led to marked decrease in performance.

In Table 5, we show the values of hSi, max S, ΔS and hmax Acci for datasets described by

200 features. For the two-class clustering problem, a significant improvement in performance

was observed when varying nstart in the k-means method, method in the hierarchical algo-

rithm, modelName in the hcmodel method and modelName in the EM method. On the other

hand, when varying metric, min.individuals and use in, respectively, the clara, subspace, and

hcmodel methods an average loss of accuracy larger than 10% was verified. The largest loss of

accuracy happens with parameter minPts (49.47%) of the dbscan method. For the 10-class

problem, similar results were observed, with the exception of the clara method, for which any

parameter change resulted in a large loss of accuracy.

Multi-dimensional analysis

A complete analysis of the performance of a clustering algorithm requires the simultaneous

variation of all of its parameters. Nevertheless, such a task is difficult to do in practice, given

Table 3. One-parameter analysis performed in DB2C2F and DB10C2F. This analysis is based on the performance (measured through the ARI index) obtained when

varying a single parameter of the clustering algorithm, while maintaining the others in their default configuration. hSi, max S, ΔS are associated with the average, standard

deviation and maximum difference between the performance obtained when varying a single parameter and the performance obtained for the default parameter values.

We also measure hmax Acci, the average of best ARI values obtained when varying each parameter, where the average is calculated over all considered datasets.

DB2C2F DB10C2F

Algorithm Parameter hSi
(%)

ΔS
(%)

max S
(%)

hmax Acci

(%)

hSi
(%)

ΔS
(%)

max S
(%)

hmax Acci

(%)

k-means iter.max 0.05 2.37 14.46 51.5 0.04 0.91 4.49 47.3

k-means nstart 1.98 5.62 16.73 51.9 1.24 1.98 6.80 47.9

k-means algorithm 0.29 2.46 6.63 49.8 -0.92 1.29 0.65 45.0

clara metric -1.52 8.10 11.27 49.6 -3.66 5.36 5.10 42.5

clara samples -0.10 3.82 6.39 52.3 -0.21 3.03 7.48 47.5

clara sampsize -2.78 12.96 27.31 54.0 -0.54 2.92 4.88 47.1

clara rngR -0.16 3.19 4.19 51.0 -4.53 4.04 -0.03 41.7

hierarchical metric 5.27 22.28 63.65 23.3 1.83 3.64 9.26 42.3

hierarchical method 2.07 36.90 100.0 57.2 -16.15 21.26 15.89 46.5

hierarchical par.method 0.0 0.0 0.0 18.0 0.0 0.0 0.0 40.5

spectral kernel -0.61 10.42 39.45 43.7 -0.3 2.84 6.78 48.0

spectral kpar 7.36 16.78 33.3 44.6 -1.83 3.16 3.35 43.5

spectral iter 1.14 19.19 85.34 54.1 0.06 2.62 5.84 47.9

spectral mod.simple -2.11 9.7 33.32 43.0 0.54 2.02 4.5 47.7

hcmodel modelName -2.41 19.48 29.89 60.0 -0.56 3.26 6.44 48.4

hcmodel use -2.14 10.14 12.58 57.4 -0.50 1.11 2.19 47.5

EM z 1.71 8.77 19.34 33.9 7.04 8.30 28.17 45.4

EM modelName 10.75 26.18 66.64 64.4 0.14 6.25 16.20 45.0

optics eps 0.0 0.03 0.04 16.6 -10.06 8.67 0.02 5.4

optics minPts 11.35 18.42 72.97 45.7 -4.97 15.5 30.32 13.7

optics Xi -0.16 1.7 3.05 17.4 -10.07 8.67 1.52 5.6

dbscan minPts 3.68 11.68 53.0 35.4 -0.9 6.92 21.05 26.7

dbscan eps 0.49 14.91 54.42 33.9 -2.81 5.7 18.91 27.1

https://doi.org/10.1371/journal.pone.0210236.t003

Clustering algorithms: A comparative approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0210236 January 15, 2019 21 / 34

https://doi.org/10.1371/journal.pone.0210236.t003
https://doi.org/10.1371/journal.pone.0210236


the large number of parameter combinations that need to be taken into account. Therefore,

here we consider a random variation of parameters aimed at obtaining a sampling of each

algorithm performance for its complete multi-dimensional parameter space.

The methodology is applied as follows. Considering the one-dimensional variation of

parameters, presented in the previous section, we identify the parameter bounds, [Pmin, Pmax],

where the classification either does not significantly change anymore or provides substantially

smaller performance when compared to the default parameter value. Such bounds define the

interval where the parameter will be randomly sampled. In order to generate the values for a

given set of parameters P(1), P(2), . . ., P(n) of an algorithm, we randomly sample each parameter

P(i) according to a uniform distribution defined in the interval ½PðiÞmin; PðiÞmax�. This procedure gen-

erates sets of parameter values, which are then used to evaluate the performance of the algo-

rithms. For each algorithm, 500 sets of parameters were generated.

The performance of the algorithms for the different sets of parameters was evaluated

according to the following procedure. Consider the histogram of ARI values obtained for the

Table 4. One-parameter analysis performed in DB2C10F and DB10C10F. This analysis is based on the performance obtained when varying a single parameter, while

maintaining the others in their default configuration. hSi, max S, ΔS are associated with the average, standard deviation and maximum difference between the performance

obtained when varying a single parameter and the performance obtained for the default parameter values. We also measure hmax Acci, the average of best ARI values

obtained when varying each parameter, where the average is calculated over all considered datasets.

DB2C10F DB10C10F

Algorithm Parameter hSi
(%)

ΔS
(%)

max S
(%)

hmax Acci

(%)

hSi
(%)

ΔS
(%)

max S
(%)

hmax Acci

(%)

k-means iter.max 0.30 8.13 36.36 53.2 0.14 1.92 6.41 56.6

k-means nstart 5.26 12.0 36.36 53.5 2.68 2.65 9.43 57.8

k-means algorithm -0.35 6.72 25.5 42.3 -2.11 3.3 2.71 52.7

clara metric -10.9 22.31 25.05 51.8 -16.63 6.84 -5.1 37.6

clara samples 1.04 8.94 25.05 60.4 -4.83 8.96 10.26 51.9

clara sampsize 0.44 13.94 37.31 61.0 -4.46 9.97 14.18 57.6

clara rngR -2.89 15.08 25.05 56.9 -14.75 6.29 -5.21 39.3

hierarchical metric 4.82 21.46 96.0 9.7 1.15 8.52 27.18 19.2

hierarchical method 8.76 21.93 100.0 43.7 6.72 25.52 71.1 61.5

hierarchical par.method 0.00 0.00 0.00 0.00 0.0 0.0 0.0 13.8

spectral kernel 0.64 15.91 50.56 87.9 1.3 7.13 15.81 82.3

spectral kpar -1.08 16.88 50.56 88.1 -2.25 5.81 6.03 71.7

spectral iter -0.96 15.91 50.56 87.9 0.45 7.27 20.01 79.8

spectral mod.simple 3.36 15.72 50.56 87.9 -1.35 7.55 14.24 78.7

subspace models -1.77 36.80 97.4 100.0 -22.44 8.92 -6.7 69.6

subspace init -0.78 23.47 97.4 99.5 -0.57 9.29 11.13 87.4

subspace algo -1.32 1.99 0.27 88.9 0.7 1.1 1.9 87.4

subspace min.individuals -26.9 43.17 10.73 90.9 -12.32 16.6 7.78 89.1

hcmodel modelName 3.70 24.23 75.6 51.3 3.63 4.89 14.4 61.5

hcmodel use -0.92 17.68 51.47 49.1 -1.86 6.09 10.69 55.9

EM z 1.68 8.62 18.99 29.9 -0.35 5.49 15.06 43.3

EM modelName 18.80 31.93 96.62 100.0 13.63 16.09 64.52 91.6

optics eps 0.0 0.03 0.04 32.1 -0.01 0.02 0.03 35.8

optics minPts 6.96 15.35 52.38 55.1 7.16 11.72 31.5 53.2

optics Xi -1.11 3.44 7.23 33.5 0.43 1.51 3.9 37.6

dbscan minPts -19.61 30.78 11.19 45.2 -20.32 17.66 9.67 43.0

dbscan eps -1.53 17.65 59.26 55.2 -4.72 14.32 35.4 52.0

https://doi.org/10.1371/journal.pone.0210236.t004
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random sampling of parameters for the k-means algorithm, shown in Fig 8. The red dashed

line indicates the ARI value obtained for the default parameters of the algorithm. The light

blue shaded region indicates the parameters configurations where the performance of the algo-

rithm improved. From this result we calculated four main measures. The first, which we call p-

value, is given by the area of the blue region divided by the total histogram area, multiplied by

100 in order to result in a percentage value. The p-value represents the percentage of parameter

configurations where the algorithm performance improved when compared to the default

parameters configuration. The second, third and fourth measures are given by the mean, hRi,
standard deviation, ΔR, and maximum value, max R, of the relative performance for all cases

where the performance is improved (e.g. the blue shaded region in Fig 8). The relative perfor-

mance is calculated as the difference in performance between a given realization of parameter

values and the default parameters. The mean indicates the expected improvement of the algo-

rithm for the random variation of parameters. The standard deviation represents the stability

of such improvement, that is, how certain one is that the performance will be improved when

Table 5. One-parameter analysis performed in DB2C200F and DB10C200F. This analysis is based on the performance obtained when varying a single parameter, while

maintaining the others in their default configuration. hSi, max S, ΔS are associated with the average, standard deviation and maximum difference between the performance

obtained when varying a single parameter and the performance obtained for the default parameter values. We also measure hmax Acci, the average of best ARI values

obtained when varying each parameter.

DB2C200F DB10C200F

Algorithm Parameter hSi
(%)

ΔS
(%)

max S
(%)

hmax Acci

(%)

hSi
(%)

ΔS
(%)

max S
(%)

hmax Acci

(%)

k-means iter.max 0.08 8.26 33.51 62.4 -0.01 3.98 13.59 71.7

k-means nstart 10.66 28.51 71.14 77.9 15.05 8.42 31.49 90.7

k-means algorithm -9.01 8.52 8.07 38.5 -5.39 4.4 6.45 60.4

clara metric -17.6 26.37 20.66 54.8 -31.72 12.38 -10.84 25.5

clara samples 6.96 17.77 31.62 77.1 -26.54 10.57 -3.01 35.2

clara sampsize -1.17 24.21 34.23 79.3 -10.34 21.99 30.35 69.5

clara rngR -14.6 23.73 20.66 62.0 -35.55 11.33 -10.84 24.1

hierarchical metric 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0

hierarchical method 12.63 31.36 100.0 71.9 17.25 35.22 99.98 92.1

hierarchical par.method 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

spectral kernel 0.19 29.84 40.2 94.0 -0.33 4.6 10.99 82.4

spectral kpar 4.32 23.57 40.2 100.0 -3.61 5.59 10.99 76.5

spectral iter 0.23 30.01 40.2 93.0 0.08 4.08 10.99 81.5

spectral mod.simple -1.0 33.26 40.2 93.0 0.43 4.58 10.99 83.0

subspace models -1.46 22.6 68.96 82.0 -12.26 25.34 63.42 79.0

subspace init 0.54 22.22 45.52 55.7 -0.07 16.83 34.49 46.9

subspace algo 1.41 13.69 37.79 45.7 10.44 19.3 37.09 57.8

subspace min.individuals -12.74 24.61 65.52 53.4 -3.4 18.16 31.59 55.3

hcmodel modelName 20.12 35.47 92.61 74.7 30.54 31.34 71.77 95.10

hcmodel use -11.46 24.1 4.65 32.4 -6.23 13.70 18.31 36.90

EM z 4.79 15.7 49.48 31.8 -3.38 4.44 1.76 33.6

EM modelName 17.3 21.93 73.35 69.3 14.93 25.26 51.29 77.5

optics eps 0.01 13.60 16.00 38.0 0.0 5.77 12.36 54.9

optics minPts 1.71 19.83 42.3 63.5 9.92 14.84 33.76 81.4

optics Xi -0.59 13.72 21.80 38.9 0.17 5.89 12.46 57.8

dbscan minPts -49.47 30.8 18.81 70.7 -33.16 34.3 12.35 78.4

dbscan eps -13.4 31.09 24.41 77.2 6.67 8.81 24.59 87.6

https://doi.org/10.1371/journal.pone.0210236.t005
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doing such random variation. The maximum value indicates the largest improvement

obtained when random parameters are considered. We also measured the average of the maxi-

mum accuracies hmax ARIi obtained for each dataset when randomly selecting the parame-

ters. In the S2 File of the supplementary material we show the distribution of ARI values

obtained for the random sampling of parameters for all clustering algorithms considered in

our analysis.

In Table 6 we show the performance (ARI) of the algorithms for dataset DB2C2F when

applying the aforementioned random selection of parameters. The optics and EM methods are

the only algorithms with a p-value larger than 50%. Also, a high average gain in performance

was observed for the EM (22.1%) and hierarchical (30.6%) methods. Moderate improvement

was observed for the hcmodel, kmeans, spectral, optics and dbscan algorithms.

Fig 8. Distribution of ARI values obtained for the random sampling of the k-means parameters. The algorithm

was applied to dataset DB10C10F, and 500 sets of parameters were drawn.

https://doi.org/10.1371/journal.pone.0210236.g008

Table 6. Multi-parameter analysis performed in dataset DB2C2F. The p-value represents the probability that the classifier set with a random configuration of parameters

outperform the same classifier set with its default parameters. hRi, ΔR and max R represent the average, standard deviation and maximum value of the improvement

obtained when random parameters are considered. Column hmax ARIi indicates the average of the best accuracies obtained for each dataset.

Algorithm p-value

(%)

hRi
(%)

ΔR
(%)

max R
(%)

hmax ARIi

(%)

EM 68.1 22.1 21.7 69.6 69.0

hierarchical 43.9 30.6 33.6 100.0 63.0

clara 29.2 4.9 4.7 27.3 60.0

hcmodel 25.8 13.3 8.2 29.9 63.0

k-means 21.7 13.2 3.9 21.4 55.0

spectral 47.0 14.7 13.9 85.3 59.0

optics 71.1 18.8 16.6 73.0 46.1

dbscan 39.8 17.0 15.9 51.5 41.9

https://doi.org/10.1371/journal.pone.0210236.t006
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The performance of the algorithms for dataset DB10C2F is presented in Table 7. A high p-

value was obtained for the optics (96.6%), EM (76.5%) and k-means (77.7%). Nevertheless, the

average improvement in performance was relatively low for most algorithms, with the excep-

tion of the optics method, which led to an average improvement of 15.9%.

A more marked variation in performance was observed for dataset DB2C10F, with results

shown in Table 8. The EM, kmeans, hierarchical and optics clustering algorithms resulted in a

p-value larger than 50%. In such cases, when the performance was improved, the average gain

in performance was, respectively, 30.1%, 18.0%, 25.9% and 15.5%. This means that the random

variation of parameters might represent a valid approach for improving these algorithms.

Actually, with the exception of clara and dbscan, all methods display significant average

improvement in performance for this dataset. The results also show that a maximum accuracy

of 100% can be achieved for the EM and subspace algorithms.

In Table 9 we show the performance of the algorithms for dataset DB10C10F. The p-values

for the EM, clara, k-means and optics indicate that the random selection of parameters usually

improves the performance of these algorithms. The hierarchical algorithm can be significantly

improved by the considered random selection of parameters. This is a consequence of the

Table 7. Multi-parameter analysis performed in dataset DB10C2F. The p-value represents the probability that the

classifier set with a random configuration of parameters outperform the same classifier set with its default parameters.

hRi, ΔR and max R represent the average, standard deviation and maximum value of the improvement obtained when

random parameters are considered. Column hmax ARIi indicates the average of the best accuracies obtained for each

dataset.

Algorithm p-value

(%)

hRi
(%)

ΔR
(%)

max R
(%)

hmax ARIi

(%)

EM 76.5 7.5 8.0 35.8 51.4

clara 54.7 2.3 1.8 9.0 51.0

k-means 77.7 2.2 1.7 6.9 49.0

hcmodel 28.4 2.7 2.5 6.8 49.0

hierarchical 36.6 5.9 4.2 21.7 49.0

spectral 40.0 2.3 1.6 8.0 52.0

optics 96.6 15.9 9.2 39.2 39.9

dbscan 30.6 3.7 3.6 21.9 29.1

https://doi.org/10.1371/journal.pone.0210236.t007

Table 8. Multi-parameter analysis performed in dataset DB2C10F. The p-value represents the probability that the classifier set with a random configuration of parame-

ters outperform the same classifier set with its default parameters. hRi, ΔR and max R represent the average, standard deviation and maximum value of the improvement

obtained when random parameters are considered. Column hmax ARIi indicates the average of the best accuracies obtained for each dataset.

Algorithm p-value

(%)

hRi
(%)

ΔR
(%)

max R
(%)

hmax ARIi

(%)

EM 70.8 30.1 29.9 96.6 100.0

hierarchical 52.0 25.9 31.4 100.0 80.0

subspace 11.1 43.1 45.4 97.4 100.0

clara 44.9 6.5 6.3 37.3 70.0

hcmodel 38.4 31.8 25.3 81.2 70.0

k-means 50.1 18.0 7.1 62.4 60.0

spectral 48.9 9.9 18.5 31.5 90.0

optics 62.1 15.5 11.2 52.4 56.6

dbscan 43.3 5.0 6.5 23.8 50.9

https://doi.org/10.1371/journal.pone.0210236.t008
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default value of parameter method, which, as discussed in the previous section, is not appropri-

ate for this dataset.

The performance of the algorithms for the dataset DB2C200F is presented in Table 10. A

high p-value was obtained for the EM (65.1%) and k-means (65.6%) algorithms. The average

Table 9. Multi-parameter analysis performed in dataset DB10C10F. The p-value represents the probability that the classifier set with a random configuration of parame-

ters outperform the same classifier set with its default parameters. hRi, ΔR and max R represent the average, standard deviation and maximum value of the improvement

obtained when random parameters are considered. Column hmax ARIi indicates the average of the best accuracies obtained for each dataset.

Algorithm p-value

(%)

hRi
(%)

ΔR
(%)

max R
(%)

hmax ARIi

(%)

EM 86.0 17.1 15.5 69.1 100.0

clara 72.1 7.1 4.4 22.8 68.0

k-means 83.0 4.3 2.3 12.0 60.0

hcmodel 53.4 7.4 4.6 17.5 64.0

hierarchical 51.9 32.1 19.4 72.9 68.0

spectral 49.1 5.6 4.1 19.7 87.3

subspace 10.7 7.5 4.7 21.4 99.3

optics 75.3 13.2 8.0 32.1 56.0

dbscan 7.4 6.1 4.7 20.9 46.2

https://doi.org/10.1371/journal.pone.0210236.t009

Table 10. Multi-parameter analysis performed in dataset DB2C200F. The p-value represents the probability that the classifier set with a random configuration of param-

eters outperform the same classifier set with its default parameters. hRi, ΔR and max R represent the average, standard deviation and maximum value of the improvement

obtained when random parameters are considered. Column hmax ARIi indicates the average of the best accuracies obtained for each dataset.

Algorithm p-value

(%)

hRi
(%)

ΔR
(%)

max R
(%)

hmax ARIi

(%)

EM 65.1 39.1 29.3 91.2 100.0

hierarchical 40.8 50.6 44.3 100.0 100.0

clara 44.9 23.0 8.9 34.2 81.3

hcmodel 35.3 62.3 27.7 92.6 75.5

k-means 65.6 35.4 24.6 71.1 89.1

spectral 15.9 28.4 36.3 75.4 100.0

Subspace 15.9 27.6 21.5 73.5 97.2

optics 56.8 16.1 13.6 53.5 64.4

dbscan 11.7 14.0 9.6 34.0 77.8

https://doi.org/10.1371/journal.pone.0210236.t010

Table 11. Multi-parameter analysis performed in dataset DB10C200F. The p-value represents the probability that the classifier set with a random configuration of

parameters outperform the same classifier set with its default parameters. hRi, ΔR and max R represent the average, standard deviation and maximum value of the improve-

ment obtained when random parameters are considered. Column hmax ARIi indicates the average of the best accuracies obtained for each dataset.

Algorithm p-value

(%)

hRi
(%)

ΔR
(%)

max R
(%)

hmax ARIi

(%)

EM 75.6 31.7 18.3 71.7 100.0

clara 73.8 22.8 11.9 58.0 93.1

k-means 96.8 18.9 8.1 42.1 99.5

hcmodel 51.8 60.0 12.0 76.2 100.0

hierarchical 68.6 36.8 43.2 100.0 99.2

spectral 46.0 10.0 6.0 26.0 100.0

optics 78.5 17.7 8.4 37.9 83.1

dbscan 24.9 10.7 4.9 24.6 88.5

https://doi.org/10.1371/journal.pone.0210236.t011
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gain in performance in such cases was 39.1% and 35.4%, respectively. On the other hand, only

in approximately 16% of the cases the Spectral and Subspace methods resulted in an improved

ARI. Interestingly, the random variation of parameters led to, on average, large performance

improvements for all algorithms.

In Table 11 we show the performance of the algorithms for dataset DB10C200F. A high p-

value was obtained for all methods. On the other hand, the average improvement in accuracy

tended to be lower than in the case of the dataset DB2C200F.

Conclusions

Clustering data is a complex task involving the choice between many different methods,

parameters and performance metrics, with implications in many real-world problems [63,

103–108]. Consequently, the analysis of the advantages and pitfalls of clustering algorithms is

also a difficult task that has been received much attention. Here, we approached this task

focusing on a comprehensive methodology for generating a large diversity of heterogeneous

datasets with precisely defined properties such as the distances between classes and correla-

tions between features. Using packages in the R language, we developed a comparison of the

performance of nine popular clustering methods applied to 400 artificial datasets. Three situa-

tions were considered: default parameters, single parameter variation and random variation of

parameters. It should be nevertheless be borne in mind that all results reported in this work

are respective to specific configurations of normally distributed data and algorithmic imple-

mentations, so that different performance can be obtained in other situations. Besides serving

as a practical guidance to the application of clustering methods when the researcher is not an

expert in data mining techniques, a number of interesting results regarding the considered

clustering methods were obtained.

Regarding the default parameters, the difference in performance of clustering methods

was not significant for low-dimensional datasets. Specifically, the Kruskal-Wallis test on

the differences in performance when 2 features were considered resulted in a p-value

of p = 6.48 × 10−7 (with a chi-squared distance of χ2 = 41.50). For 10 features, a p-value of

p = 1.53 × 10−8 (χ2 = 52.20) was obtained. Considering 50 features resulted in a p-value of

p = 1.56 × 10−6 for the Kruskal-Wallis test (χ2 = 41.67). For 200 features, the obtained p-value

was p = 2.49 × 10−6 (χ2 = 40.58).

The Spectral method provided the best performance when using default parameters, with

an Adjusted Rand Index (ARI) of 68.16%, as indicated in Table 2. In contrast, the hierarchical

method yielded an ARI of 21.34%. It is also interesting that underestimating the number of

classes in the dataset led to worse performance than in overestimation situations. This was

observed for all algorithms and is in accordance with previous results [44].

Regarding single parameter variations, for datasets containing 2 features, the hierarchical,

optics and EM methods showed significant performance variation. On the other hand, for

datasets containing 10 or more features, most methods could be readily improved through

changes on selected parameters.

With respect to the multidimensional analysis for datasets containing ten classes and two

features, the performance of the algorithms for the multidimensional selection of parameters

was similar to that using the default parameters. This suggests that the algorithms are not sen-

sitive to parameter variations for this dataset. For datasets containing two classes and ten fea-

tures, the EM, hcmodel, subspace and hierarchical algorithm showed significant gain in

performance. The EM algorithm also resulted in a high p-value (70.8%), which indicates that

many parameter values for this algorithm can provide better results than the default configura-

tion. For datasets containing ten classes and ten features, the improvement was significantly
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lower for almost all the algorithms, with the exception of the hierarchical clustering. When a

large number of features was considered, such as in the case of the datasets containing 200 fea-

tures, large gains in performance were observed for all methods.

In Tables 12, 13 and 14 we show a summary of the best accuracies obtained during our

analysis. The tables contain the best performance, measured as the ARI of the resulting parti-

tions, achieved by each algorithm in the three considered situations (default, one- and multi-

dimensional adjustment of parameters). The results are respective to datasets DB2C2F,

DB10C2F, DB2C10F, DB10C10F, DB2C200F and DB10C200F. We observe that, for datasets

containing 2 features, the algorithms tend to show similar performance, specially when the

number of classes is increased. For datasets containing 10 features or more, the spectral algo-

rithm seems to consistently provide the best performance, although the EM, hierarchical, k-

means and subspace algorithms can also achieve similar performance with some parameter

tuning. It should be observed that several clustering algorithms, such as optics and dbscan,

aim at other data distributions such as elongated or S-shaped [72, 74]. Therefore, different

results could be obtained for non-normally distributed data.

Table 13. Summary table for the performance of clustering algorithms in datasets DB2C10F and DB10C10F. ARIdef represents the average accuracy obtained when

considering the default parameters of the algorithms. ARIbestp
represents the average of the best accuracies obtained when varying a single parameter. ARIbestr

represents the

average of the best accuracies obtained when parameters are randomly selected.

DB2C10F DB10C10F

# Algorithm ARIdef
(%)

ARIbestp
(%)

ARIbestr
(%)

ARIdef
(%)

ARIbestp
(%)

ARIbestr
(%)

1 subspace 89.9 100.0 100.0 86.1 89.1 99.3

3 EM 23.4 100.0 100.0 40.9 91.6 100.0

2 spectral 82.4 88.1 90.0 70.9 82.3 87.3

4 clara 53.0 61.0 70.0 51.9 57.6 68.0

5 hcmodel 34.2 51.3 70.0 54.2 61.5 64.0

6 k-means 36.6 53.5 60.0 52.0 57.8 60.0

7 hierarchical 0.0 43.7 80.0 13.8 61.5 68.0

8 optics 32.1 55.1 56.6 35.8 53.2 56.0

9 dbscan 39.4 55.2 50.9 41.1 52.0 46.2

https://doi.org/10.1371/journal.pone.0210236.t013

Table 12. Summary table for the performance of clustering algorithms in datasets DB2C2F and DB10C2F. ARIdef represents the average accuracy obtained when con-

sidering the default parameters of the algorithms. ARIbestp
represents the average of the best accuracies obtained when varying a single parameter. ARIbestr

represents the

average of the best accuracies obtained when parameters are randomly selected.

DB2C2F DB10C2F

# Algorithm ARIdef
(%)

ARIbestp
(%)

ARIbestr
(%)

ARIdef
(%)

ARIbestp
(%)

ARIbestr
(%)

3 EM 32.2 64.4 69.0 38.4 45.4 51.4

2 spectral 37.2 54.1 59.0 45.4 48.0 52.0

4 clara 51.1 54.0 60.0 46.2 47.5 51.0

5 hcmodel 54.0 60.0 63.0 47.1 48.4 49.0

6 k-means 48.1 51.9 55.0 45.2 47.9 49.0

7 hierarchical 18.0 57.2 63.0 40.5 46.5 49.0

8 optics 16.6 45.7 46.1 15.5 13.7 39.9

9 dbscan 22.5 35.4 41.9 22.7 27.1 29.1

https://doi.org/10.1371/journal.pone.0210236.t012
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Other algorithms could be compared in future extensions of this work. An important aspect

that could also be explored is to consider other statistical distributions for modeling the data.

In addition, an analogous approach could be applied to semi-supervised classification.
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(PDF)
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101. Arbelaitz O, Gurrutxaga I, Muguerza J, Pérez JM, Perona I. An extensive comparative study of cluster

validity indices. Pattern Recognition. 2013; 46(1):243–256. https://doi.org/10.1016/j.patcog.2012.07.

021

102. McKight PE, Najab J. Kruskal-Wallis Test. Corsini Encyclopedia of Psychology. 2010;.

103. Arruda GF, Costa LF, Rodrigues FA. A complex networks approach for data clustering. Physica A:

Statistical Mechanics and its Applications. 2012; 391(23):6174—6183. https://doi.org/10.1016/j.

physa.2012.07.007

104. Naeni LM, Craig H, Berretta R, Moscato P. A Novel Clustering Methodology Based on Modularity Opti-

misation for Detecting Authorship Affinities in Shakespearean Era Plays. PLOS ONE. 2016; 11(8):

1–27. https://doi.org/10.1371/journal.pone.0157988

105. Amancio DR. Authorship recognition via fluctuation analysis of network topology and word intermit-

tency. Journal of Statistical Mechanics: Theory and Experiment. 2015; 2015(3):P03005. https://doi.

org/10.1088/1742-5468/2015/03/P03005

106. Garcia C. BoCluSt: Bootstrap Clustering Stability Algorithm for Community Detection. PLOS ONE.

2016; 11(6):1–15. https://doi.org/10.1371/journal.pone.0156576

107. Colavizza G, Franceschet M. Clustering citation histories in the Physical Review. Journal of Infor-

metrics. 2016; 10(4):1037—1051. https://doi.org/10.1016/j.joi.2016.07.009

108. Benaim M. A Stochastic Model of Neural Network for Unsupervised Learning. Europhysics Letters.

1992; 19(3):241. https://doi.org/10.1209/0295-5075/19/3/015

Clustering algorithms: A comparative approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0210236 January 15, 2019 34 / 34

https://doi.org/10.1016/j.csda.2007.02.009
https://doi.org/10.3233/JIFS-171393
https://doi.org/10.3233/JIFS-171393
https://doi.org/10.1109/TKDE.2003.1198387
https://doi.org/10.1109/TKDE.2003.1198387
https://doi.org/10.1145/2522968.2522981
https://doi.org/10.1016/j.patcog.2016.12.003
https://doi.org/10.1016/j.patcog.2006.06.026
https://doi.org/10.1016/j.patcog.2006.06.026
https://doi.org/10.1016/j.patcog.2012.07.021
https://doi.org/10.1016/j.patcog.2012.07.021
https://doi.org/10.1016/j.physa.2012.07.007
https://doi.org/10.1016/j.physa.2012.07.007
https://doi.org/10.1371/journal.pone.0157988
https://doi.org/10.1088/1742-5468/2015/03/P03005
https://doi.org/10.1088/1742-5468/2015/03/P03005
https://doi.org/10.1371/journal.pone.0156576
https://doi.org/10.1016/j.joi.2016.07.009
https://doi.org/10.1209/0295-5075/19/3/015
https://doi.org/10.1371/journal.pone.0210236

