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HOMOCLINIC TANGENCY AND VARIATION OF
ENTROPY

M. BRONZI AND A. TAHZIBI

ABSTRACT. In this paper we study the effect of a homoclinic tan-
gency in the variation of the topological entropy. We prove that a
diffeomorphism with a homoclinic tangency associated to a basic
hyperbolic set with maximal entropy is a point of entropy variation
in the C°°— topology. We also discuss variational problem in C*-
topology.

1. INTRODUCTION

Topological entropy is one of the most important invariants of topo-
logical conjugacy in dynamical systems. By the 2—stability of Axiom
A diffeomorphisms with no cycle condition, it comes out that the en-
tropy is a C'—locally constant function among such dynamics. We say
that a diffeomorphism f is a point of constancy of topological entropy
in C* topology if there exists a C*—neighborhood & of f such that for
any diffeomorphism g € U, h(g) = h(f). We also call a diffeomorphism
as a point of variation of entropy if it is not a point of constancy.

In [11], Pujals and Sambarino proved that surface diffeomorphisms
far from homoclinic tangency are the constancy points of topological
entropy in C* topology. In this paper we address the reciprocal prob-
lem. That is we are interested in the effect of a homoclinic tangency to
the variation of the topological entropy for a surface diffeomorphism.
Of course after unfolding a homoclinic tangency, new periodic points
will emerge, but it is not clear whether they contribute to the varia-
tion of the topological entropy. We mention that Diaz-Rios [3] studied
unfolding of critical saddle-node horseshoes and when the saddle-node
horseshoe is not an attractor they proved that the entropy may decrease
after the bifurcation. In our context, the tangency occurs outside a ba-
sic hyperbolic set.

This work was mostly done at the Instituto de Ciéncias de Matemdtica e de
Computagio (ICMC) and finished when A. Tahzibi was on leave from ICMC-USP
for a post-doctoral at IMERL-Uruguay supported by CNPg-Brazil. M. Bronzi
thanks the support of Fapesp-Brazil with a doctoral fellowship.

1



2 M. BRONZI AND A. TAHZIBI

For Axiom A diffeomorphisms, by the spectral decomposition theo-
rem of Smale (see e.g. [13])), we have Q(f) = A;UA,U---UAy, where
each A; is a basic set, i.e, an isolated f-invariant hyperbolic set with a
dense orbit. By the definition of topological entropy we have

h(f) = mex h(f|a;)-

So, we conclude that there exists (at least) a set which is responsible
for the topological entropy of an Axiom A, i.e, there exists some ky €
{1) ‘i ;k} such that h‘(f) = h’(fll\ko)‘

We consider a class of diffeomorphisms on the frontier of Axiom A
systems which exhibit homoclinic tangency corresponding to a periodic
point of Ay. We show that the topological entropy increases after small
C* perturbations.

More precisely, consider a parametrized family f, : M — M of dif-
feomorphisms of a closed surface M unfolding generically a homoclinic
tangency at p = 0 where Q(fy) = A; U+ A U O(q) where each A; is
an isolated hyperbolic set and ¢ is a homoclinic tangency associated to
a saddle fixed point p of some A;.

Theorem 1. Let f, be a one parameter family of C* surface diffeo-
morphism as above, then

(1) If A; is responsible for the entropy then, fy is a variation point
of the topological entropy in C'*° topology

(2) There exist ezamples where A; is not responsible for entropy and
fo is a variation point in C'—topology.

Observe that in the first item (which is the main part) of the above
theorem we claim the variation of entropy in C'* topology. In the
second item we give an example which shows that even if the tangency
corresponds to a basic set which is not responsible for the entropy,
we can increase the entropy after C*'—perturbations. This example is
easily made of a horseshoe and a homoclinic tangency corresponding
to a hyperbolic fixed point outside the horseshoe.

We recall also a method for perturbation of dynamics with homo-
clinical tangency, due to Newhouse, which is so called the “Snake like”
perturbation. Although after such perturbation the non wandering set
becomes richer, the topological entropy does not necessarily increase.
See theorem 1.1 for the relation between an estimate of entropy after
the perturbation and the eigenvalues of the periodic point correspond-
ing to the homoclinic tangency.

Theorem 1.1 ([9]). Let p be a (conservative) hyperbolic periodic point
of a CY-diffeomorphism f, such that W*(O(p)) is tangent to W*(O(p))
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in some point. Gwen € > 0, for all neighborhood N of f there ezists
g € N such that

hg) > %log @) —e.

As a corollary of continuity of topological entropy for the surface C*
diffeomorphisms we prove that:

Theorem 2. It is not possible to substitute C* instead of C* in the
above theorem.

Finally, let us also mention a result of Hua, Saghin and Xia [5] where
they prove that the topological entropy is locally constant for some par-
tially hyperbolic diffeomorphisms with one dimensional central bundle.

2. MAIN INGREDIENTS

Topological Entropy. Consider &y = {1,..., N}? and the shift o :
Zy — Iy given by o(x) = y where y; = 41, ¢ € Z. For A = (ay){;,
a square 0 — l-matrix of order NV, the correspondent subshift of finite
type is the restriction of o to 4 = {x € Ey | agqyy, =1 for i € Z}.

The following proposition is a well known result that can be found
for instance in [12].

Proposition 2.1 ([12]). Ifo|a: Za — Z4 is a subshift of finite type,
then

h(aA) = log()‘max);
where Amag 1S the biggest eigenvalue of A in modulus.

The main properties of the topological entropy that we use in this
text can be found in [6].

-Homoclinic Explosions and Markov Partitions. The celebrated
result of Bowen [2] on the construct of Markov partition for hyperbolic
systems is

Theorem 2.2 ([1]). Let A be a hyperbolic invariant set with a local
product structure for a diffeomorphism f. Then, there exists a Markov
partition of A for f with rectangles of arbitrarily small diameter.

In particular, for basic set from the spectral decomposition of a
Axiom A diffeomorphism there are Markov partitions with arbitrar-

ily small rectangles.
An important consequence of this Bowen’s result is the existence of a

topological conjugation between the system f| and a subshift of finite
type ols,-
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To prove our main theorem, we focus on Q—explosion like in the
model in Palis-Takens result [10], of course, without any hypothesis on
the fractal dimensions.

That is, we are considering a one parameter family f, where for the
parameter x4 = 0 the nonwandering set Q(fo) = AyUA,U---U A, such

that A;, 7 < k is a hyperbolic basic and Ay = Az U O(q) where Ay is
a basic set and O(g) is the orbit of a homoclinic tangency associated
with a saddle fixed point p € Ay.

For 1 > 0 we can consider the basic sets A;(u) as the continuation of
A;. Thereby, we have that A;(x) is hyperbolic and f,|a,(.) is conjugated

to fo|la,- Then, we have
h(fnlA,»(u)) = h(fO]/\i)

foralli=1,...,k and all x positive or negative.

However, when we unfold the family f, new periodic points are cre-
ated and the entropy of the nonwandering sets may increase for positive
parameters p. We will see that, in fact, the entropy increases for small
positive parameters. This can be shown by constructing a subsystem
of f, which is not topologically conjugated to fo|s,. These facts will
be important to proof the main theorem.

To construct such a subsystem, we find a subset of (f,) containing
Ay () using Markov partitions. Take a parameter p very close to u = 0.
Since f, unfolds generically, the map f, has transversal homoclinic
intersections close to O(gp), the tangency orbit of f;. We have the
situation represented below in the figure 1.

W(p) WS(PM)
~ \ ~ \
p © W) g Py ) W) \_/
FIGURE 1. Unfolding of a homoclinic tangency close to
pw=0.

Consider g, a transversal homoclinic intersection point between We(pu)
and W*(p,,) close to go (the tangency for fp). Since Ay () is hyperbolic
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and maximal invariant set for f,, there exist a isolating neighborhood
of Ag(u), say Vi. Suppose that g, & Vi. Moreover, we can use the
Bowen'’s construction of Markov partition [2]. Consider {Ry,..., R} a
Markov partition for Ax(x) such that

Ae(w) = J R; € W
j=1

Furthermore, as g, € Vi we have that a part of O(g,) remains out
of Vi. Take Ny, Ny € N such that fV'(g,) € Ry, f7"*(qu) € Ry and
fi(au) & Uiz, R; for j = —=Np+1,...,0,..., Ny —1. In other words, R,
is the rectangle containing the first forward iterated of g, that belongs
to Vi, and R, is the rectangle containing the first backward iterated of
q, that belongs to Vj.

Ry

)
St

Fula\_S

s T an)

FIGURE 2. Construction of the Markov partition.

Given the Markov partition for Ag(u), we extend it for a larger set
which contains Ag(x) UO(g,) by constructing other rectangles contain-
ing {f7 ™ (qu), -, Qu» - - -, f1+(gu)} in the following way: if we iter-
ate R, under f2, we get a narrow strip around W¥(p,) containing g,.
And if we iterate R, under f; !, we get a narrow strip around W*(p,,)
containing g,. We know that W*(p,) and W*(p,) have transversal in-
tersection on g,. As we could take the diameter of the partition small
enough, it comes out that f;™(R,) and fN2(R,) are transversal. Let
C = f7M(Rs) N fN*(Ry). Tt is clear that C' is disjoint from (Ji_; R
and contains g,.

Note that fﬁf’ 1(C) is a vertical strip of full height contained in Ry and
iy N2(C) is a horizontal strip of full weight contained in R;. Consider
the disjoint sets S; defined as

S = f;N2+j(C)
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forj=1,2,...,Noy N+ 1,...,N; + N, — 1. Note that Sy, = C. Now
denote £ = Ny + N, — 1 and consider P = {Ry,..., R, S1,...,S¢} and

So Ap = ﬂ fi/(R) is an isolated hyperbolic set such that Ag(u) C

neZ
Ar C Q(f,). The desired subsystem is the restriction f, : Ag — Ag.

Lemma 2.3. P is Markov partition for Ag.

Proof. We already know that all R;’s satisfy the definition of Markov
partition. It remains to verify the Markov property for S;’s. By con-
struction we have all R;’s and S;’s pairwise disjoint. Furthermore
fu(Sj) = Sjg1 for j =1,...,£— 1. In particular, we have f,(S¢) C R,
is a vertical strip of full height. So

fu(Se) N R # @,
fu(S)NRi=@, fori=1,...,5 and
LS)nNS;=a, forj=1,...,L

On the other hand, only R; has image by f, that intersects some ;.
In fact,

f,u.(Rl) NS; # @ and f#(Rl) ﬂSj =g, for j =2,...,2

Note that since f;'(S1) C R is a horizontal strip of full weight in
Rl, then Sl = f#(fu‘l(Sl)) (= fu(Rl) SO, fy_(Rl) ﬂSl 7‘5 (%} and,
by the construction of S, this intersection satisfies the transversality

condition of Markov partitions. Thus P is a Markov partition for Ag.
O

We can associate the system f, : Ag — Agr to a subshift of finite
type as follows. We consider the Markov partition P = { P, ..., Psy¢}
as above and we define a transition matrix A, = (ai;)(s+6)x(s+¢) for fyu
taking

1, if fu(P)NP; # @
Y0, f fu(PR)NP =2

for 1,7 € {1,...,s + ¢}. In this way we obtain a topological conjugacy
between the systems f, : A — Ag and the subshift of the finite type
o, : La, — Za,, where Xy, C Ysr¢. The transition matrix A, has



HOMOCLINIC TANGENCY AND VARIATION OF ENTROPY 7

the following form

Hij) ]flSZ,]SS,
1, ifi=1,j=s8+lori=s+4j=s;
1, fj=it+1lfors+1<i<s+¢-1,;
0, in other cases.

where H, = (H;j)sxs is the transition matrix of f, : Ag(p) — Ag(p)
which is irreducible, because fy,|a,(y is topologically transitive (see
(3.1) in the next section).

3. PROOF OF THEOREMS 1 AND 2

First statement of theorem 1. Let f, be the one parameter family
as in the theorem 1. In the previous section, we constructed a Markov
partition for the subsystem f,|s,, for © > 0. By means of this Markov
partition, one may give a conjugacy between such invariant subsystem
fulag(w and the dynamic of a subshift of finite type.

Let A, be the transition matrix of f,|x,, for £ > 0 small enough.
Recall that h(f,) = log\, where )\, is the largest eigenvalue of A,
(by theorem 2.1). By construction of Markov partition in the previous
section, we conclude that

i S T100 - 0]
000 --- 0
H, -

A J looo - o]
A4=1roo0 .. 07 [010 0 (81
00 - 0| |[001:- 0
00 .- 0| [000 - 1
(00 .- 1] 000 - 0]

The following proposition asserts that the largest eigenvalue of the
matrix A, is strictly bigger than the largest eigenvalue of the matrix
Ay = Hy. From this proposition we can conclude that the entropy of

the system f,|a,(u) is bigger than the entropy of fola,-

Proposition 3.1. Let A, as defined above. If A, is the largest eingen-
value of A, in modulus, then for any p > 0 near to zero, Ay > Ao.

Proof. To proof the proposition we use matricial properties given by
the following theorem due to Perron and Frobenius.
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Theorem 3.2 (Perron-Frobenius, [4]). Every non-negative s x s matriz
A has a non-negative eigenvector, AU = AU, with the property that the
associated A 1is equal to the spectral radius |N|maz. If the matriz A is
irreducible, then there is just one non-negative eigenvector up to mul-
tiplication by positive constant, and this eigenvector is strictly positive.
Furthermore, the mazimal eigenvalue X' of every principal minor (of
order less than s) of A satisfies X' < X. If A is irreducible, then X' S .

To use this theorem in a convenient way, we need the matrix A, be
irreducible, that is, for any pair 7, j there is some power n(¢, j) of A,
such that Az(i’j) > 0. By the definition of the transition matrix A,, we
get a characterization of irreducibility using Markov partitions.

Lemma 3.3. The transition matriz A, for a Markov partition P =
{P,} is trreducible if, and only if, for each pair i,j there exists n =
n(i,j) such that f*(P;) N P; # @.

Proof. 1t follows directly of the construction of the transition matrix.
O

Note that the Markov partitions P = {Ri,..., Rs, S1,...,Se} for
the systems fu|a, (¢ > 0 small) constructed in the previous section
satisfy the conditions of the previous lemma. So, we have that A, is
irreducible. Indeed, this conditions are satisfied by the rectangles R;’s
because the system f,|a, is transitive. Since for each Sj, the iterated
f7(S;) intersects Ry and the iterated f7(R;) intersects S;, we obtain
the desired property for all elements of P.

Now we can apply the Perron-Frobenius Theorem to the sub-matrix
A, of the irreducible transition matrix A,, obtained by excluding the
last line and the last column of A,. So we obtain that the largest
eigenvalue \, of A, is strictly bigger than the largest eigenvalue A, of
A, 1. Even though A, is not necessarily an irreducible matrix, we can
use the Perron-Frobenius theorem again to the sub-matrix A, 5, whose
the largest eigenvalue is A, and obtain that A, , < A,. We repeat this
step up to obtaining the sub-matrix H,, whose largest eigenvalue A, ¢
is equal to Ay, because the systems f,[a,(u) and fo|a, are topologically
conjugated. Thus we have A\, Z Ao. O

To conclude the proof of the the first statement of the Theorem 1
observe that for all C%-neighborhood V of f = fo we can take f, with
o very close to 0 such that f, € V and the Proposition 3.1 holds. So,
since Ay is responsible for the entropy of fo, h(fu) = h(fulaww) >
h(fola,) = h(fo). Then h(f,) # h(fo) and thus fp is a point of entropy
variation.
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O

Second statement of theorem 1. To proof of the second statement
of the Theorem 1 we construct a system with a horseshoe and a homo-
clinic tangency corresponding to a hyperbolic fixed point outside the
horseshoe. Then we perturb the system in a small neighborhood of the
tangency to create a transversal intersections (using C'-perturbations
“Snake like” as in Newhouse [9]) to obtain a new system with topolog-
ical entropy bigger.

Consider the system f on the sphere S? whose orbits follows the
meridians from p., (the North Pole) to py (the South Pole). Suppose
that the system has a horseshoe and a homoclinic loop in two disjointed
regions. These regions are delimited by meridians. See the Figure 3.

FIGURE

4. Region

of the
FIGURE 3. System with a horse-
horseshoe and a homoclinic shoe
loop. r.

We suppose this homoclinic loop is associated a fixed hyperbolic
point p which has derivative with eigenvalues A(p) = 3 and A(p)™" =
3=1. The horseshoe I in the first region is a two legs horseshoe, ps, is
the source which send the orbits to a topological disc ¢) whose interior
in a trapping neighborhood for I'. The sink of this horseshoe coincides

with po. See the figure 4.
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Thus the nonwandering set Q(f) consists of three sinks, one source,
a (isolated) horseshoe and a hyperbolic point on the homoclinic loop.
Then, the topological entropy of f is h(f|r) = log 2.

Now we perturb f in the C'-topology to obtain a new system g,
which has a horseshoe A instead of the homoclinic loop. Choose a point
q in W§_(p) and a neighborhood U of ¢ such that U is a fundamental
domain. Consider I = W?9(q) N U. We make a perturbation in U as
in Newhouse [9]. Suppose that ¢ : U — #(U) C R? is a linearizing
coordinate with ¢(¢) = 0. Consider a > 0 such that ¢=([a,a]) C I.
For each big N > 0 pick A = A(N) > 0 such that AN — 0 when

N — oo. Consider the following function

TN
o = A .
(z,y) (x,y—i— coS 5 >

Note that ® sends [—a, a] on the curve -y, where 7 is the graphic of the

function © — y + Acos(%2X). The maximal distance between 7 and

the z-axis is A. Furthermore, v intercepts [—a, a] N times and

1 0
Dq)(m,y) - l: —%sin(%) 1 jl )
then ® is conservative. Take A small enough, then for § > 0 there
exists a diffeomorphism h d-close to Id in the C'-topology such that
h = ® near the origin and h = Id outside of a neighborhood of the
origin. Pick g = ho f. We have that g is 6-C*—close to f, g(z) = f(z)
for z € f~Y(U), [—a,a] C W(p,g) and v C W¥(p, g).

Starting from here, the argument is the same as the one used by
Newhouse. Choose a narrow rectangle R close to Wj.(p,g) that re-
turns, after n iterates by g, close to W*(p,g) N U and it intercepts
(transversally) N times. We define A’ the maximal invariant set for
g"|r and we have that h(g"|r/) = log N. Consider A = U?/:—Ol ¢’ (A)
and it turns out h(g|a) = Llog V.

We have that A C H(p,g), where p = p(f) = p(g), because since
p & f~YU), g(p) = f(p) = p. Here H(p,g) denotes the homoclinic
class of p for g (see [6] for definition). Therefore, by Newhouse [9], we

obtain

.1
Aim —log N = log [A(p)].
Take N large enough such that

1
h(gla) = —logN > log [A(p)| — €.
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In this case, we have [A(p)| = 3 and we can take ¢ < log(%). So
A(gla) > log(2) > h(glr)

Note that g is different from f just inside a region delimited by
two meridians. Then, the entropy of g restricted to I coincides with
the entropy of f restricted to I. Thus, the system g : S2 — S? has
H(p,g) D A as the responsible basic set. O

Proof of Theorem 2. It is well known that topological entropy func-
tion f — hep(f) is a continuous function in C* topology. Using this
observation, our example in the proof of the second statement of theo-
rem 1 shows that the Newhouse perturbation Theorem 1.1 can not be
applied in C*®topology.

4. FURTHER REMARKS: RELATION WITH YOMDIN RESULT

Now let us recall a result of Yomdin about the defect of semi-continuity
of the entropy function in the space of C*—diffeomorphisms.

Theorem 4.1 ([14]). For f : M — M of class C* and g, — f in the

C* topology,
2m

limsup h(gn) < A(f) + ——R(f), (4.1)

n—oo

where k > 1, m = dim M and R(f) = lim %logrnea]&c 1D f™(x)]|-

Question 1. Let f be a C*—diffeomorphism with Q(f) = AyU- -+ Ay U
O(q) where A; are basic pieces and O(q) is the homoclinic tangency
corresponding to a piece not responsible for the entropy, for instance,
Ay. Is there k > 0 such that if |h(f) — h(f|A1)| > & then f is a point
of constancy in the C* topology?

It may be conjectured that k > 4R(f) for the surface case where
m = 2. However, using our example we conclude that such £ in the
question would be greater than R(f).
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